[go: up one dir, main page]

JPS62147733A - plasma processing equipment - Google Patents

plasma processing equipment

Info

Publication number
JPS62147733A
JPS62147733A JP28959285A JP28959285A JPS62147733A JP S62147733 A JPS62147733 A JP S62147733A JP 28959285 A JP28959285 A JP 28959285A JP 28959285 A JP28959285 A JP 28959285A JP S62147733 A JPS62147733 A JP S62147733A
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
substrate
chamber
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28959285A
Other languages
Japanese (ja)
Inventor
Yutaka Nogami
裕 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP28959285A priority Critical patent/JPS62147733A/en
Publication of JPS62147733A publication Critical patent/JPS62147733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To accurately anisotropically etch in a plasma processor by focusing the line of magnetic force of a Miller magnetic field through which a plasma is passed perpendicularly to a substrate near an electrode opposed to the substrate. CONSTITUTION:A high frequency voltage is applied to between an anode 11 and a cathode 15 to generate a plasma P between the anode 11 and the cathode 15. An annular magnet 19 is so mounted as to surround the anode 11, a magnet 21 is further mounted under a bottom plate 13b, and a Miller magnetic field M is formed in a chamber 13. The line H of magnetic force of the magnetic field is focused near the anode 11, and passed through the plasma P in a direction perpendicular to a substrate 23. A plurality of magnets 31 are arranged on the inner peripheral wall 13c of the chamber 13 so that poles are arranged laterally and longitudinally in a zigzag manner to form a multiplex bipole surface magnetic field for returning charged particles flown from the plasma P to the wall 13c of the chamber 13 to the plasma P. Thus, the substrate 23 can be accurately anisotropically etched.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、チャンバ内にプラズマを発生させて基板を
処理するプラズマ処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma processing apparatus that processes a substrate by generating plasma in a chamber.

(従来の技術) 一般に、半導体基板のエツチングはプラズマによって行
なっている。
(Prior Art) Generally, semiconductor substrates are etched using plasma.

近年半導体集積回路の高密度化につれて、基板に形成さ
れるパターン寸法が微細になってきており、この微細な
パターンを短時間で忠実にエツチングするには高精度の
異方性エツチングで行なう必要があり、これを行なうた
めには、高真空で電#密度の高いプラズマが要求される
As the density of semiconductor integrated circuits has increased in recent years, the dimensions of patterns formed on substrates have become finer, and in order to faithfully etch these fine patterns in a short time, it is necessary to use highly accurate anisotropic etching. To do this, a high vacuum and high density plasma are required.

従来、プラズマ処理装置として第5、第6図に示すもの
が知られている。
2. Description of the Related Art Conventionally, plasma processing apparatuses shown in FIGS. 5 and 6 are known.

第5図に示すものは、チャンバ1の外周壁に多数の磁石
2を取付けて、チャンバ内周面に磁力線3を発生させて
いる。
In the device shown in FIG. 5, a large number of magnets 2 are attached to the outer circumferential wall of a chamber 1 to generate lines of magnetic force 3 on the inner circumferential surface of the chamber.

そして図示しないガス導入系からガスを導入し、電極(
図示せず)に電圧を印加してプラズマを発生させ、前記
磁力i3によってプラズマの荷電粒子がチャンバl内壁
に到達しないようにし、これによりプラズマの電離密度
の低下を防止して、図示しない基板をそのプラズマでエ
ツチングしている。
Then, gas is introduced from a gas introduction system (not shown), and the electrode (
(not shown) to generate plasma, and the magnetic force i3 prevents the charged particles of the plasma from reaching the inner wall of the chamber 1, thereby preventing a decrease in the ionization density of the plasma, and attaching a substrate (not shown) to the substrate. It is etched with that plasma.

