JPS62147726A - electron beam equipment - Google Patents
electron beam equipmentInfo
- Publication number
- JPS62147726A JPS62147726A JP28772285A JP28772285A JPS62147726A JP S62147726 A JPS62147726 A JP S62147726A JP 28772285 A JP28772285 A JP 28772285A JP 28772285 A JP28772285 A JP 28772285A JP S62147726 A JPS62147726 A JP S62147726A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- sample
- holder
- exhaust
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、電子線装置+1に係り、特に迅速かつ連続的
に試料を真空系にめ入及び搬出する装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electron beam apparatus +1, and particularly to an apparatus for rapidly and continuously loading and unloading a sample into a vacuum system.
従来の電子線描画装置においては、ウェーハ搬入に関し
て特US昭60−959241に記載のような構造をと
っている(第1図)。大気圧の状態の試料予備室5に露
光用試料1を入れる。次に油回転ポンプ9で試料予備室
5を排気した後、ターボモレキュラボンプ7及び油回転
ポンプ8でさらに高い真空度約10″″B〜10−BT
orrを得る。しかる後、ゲートバルブ4をIJlき試
料1を試料室2に搬入する。A conventional electron beam lithography apparatus has a structure as described in Japanese Patent No. 60-959241 (FIG. 1) for carrying in wafers. The exposure sample 1 is placed in the sample preparation chamber 5 under atmospheric pressure. Next, after evacuating the sample preparation chamber 5 with the oil rotary pump 9, the turbo molecular pump 7 and the oil rotary pump 8 are used to further increase the vacuum level to about 10''B~10-BT.
get orr. Thereafter, the gate valve 4 is closed and the sample 1 is carried into the sample chamber 2.
しかしこの搬入方法によると、予備室を大気圧から高真
空まで排気せねばならなず、これに要する時間が約10
分間程度は必要であり、また試料を連続的に試料室に搬
入することは不可能である。However, according to this delivery method, the preliminary chamber must be evacuated from atmospheric pressure to high vacuum, which takes about 10 minutes.
This requires about a minute, and it is impossible to continuously transport the sample into the sample chamber.
このことがスループットを悪化させる一つの要因となっ
ていた。This was one of the factors that worsened throughput.
この問題を解決するため、最近特開昭60−89922
に記載のような方法が提案された(第2図)。すなわち
、ウェーバを真空中に入れず、ウェーハ面と各真空チャ
ンバーともギャップを小さく保ちギャップから流入して
くる空気の大部分を第1及び第2の真空チャンバーから
排気することにより第:3の真空チャンバーを高真空に
保つ方法である。In order to solve this problem, recently Japanese Patent Application Publication No. 60-89922
The method described in Figure 2 was proposed. In other words, the wafer is not placed in a vacuum, the gap between the wafer surface and each vacuum chamber is kept small, and most of the air flowing in from the gap is evacuated from the first and second vacuum chambers. This method keeps the chamber in a high vacuum.
しかしこの方法によるとウェーハ上面を断えず空気が流
れるため、ウェーハ上に多くの塵埃が付着するという重
大な欠点が生じる。However, this method has the serious drawback that a large amount of dust adheres to the wafer because air flows continuously over the wafer.
本発明の目的は、かかる問題点を克服し迅速かつ連続的
に試料を処理できる装置を提供することにある。An object of the present invention is to provide an apparatus that can overcome these problems and process samples quickly and continuously.
従来装置の問題点は、予備排気室を大気圧から高真空状
態まで排気しなければならない点にある。A problem with conventional devices is that the pre-evacuation chamber must be evacuated from atmospheric pressure to a high vacuum.
また特開昭60−89922の方法では、ウェーハを真
空系に隣接させ、気圧中に置くことにより、ウェーハ而
の汚染は避は難い。Furthermore, in the method disclosed in Japanese Patent Application Laid-Open No. 60-89922, the wafer is placed adjacent to a vacuum system and placed in atmospheric pressure, so that contamination of the wafer is unavoidable.
これら2つの問題点を解決するためには、予備排気室の
真空度を常時はぼ定常状態に保ち、これを通して高真空
状態に維持されている試料室中に試料を搬入及び搬出す
る方法が考えられる。この方法における真空維持のため
の装置構造としては。In order to solve these two problems, one idea is to maintain the degree of vacuum in the pre-evacuation chamber at a near-steady state at all times, and through this, transport the sample into and out of the sample chamber maintained at a high vacuum state. It will be done. The device structure for maintaining vacuum in this method is as follows.