第6図に示す−ものは、電磁石5によって円筒形電極6
内を貫通する磁力線7を形成し、上記と同様に、ガス導
入系8からガスを導入して、円筒形電極6内にプラズマ
を発生させる。
As shown in FIG. 6, a cylindrical electrode 6 is
Lines of magnetic force 7 are formed to penetrate through the cylindrical electrode 6, and similarly to the above, gas is introduced from the gas introduction system 8 to generate plasma within the cylindrical electrode 6.

プラズマの荷電粒子が前記磁力線7を横切ると、磁力線
7に沿ってラーモア運動を行ない、このラーモア運動に
よる運動距離の増加によって中性粒子と衝突する回数が
増加し、これによりプラズマの電離密度が高くなり、こ
のプラズマで基板9をエツチングしている。
When the charged particles of the plasma cross the magnetic field lines 7, they perform Larmor motion along the magnetic field lines 7, and as the distance of movement increases due to this Larmor motion, the number of collisions with neutral particles increases, which increases the ionization density of the plasma. The substrate 9 is etched with this plasma.

(本発明が解決しようとする問題点) しかしながら、前者のものにあっては、壁面近傍以外の
領域では無磁場となるので、荷電粒子は直線的な運動し
か行なわない。このため荷電粒子の中性粒子との衝突回
数が少ないくなるので、高密度なプラズマを得るという
点において不十分であり、高真空で高電離密度のプラズ
マを得ることができなかった。
(Problems to be Solved by the Present Invention) However, in the former case, since there is no magnetic field in areas other than the vicinity of the wall, the charged particles only move in a straight line. For this reason, the number of collisions of charged particles with neutral particles is reduced, which is insufficient in terms of obtaining a high-density plasma, and it has been impossible to obtain a plasma with a high ionization density in a high vacuum.

後者にあっては、荷電粒子のラーモア運動によって電離
密度は高くなるが、円筒形電極6.および平行電極10
で荷電粒子が損失されてしまう。
In the latter case, the ionization density increases due to the Larmor motion of charged particles, but the cylindrical electrode 6. and parallel electrode 10
Charged particles are lost.

また、エツチング等のプラズマプロセスが行なわれてい
る真空度(1−100Pa )においては、粒子のモ均
自山行程が短いので、基板9に向って運動している荷電
粒子は、基板9に到達する前に他の粒子と衝突してしま
う。この衝突によって荷電粒子は、運動方向が変わって
前記電極6.10に向い、その電極6.10で損失して
しまう。
Furthermore, in the degree of vacuum (1-100 Pa) where plasma processes such as etching are performed, the self-uniform path of particles is short, so charged particles moving toward substrate 9 do not reach substrate 9. It collides with other particles before it can do so. Due to this collision, the charged particles change their direction of movement and are directed towards the electrode 6.10, where they are lost.

したがって高くなった電離密度は低下してしまい、結局
電離密度の高いプラズマを得ることができず、いずれも
短時間で高精度の異方性エツチングを行なうことができ
なかった。
Therefore, the increased ionization density decreases, and in the end, it is not possible to obtain a plasma with a high ionization density, making it impossible to perform highly accurate anisotropic etching in a short period of time.

この発明は、プラズマ中にミラー磁場を形成して、電離
密度を高めるとともに、電極による荷電粒子の損失を防
止して、高精度の異方性エツチングを行なえるようにし
たプラズマ処理装置を提供することを目的とする。
The present invention provides a plasma processing apparatus that forms a mirror magnetic field in plasma to increase ionization density and prevents loss of charged particles due to electrodes, thereby enabling highly accurate anisotropic etching. The purpose is to

(問題を解決するための手段) この発明は、上記の目的を達成するために、チャンバ内
に設置された陽極電極と陰極電極との間にプラズマを発
生させ、このプラズマによって基板を処理するとともに
、プラズ°マを所定空間に閉じこめておく多重双極子表
面磁場を形成する表面磁場形成手段を具えたプラズマ処
理装置において、チャンバ内にミラー磁場を形成するミ
ラー磁場形成手段を設け、このミラー磁場による磁力線
が前記基板にほぼ直交してプラズマを貫通し、この貫通
した磁力線が前記基板と対向した電極近辺で集束する構
成にしたものである。
(Means for Solving the Problem) In order to achieve the above object, the present invention generates plasma between an anode electrode and a cathode electrode installed in a chamber, processes a substrate with this plasma, and In a plasma processing apparatus equipped with a surface magnetic field forming means for forming a multi-dipole surface magnetic field that confines plasma in a predetermined space, a mirror magnetic field forming means for forming a mirror magnetic field is provided in the chamber, and a mirror magnetic field is generated by the mirror magnetic field. The magnetic lines of force penetrate the plasma almost orthogonally to the substrate, and the penetrating lines of magnetic force are converged near the electrode facing the substrate.

(本発明の作用) 陽極電極と陰極電極との間で発生したプラズマの荷電粒
子は、プラズマを貫通する磁力線に捉えられて、ラーモ
ア運動を行なう、このラーモア運動により荷電粒子の運
動距離が長くなり、中性粒子と衝突する回数が増加して
、プラズマの電離密度が高くなる。
(Action of the present invention) Charged particles of the plasma generated between the anode electrode and the cathode electrode are caught by the magnetic lines of force penetrating the plasma and perform Larmor motion. Due to this Larmor motion, the moving distance of the charged particles becomes longer. , the number of collisions with neutral particles increases, and the ionization density of the plasma increases.

(本発明の効果) エツチング等のプラズマプロセスが行なわれている真空
度は1〜100 Pa程度で、粒子の平均自由行程は短
いので、基板に向って運動している荷電粒子は、基板に
到達する前に他の粒子と衝突してしまう。この衝突によ
って荷電粒子は、運動方向が変わってチャンバ壁に向っ
て運動しても、多重双極子表面磁場によってプラズマ中
に戻される。
(Effects of the present invention) The degree of vacuum in which plasma processes such as etching are performed is approximately 1 to 100 Pa, and the mean free path of particles is short, so charged particles moving toward the substrate do not reach the substrate. It collides with other particles before it can do so. This collision causes the charged particles to change their direction of motion and move toward the chamber wall, but are returned to the plasma by the multi-dipole surface magnetic field.

また基板と対向する電極近辺に磁力線が集束するミラー
磁場を形成したので、その電極に突入する荷電粒子は、
磁力線の集束部で押し戻され、その電極に補足されない
In addition, since we created a mirror magnetic field in which the lines of magnetic force converge near the electrode facing the substrate, charged particles that rush into the electrode will
It is pushed back by the focused part of the magnetic field lines and is not captured by the electrode.

したがって高くなった電離密度は低下しないので、高真
空で電離密度の高いプラズマを得ることができる。
Therefore, since the increased ionization density does not decrease, plasma with high ionization density can be obtained in a high vacuum.

またミラー磁場の磁力線が基板をほぼ直交して貫通する
ので、妨電粒子は基板に垂直に入射し、これにより高精
度な異方性エツチングが行なわれる。さらにミラー磁場
および多重双極子表面磁場によって、プラズマ粒子が閉
じ込められるので、荷電粒子がチャンバ壁面や電極をス
パッターしてしまうことがない。したがってチャンバ壁
面や電極からガスが放出されないので、一定の性質のプ
ラズマを再現性良く得ることができる。
Furthermore, since the lines of magnetic force of the mirror magnetic field penetrate the substrate almost perpendicularly, the electrostatic particles are incident perpendicularly to the substrate, thereby achieving highly accurate anisotropic etching. Furthermore, the plasma particles are confined by the mirror magnetic field and the multi-dipole surface magnetic field, so that the charged particles do not sputter on the chamber walls or electrodes. Therefore, since no gas is released from the chamber walls or electrodes, plasma with constant properties can be obtained with good reproducibility.