試料通過のための連通路により大気中と予(liil排
気室及び試料室内とを連通せしめ、試料を保持したホル
ダーでこれら連通路をふさぐ構造をとる。ホルダーを連
続的に試料室内へ搬入し処理が終った後、同様の方法で
搬出する。The atmosphere is communicated with the pre-exhaust chamber and the sample chamber through a communication path for the sample to pass through, and a holder holding the sample blocks these communication paths.The holder is continuously carried into the sample chamber for processing. After this is completed, transport it out in the same way.
以下、本発明の一実施例第3.4.5図により説明する
。第3図において陰極31.電極;32゜電磁レンズ3
3.35差動排気口34.36より成る電子線鏡体の試
料室37に、ホルダー28に保持されたウェーハ60を
搬入及び搬出する。Hereinafter, one embodiment of the present invention will be explained with reference to FIG. 3.4.5. In FIG. 3, cathode 31. Electrode; 32° electromagnetic lens 3
3.35 The wafer 60 held by the holder 28 is carried in and out of the sample chamber 37 of the electron beam mirror consisting of the differential exhaust ports 34 and 36.
38はホルダーを移動させるためのステージ、39は試
料室37排気用の真空ポンプである。ウェーハ搬入側の
構成は、予備排気室25,27、それぞれの排気用真空
ポンプ29.30およびゲートバルブ24.26より成
る。同様にウェーハ搬出側は予備排気室40,42、真
空ポンプ44゜45およびゲートバルブ41.43より
成る。第4図において46はウェーハ保持のための切り
込みである。第5図において47は1“(空室壁の断面
であり、真空室壁により連通路48が形成され、ウェー
ハ60を保持したホルダー28に連通路を塞ぐ。この連
通路とホルダーにより形成される差動排気硝造が、第3
図において、大気中と予備排気室25、予備排気室25
と27、予備排気室27と試料室37.試料室37と予
備排気室40゜予備排気室40と42.予備排気室42
と大気中との合計6個所設けられている。38 is a stage for moving the holder, and 39 is a vacuum pump for evacuating the sample chamber 37. The configuration on the wafer loading side consists of preliminary evacuation chambers 25, 27, respective evacuation vacuum pumps 29, 30, and gate valves 24, 26. Similarly, the wafer unloading side consists of preliminary evacuation chambers 40, 42, vacuum pumps 44, 45, and gate valves 41, 43. In FIG. 4, 46 is a notch for holding the wafer. In FIG. 5, 47 is 1" (a cross section of the cavity wall, and a communication path 48 is formed by the vacuum chamber wall, and the communication path is closed to the holder 28 holding the wafer 60. Differential exhaust glass is the third
In the figure, the atmosphere, the preliminary exhaust chamber 25, and the preliminary exhaust chamber 25
and 27, preliminary exhaust chamber 27 and sample chamber 37. Sample chamber 37 and preliminary exhaust chamber 40° preliminary exhaust chambers 40 and 42. Preliminary exhaust chamber 42
There are a total of 6 locations, including in the atmosphere and in the atmosphere.
次に動作を説明する。第5図左側より連続的に試料室3
7に押し込まれているホルダー28は、まず大気中より
予備排気室25に搬入される。この際、第5図において
、真空室壁47とホルダー28との間からのリークおよ
びウェーハ60周辺の空気を真空ポンプ29で排気する
。その結果予備排気室25の真空度は10−”Torr
程度となる。Next, the operation will be explained. Sample chamber 3 continues from the left side in Figure 5.
The holder 28 pushed into the holder 7 is first carried into the preliminary exhaust chamber 25 from the atmosphere. At this time, as shown in FIG. 5, leaks from between the vacuum chamber wall 47 and the holder 28 and air around the wafer 60 are evacuated by a vacuum pump 29. As a result, the degree of vacuum in the pre-evacuation chamber 25 is 10-” Torr.
It will be about.
これと同様の差動排気を予備排気室25と27および試
料室37との間で行う。予備排気室27は1〇一番〜1
0 ’Torr、試料室37は10−8〜10”−7T
o、rrの真空度が達成される。試料室37内に導入さ
れたホルダーはステージ38に載せられ、電子線による
描画、パターン幅411J長等が行われる。A similar differential evacuation is performed between the preliminary evacuation chambers 25 and 27 and the sample chamber 37. Pre-exhaust chamber 27 is 10-1
0' Torr, sample chamber 37 is 10-8 to 10''-7T
A vacuum degree of o, rr is achieved. The holder introduced into the sample chamber 37 is placed on the stage 38, and drawing with an electron beam, pattern width 411J length, etc. are performed.