(発明の実施例) 第1図において、11はチャンバ13内に設置されたア
ノードで、チャンバ1aとともに電気的に接地されてい
る。15はチャンバ13内に設置されたカソードで、高
周波電源17に接続され、この高周波型[17によって
アノード11−カソード15間に高周波電圧を印加して
、7ノード11・カソード15間にプラズマPを発生さ
せるようになっている。
(Embodiment of the Invention) In FIG. 1, reference numeral 11 denotes an anode installed in a chamber 13, which is electrically grounded together with the chamber 1a. Reference numeral 15 denotes a cathode installed in the chamber 13, which is connected to a high-frequency power source 17. This high-frequency type [17 applies a high-frequency voltage between the anode 11 and the cathode 15 to generate plasma P between the node 11 and the cathode 15. It is designed to occur.

前記アノード11を囲むように円環状の磁石19を設置
し、さらに底板13bの下に磁石21を設置して、チャ
ンバ内13にミラー磁場を形成している。
An annular magnet 19 is installed to surround the anode 11, and a magnet 21 is also installed under the bottom plate 13b to form a mirror magnetic field in the chamber 13.

このミラー磁場の磁力線Hは、アノード11近辺で集束
するとともに、プラズマPを貫通し、さらに基板23を
ほぼ直交する方向に貫通している。
The magnetic lines of force H of this mirror magnetic field are focused near the anode 11, penetrate the plasma P, and further penetrate the substrate 23 in a substantially orthogonal direction.

またチャンバ13の内周壁13cに、磁極が縦および横
方向に互い違いになるように複数の磁石31が配設され
、プラズマPからチャンバ13の内周壁13cに飛来し
て来た荷電粒子をプラズマPに押し戻す多重双極子表面
磁場を形成している。
Further, a plurality of magnets 31 are arranged on the inner circumferential wall 13c of the chamber 13 so that the magnetic poles are alternated in the vertical and horizontal directions, and charge particles flying from the plasma P to the inner circumferential wall 13c of the chamber 13 are transferred to the plasma P. It forms a multi-dipole surface magnetic field that pushes back.

なお、前記磁石19.21は図示しない保持部材によっ
て、天板13aおよび底板13bに保持されている。
The magnets 19.21 are held on the top plate 13a and the bottom plate 13b by holding members (not shown).

いま図示しない排気系によって、チャンバ13内を所定
圧力以下まで排気した後1図示しないガス導入系から例
えばGF4ガス等を導入する。そして高周波電源17に
よってアノード11・カソード151?ilに高周波電
圧を印加してプラズマPを発生させる。
After the inside of the chamber 13 is evacuated to a predetermined pressure or less by an exhaust system (not shown), for example, GF4 gas is introduced from a gas introduction system (not shown). And the anode 11 and cathode 151? by the high frequency power supply 17? Plasma P is generated by applying a high frequency voltage to il.

プラズマPにおける荷電粒子が磁力線Hを横切りながら
アノード11あるいはカソード15方向に運動すると、
磁力線Hに沿ってラーモア連動をする。このラーモア運
動によって、荷電粒子の運動距離が長くなり、中性粒子
と衝突する回数が増加して、プラズマの電離密度が高く
なる。
When charged particles in plasma P move in the direction of anode 11 or cathode 15 while crossing magnetic lines of force H,
Larmor interlocking is performed along the magnetic field line H. This Larmor motion increases the moving distance of charged particles, increases the number of collisions with neutral particles, and increases the ionization density of the plasma.

さらにラーモア運動をしながらアノード11方向に向う
荷電粒子は、磁力線Hに沿って進むので、ミラー磁場の
集束部Mに突入していき、その集束部MでプラズマP中
に押し戻される。また荷電粒子が衝突等によって磁力線
Hから漏れてチャンバ13の内周面13cに向って運動
すると、その荷電粒子が多重双極子表面磁場によってプ
ラズマPに押し戻されるので、プラズマPの電離密度は
低下しない。
Further, the charged particles moving toward the anode 11 while performing Larmor motion move along the lines of magnetic force H, so they rush into the focusing part M of the mirror magnetic field, and are pushed back into the plasma P by the focusing part M. Furthermore, when charged particles leak from the magnetic lines of force H due to collisions and move toward the inner circumferential surface 13c of the chamber 13, the charged particles are pushed back into the plasma P by the multiple dipole surface magnetic field, so the ionization density of the plasma P does not decrease. .