この後、予備排気室40へ向は押し出されたホルダーは
予備排気42を経て大気中へ取り出される。Thereafter, the holder pushed out toward the preliminary exhaust chamber 40 is taken out into the atmosphere through the preliminary exhaust 42.
大気側からのリークにより、予備排気室42は10−2
Torr、予備排気室40は10−’Torrの真空度
である。ウェーハ搬入おわび搬出を休止する場合は、ゲ
ートバルブ24,26,41.4:3を閉じ、真空系を
大気から孤立させる。Due to leakage from the atmosphere side, the preliminary exhaust chamber 42 is 10-2
Torr, and the pre-evacuation chamber 40 has a vacuum degree of 10-'Torr. When stopping wafer loading and unloading, the gate valves 24, 26, 41.4:3 are closed to isolate the vacuum system from the atmosphere.
本実施例では、超高真空が要求される電界放射陰極を測
定し、36.34及び電極32により差動排気となる構
造をとり、電子銃室を1O−10Torrの超高真空状
確に維持している。しかし超高真空を要求されない熱陰
極及びイオン源では、第6図に示すように予備排気室を
省略することも可能である。In this example, we measured a field emission cathode that requires ultra-high vacuum, and adopted a differential pumping structure using 36, 34 and electrode 32 to maintain the electron gun chamber at an ultra-high vacuum of 10-10 Torr. are doing. However, in hot cathodes and ion sources that do not require ultra-high vacuum, the preliminary evacuation chamber can be omitted as shown in FIG.
第7図は、1つの予ハ11排気室58を通してウェーハ
60の搬入及び搬出を行う一実施例である。FIG. 7 shows an embodiment in which a wafer 60 is carried in and carried out through one prefer 11 exhaust chamber 58.
図中ヒ方のホルダーの列は右側試料室59内へ搬入され
るホルダーであり、下方のホルダーは左側大気内へ搬出
されろホルダーである。この構造をとることにより、1
つの予備排気室58と予備排気用真空ポンプで高真空の
試料室内ヘウエーハを搬入できる。The row of holders on the left side of the figure are holders that are carried into the right sample chamber 59, and the lower holders are holders that are carried out into the atmosphere on the left side. By adopting this structure, 1
The wafer can be carried into the high-vacuum sample chamber using two pre-evacuation chambers 58 and a pre-evacuation vacuum pump.
これらの実施例においては、ホルダーの通過する連通路
の長さをウェーハ設置のための切り込み部46の直径よ
り長くしているため、空気の漏れを有効に抑制すること
ができる。In these embodiments, the length of the communication path through which the holder passes is made longer than the diameter of the notch 46 for installing the wafer, so that air leakage can be effectively suppressed.
本発明によれば、各予備排気室の真空度は、はとんど定
常状態にあり、各々の真空度に最も適した真空ポンプを
選択できる。試料室への搬入及び搬出速度は、予備排気
室及び試料室での排気速度により制限されるので、これ
らの排気速度を増すことにより搬入・搬出速度を増すこ
とができ、予備排気室数も0室から数室まで必要に応じ
て設定できる。これらの結果、高真空に保たれた試料室
内に対し大気中から試料を連続的かつ迅速に搬入及び搬
出できる。According to the present invention, the degree of vacuum in each pre-evacuation chamber is mostly in a steady state, and the vacuum pump most suitable for each degree of vacuum can be selected. The loading and unloading speeds to the sample chamber are limited by the exhaust speeds in the preliminary exhaust chamber and the sample chamber, so by increasing these exhaust speeds, the loading and unloading speeds can be increased, and the number of preliminary exhaust chambers can also be reduced to 0. You can set up as many rooms as you need. As a result, it is possible to continuously and rapidly carry samples into and out of the atmosphere into the sample chamber maintained at a high vacuum.
また、排気による風圧の、試料に与える影響は、搬入及
び搬出時のみであるため、試料への塵埃等の付着の問題
も含め、試料への態形PI’は軽微である。Further, since the influence of wind pressure due to exhaust air on the sample is only during loading and unloading, the morphology PI' on the sample is minor, including the problem of adhesion of dust etc. to the sample.
図面のff1li弔な説明
第11*lは、従来装置の排気系構成1II8図、第2
図は、他の従来装置の例を示す断面図、第:1図は、本
発明の一実施例の構成を示す断面図、第41・4は、ホ
ルダーの斜視図、第5図は、差動排気部の断面図、第6
図は、本実施例の構成を示す断面図、第7図は、予備排
気室の水平方向断面図である。ff1li condolence explanation of the drawings No. 11*l shows the exhaust system configuration of the conventional device 1II8, Fig. 2
The figures are a cross-sectional view showing an example of another conventional device, Figure 1 is a cross-sectional view showing the configuration of an embodiment of the present invention, Figures 41 and 4 are perspective views of the holder, and Figure 5 shows the difference. Cross-sectional view of the dynamic exhaust section, No. 6
The figure is a sectional view showing the configuration of this embodiment, and FIG. 7 is a horizontal sectional view of the preliminary exhaust chamber.
1・・・試料、2・・・試料室、3・・・電荷光学鏡体
、4・・・ゲートバルブ、5・・・予備排気室、6・・
・第1の排気バルブ、7・・・ターボモレキュラボンブ
(TMP)、8・・・ターボモレキュラポンプ背圧発生
用油回転ポンプ(RP)、9・・・予備排気室排気用油
107転ポンプ、10・・・膨張容器、11・・・第2
の排気バルブ、12・・・第3の排気バルブ、1コ3・
・・第4の排気バルブ、14・・・第1の真空チャンバ
ー、15・・・第2の真空チャンバー、16・・・第3
の真空チャンバー、17・・・ギャップセンサー、18
・・・ウェーハ、19・・・切欠部、20・・・ステー
ジ、21・・・Xステージ、22・・・Xステージ、2
3・・・Yステージ、24・・・ゲートバルブ、25・
・・搬入側第1の予備排気室。DESCRIPTION OF SYMBOLS 1... Sample, 2... Sample chamber, 3... Charge optical mirror body, 4... Gate valve, 5... Preliminary exhaust chamber, 6...
・First exhaust valve, 7...Turbo molecular bomb (TMP), 8...Turbo molecular pump back pressure generation oil rotary pump (RP), 9...Preliminary exhaust chamber exhaust oil 107 rotation pump, 10... expansion container, 11... second
Exhaust valve, 12...Third exhaust valve, 1 piece 3.
...Fourth exhaust valve, 14...First vacuum chamber, 15...Second vacuum chamber, 16...Third
vacuum chamber, 17... gap sensor, 18
... Wafer, 19... Notch, 20... Stage, 21... X stage, 22... X stage, 2
3...Y stage, 24...gate valve, 25.
...First preliminary exhaust chamber on the loading side.
26・・・ゲートバルブ、27・・・搬入側第2の予備
排気室、28・・・ホルダー、29・・・真空ポンプ、
30・・・真空ポンプ、31・・・陰極、32由電極、
33・・・コンデンサーレンズ、34・・・ブランキン
グ絞り、35・・・対物レンズ、36・・・電子鏡体と
試料室間の差り!排気ロ、37・・・試料室、38・・
・ステージ、乏39・・・試料室排気用真空ポンプ、4
o・・・搬出側第1の予備排気室、41・・・ゲートバ
ルブ、42・・・搬出側第2の予備排気室、43・・・
ゲートバルブ、44・・・真空ポンプ、45・・・真空
ポンプ、46・・・ウェーハ設置用切り込み、47・・
・予備排気室壁、48・・・連通路、49・・・ゲー1
へバルブ、5o・・・ステージ、51・・・イオン源、
52・・・電極、53・・・偏向器、54・・・静電レ
ンズ、55・・・試料室、56・・・真空ポンプ、57
・・・ゲートバルブ、58・・・予備排気室、59・・
・試料室、60・・・ウェーハ。26...Gate valve, 27...Carry-in side second preliminary exhaust chamber, 28...Holder, 29...Vacuum pump,
30... Vacuum pump, 31... Cathode, 32 Yu electrode,
33...Condenser lens, 34...Blanking aperture, 35...Objective lens, 36...Difference between the electron mirror and the sample chamber! Exhaust room, 37...Sample chamber, 38...
・Stage, 39...Vacuum pump for exhausting the sample chamber, 4
o... First preliminary exhaust chamber on the carry-out side, 41... Gate valve, 42... Second preliminary exhaust chamber on the carry-out side, 43...
Gate valve, 44... Vacuum pump, 45... Vacuum pump, 46... Wafer installation notch, 47...