したがって、高真空で電離密度の高いプラズマを得るこ
とができ、これにより短時間で基板23を高精度の異方
性エツチングすることができる。
Therefore, plasma with high ionization density can be obtained in a high vacuum, and thereby the substrate 23 can be anisotropically etched with high precision in a short time.

第2〜4図は他の実施例を示したもので、第2図に示す
のものは、縦方向に同一磁極が並ぶようにするとともに
、横方向に磁極が互い違いになるように複数の磁石32
を配設したものである。第3図に示すのものは、磁極が
互い違いになるように棒磁石33を配設して、無磁場Q
(第1.2図参照)を無くしたものである。
Figures 2 to 4 show other embodiments, and the one shown in Figure 2 has multiple magnets arranged so that the same magnetic poles are lined up in the vertical direction and the magnetic poles are alternated in the horizontal direction. 32
is arranged. The one shown in Fig. 3 has bar magnets 33 arranged so that the magnetic poles are alternated, and
(See Figure 1.2).

第4図に示すのものは、アノード11とカソード15と
の間に、複数の環状磁石41を設置して、多重双極子表
面磁場Bを形成させている。この環状磁石4■によって
無磁場がなくなるとともに、多重双極子表面磁場Bを規
則正しく形成することができる。また、環状磁石41は
図示しない保持部材によってチャンバ内周面13cに保
持される。
In the device shown in FIG. 4, a plurality of annular magnets 41 are installed between an anode 11 and a cathode 15 to form a multi-dipole surface magnetic field B. This annular magnet 42 eliminates a non-magnetic field, and allows the multiple dipole surface magnetic field B to be formed regularly. Further, the annular magnet 41 is held on the chamber inner peripheral surface 13c by a holding member (not shown).

なお上記実施例ではエツチング装置について説明してい
るが、基板をターゲットに置換えて、そのターゲットに
対向する位置に資料を設置すればスパッタリング装置と
して使用することができ。
Although the above embodiment describes an etching apparatus, it can also be used as a sputtering apparatus by replacing the substrate with a target and placing a material at a position facing the target.

また低圧プラズマCVD装置にも応用できることは勿論
である。
It goes without saying that the present invention can also be applied to low-pressure plasma CVD equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるプラズマ処理装置の実施例の断
面図、第2〜4図は他の実施例のプラズマ装置の断面図
、:55、i6図は従来のプラズマ処理装置の概略図で
ある。 ゛ 11・・・アノード13・・・チャンバ15・・・カソ
ード    19.2I・・・磁石23・・・基板  
    P・・・プラズマ代理人 弁理士    鴫 
宣之 手糸売ネ市正書(自賛) 昭和61年1月24日
Fig. 1 is a cross-sectional view of an embodiment of the plasma processing apparatus according to the present invention, Figs. 2 to 4 are cross-sectional views of plasma apparatuses of other embodiments, and Figs.:55 and i6 are schematic views of a conventional plasma processing apparatus. .゛11...Anode 13...Chamber 15...Cathode 19.2I...Magnet 23...Substrate
P...Plasma agent patent attorney Shizuka
Nobu-no-te Itotome Ichisho (self-praise) January 24, 1986

Claims (1)