・Preliminary exhaust chamber wall, 48... communication passage, 49... game 1
to valve, 5o... stage, 51... ion source,
52... Electrode, 53... Deflector, 54... Electrostatic lens, 55... Sample chamber, 56... Vacuum pump, 57
...Gate valve, 58...Preliminary exhaust chamber, 59...
-Sample chamber, 60...wafer.
Claims (1)
て、前記試料が配置される試料室と、試料搬入のための
、大気側との連通路と、該試料室の真空維持のため前記
連通路を塞ぎかつ試料を保持する構造をもつたホルダー
を具備してなることを特徴とする電子線装置。 2、特許請求の範囲第1項記載の電子線において、試料
を保持するための切り込み部をホルダーに設け、該切り
込み部を完全に覆うことのできる長さをもつた前記連通
路と、複数個の該ホルダーを、すき間無く連続的に該連
通路を通過せしめる構造を具備してなることを特徴とす
る電子線装置。[Claims] 1. An electron beam device that controls an electron beam and irradiates it onto a sample, comprising: a sample chamber in which the sample is placed; a communication path with the atmosphere side for carrying in the sample; and the sample chamber. An electron beam apparatus comprising: a holder having a structure for closing the communication path and holding a sample in order to maintain a vacuum. 2. In the electron beam according to claim 1, the holder is provided with a notch for holding the sample, and the communicating path has a length that can completely cover the notch, and a plurality of communicating paths are provided. An electron beam device comprising a structure that allows the holder to pass through the communication path continuously without gaps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28772285A JPS62147726A (en) | 1985-12-23 | 1985-12-23 | electron beam equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28772285A JPS62147726A (en) | 1985-12-23 | 1985-12-23 | electron beam equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62147726A true JPS62147726A (en) | 1987-07-01 |
Family
ID=17720897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28772285A Pending JPS62147726A (en) | 1985-12-23 | 1985-12-23 | electron beam equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62147726A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5562800A (en) * | 1993-09-20 | 1996-10-08 | Hitachi, Ltd. | Wafer transport method |
US5981399A (en) * | 1995-02-15 | 1999-11-09 | Hitachi, Ltd. | Method and apparatus for fabricating semiconductor devices |
US6518193B1 (en) * | 2001-03-09 | 2003-02-11 | Lsi Logic Corporation | Substrate processing system |
-
1985
- 1985-12-23 JP JP28772285A patent/JPS62147726A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5562800A (en) * | 1993-09-20 | 1996-10-08 | Hitachi, Ltd. | Wafer transport method |
US5601686A (en) * | 1993-09-20 | 1997-02-11 | Hitachi, Ltd. | Wafer transport method |
US5981399A (en) * | 1995-02-15 | 1999-11-09 | Hitachi, Ltd. | Method and apparatus for fabricating semiconductor devices |
US6518193B1 (en) * | 2001-03-09 | 2003-02-11 | Lsi Logic Corporation | Substrate processing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2249145A (en) | Clean transfer method and system therefor | |
US5492862A (en) | Vacuum change neutralization method | |
US5205051A (en) | Method of preventing condensation of air borne moisture onto objects in a vessel during pumping thereof | |
JPS62147726A (en) | electron beam equipment | |
US5237756A (en) | Method and apparatus for reducing particulate contamination | |
JPH0542507B2 (en) | ||
JPH04254349A (en) | Multichamber process apparatus | |
JPS5812700B2 (en) | electron beam equipment | |
JPH0931642A (en) | Vacuum processing apparatus and method of replacing parts thereof | |
JPH07122540A (en) | Etching system | |
JP2001070781A (en) | Vacuum treatment device | |
KR20220158064A (en) | Apparatus for moving a substrate, deposition apparatus and processing system | |
TW201903180A (en) | Sputtering device | |
JPH03183767A (en) | Thin film forming device and thin film forming method using this device | |
JPH0693427A (en) | Vacuum film forming method | |
JPH09129569A (en) | Semiconductor manufacturing equipment | |
JP2647922B2 (en) | Exhaust system of electron microscope | |
JPH0513002Y2 (en) | ||
JPH0257720A (en) | Method of forcibly exhausting labyrinth part of air bearing for vacuum | |
JPS6325921A (en) | Vacuum exhaust equipment | |
JPH1140094A (en) | Vacuum system exhaust system and exhaust method | |
JP2918004B2 (en) | Semiconductor processing equipment | |
TW202329284A (en) | Independent continuous processing system | |
JPH0546203Y2 (en) | ||
CN118804994A (en) | Deposition device, substrate processing system and method for processing substrate |