【特許請求の範囲】[Claims] チャンバ内に設置された陽極電極と陰極電極との間にプ
ラズマを発生させ、このプラズマによって基板を処理す
るとともに、プラズマを所定空間に閉じこめておく多重
双極子表面磁場を形成する表面磁場形成手段を具えたプ
ラズマ処理装置において、チャンバ内にミラー磁場を形
成するミラー磁場形成手段を設け、このミラー磁場によ
る磁力線が前記基板にほぼ直交してプラズマを貫通し、
この貫通した磁力線が前記基板と対向した電極近辺で集
束していることを特徴とするプラズマ処理装置。
A surface magnetic field forming means is provided which generates plasma between an anode electrode and a cathode electrode installed in the chamber, processes the substrate with this plasma, and forms a multi-dipole surface magnetic field that confines the plasma in a predetermined space. In the plasma processing apparatus, a mirror magnetic field forming means for forming a mirror magnetic field is provided in the chamber, and lines of magnetic force due to the mirror magnetic field penetrate the plasma almost orthogonally to the substrate,
A plasma processing apparatus characterized in that the penetrating lines of magnetic force are focused near an electrode facing the substrate.
JP28959285A 1985-12-23 1985-12-23 plasma processing equipment Pending JPS62147733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28959285A JPS62147733A (en) 1985-12-23 1985-12-23 plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28959285A JPS62147733A (en) 1985-12-23 1985-12-23 plasma processing equipment

Publications (1)

Publication Number Publication Date
JPS62147733A true JPS62147733A (en) 1987-07-01

Family

ID=17745229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28959285A Pending JPS62147733A (en) 1985-12-23 1985-12-23 plasma processing equipment

Country Status (1)

Country Link
JP (1) JPS62147733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082542A (en) * 1990-08-02 1992-01-21 Texas Instruments Incorporated Distributed-array magnetron-plasma processing module and method
US5234560A (en) * 1989-08-14 1993-08-10 Hauzer Holdings Bv Method and device for sputtering of films
US5346579A (en) * 1991-10-17 1994-09-13 Applied Materials, Inc. Magnetic field enhanced plasma processing chamber
DE19509284B4 (en) * 1994-03-17 2004-04-29 Ogle, John S., Milpitas Device for generating a flat plasma using varying magnetic poles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234560A (en) * 1989-08-14 1993-08-10 Hauzer Holdings Bv Method and device for sputtering of films
US5082542A (en) * 1990-08-02 1992-01-21 Texas Instruments Incorporated Distributed-array magnetron-plasma processing module and method
US5346579A (en) * 1991-10-17 1994-09-13 Applied Materials, Inc. Magnetic field enhanced plasma processing chamber
DE19509284B4 (en) * 1994-03-17 2004-04-29 Ogle, John S., Milpitas Device for generating a flat plasma using varying magnetic poles

Similar Documents

Publication Publication Date Title
US6849857B2 (en) Beam processing apparatus
US20170062184A1 (en) Plasma etching systems and methods with secondary plasma injection
EP0831516A2 (en) Device and method for processing a plasma to alter the surface of a substrate using neutrals
JP2941572B2 (en) Plasma etching apparatus and method for manufacturing semiconductor device
EP0396398A1 (en) Plasma etching apparatus with surface magnetic fields
JP2008186806A (en) Ion beam equipment
US6167835B1 (en) Two chamber plasma processing apparatus
JP7330361B2 (en) Devices and systems with extraction assemblies for wide-angle ion beams
TWI734755B (en) Processing apparatus and method of processing a substrate
JP5599889B2 (en) High voltage shielding arrangement
JPS62147733A (en) plasma processing equipment
Stenzel et al. Particle acceleration during reconnection in laboratory plasmas
JPS59232420A (en) Dry etching apparatus
JP3010059B2 (en) Ion source
JP2569816B2 (en) Dry etching equipment
JP3115243B2 (en) Magnet for generating magnetic field for magnetron plasma
JP3575822B2 (en) Plasma measurement device
JPH077639B2 (en) Ion source
JP2879302B2 (en) Magnetic field generator for magnetron plasma etching
TWI794851B (en) Ion beam processing system and methods for manufacturing plasma plate assembly and blocker assembly thereof
JP3957844B2 (en) Magnetic field generator for magnetron plasma
JPH10241899A (en) Plasma treatment device
JP2756911B2 (en) Magnetic field generator for magnetron plasma
JP3272202B2 (en) Magnetic field generator for magnetron plasma
JP2756910B2 (en) Magnetic field generator for magnetron plasma