[go: up one dir, main page]

JPS62147296A - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JPS62147296A
JPS62147296A JP28850185A JP28850185A JPS62147296A JP S62147296 A JPS62147296 A JP S62147296A JP 28850185 A JP28850185 A JP 28850185A JP 28850185 A JP28850185 A JP 28850185A JP S62147296 A JPS62147296 A JP S62147296A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
heat exchanger
flow
orifices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28850185A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sakai
俊之 坂井
Shotaro Ito
正太郎 伊東
Shoichi Yokoyama
昭一 横山
Makoto Obata
小畑 眞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28850185A priority Critical patent/JPS62147296A/en
Publication of JPS62147296A publication Critical patent/JPS62147296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To permit to distribute the flow of refrigerant uniformly and facilitate the setting of a balance among heat transfer pipes with a simple structure by a method wherein a predetermined pieces of the heat transfer pipes among the group of heat transfer pipe are provided with orifices at the inside of the opening ends thereof. CONSTITUTION:Upon room heating operation, refrigerant, whose pressure is reduced by capillary tubes 20, becomes two phases of gas and liquid and is distributed into two directions at the part of a n inlet for an outdoor side heat exchanger 19 equipped with fins 12 by a branch tube 15. Orifices 14 are provided at a part whereat the figfigerant enters into heat transfer tubes 13 from the branch tube 15, therefore, the dynamic pressure of the refrigerant is converted into a static pressure at this part and the refrigerant tries to flow uniformly into two pieces of heat transfer tubes. The resistances of the orifices 14 are changed in respective heat transfer tubes 13, therefore, the difference of flow resistances of respective heat transfer tubes themselves are cancelled by these orifices. Thus, the refrigerant of two phases may be distributed uniformly to flow through respective heat transfer tubes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和装置等において冷媒の分流を均一化
するフィン付熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a finned heat exchanger that equalizes the divided flow of refrigerant in an air conditioner or the like.

従来の技術 近年、フィン付熱交換器は、高性能化の方向にあり、そ
の内部の冷媒の分流についても検討がなされている。例
えばヒートポンプ暖房運転時の室外熱交換器において、
冷媒の分流が悪い場合には、一部の伝熱管内の蒸発圧力
が低くなってしまうため、熱交管器の一部分のみに着霜
してしまうという問題が生じたりしていた。そこで従来
より熱交換器への冷媒の分流を均一化するための方法が
検討されている。
2. Description of the Related Art In recent years, the performance of finned heat exchangers has been increasing, and the division of refrigerant inside the heat exchangers has also been studied. For example, in an outdoor heat exchanger during heat pump heating operation,
If the refrigerant diversion is poor, the evaporation pressure in some of the heat exchanger tubes will be low, resulting in a problem of frost forming on only a portion of the heat exchanger tubes. Therefore, methods for equalizing the distribution of refrigerant to the heat exchanger have been studied.

以下図面を参照しながら上述した従来の冷媒分流装置の
一例について説明する。
An example of the conventional refrigerant distribution device mentioned above will be described below with reference to the drawings.

第5図は従来の空気調和機における冷媒分流装置の断面
図、第6図は第5図の装置を用いた空気調和機の冷媒配
管図である。第5図、第6図において、1は冷媒分流装
置、2は熱交換器に接続される配管、3は室外機内のバ
ルブに接続される配管、4はキャピラリチューブ、5は
逆止弁、6は圧縮機、7は四方弁、8は室外側熱交換器
、9は室内側熱交換器、10は接続バルブ、11は絞り
である。
FIG. 5 is a sectional view of a refrigerant distribution device in a conventional air conditioner, and FIG. 6 is a refrigerant piping diagram of an air conditioner using the device shown in FIG. 5 and 6, 1 is a refrigerant distribution device, 2 is a pipe connected to a heat exchanger, 3 is a pipe connected to a valve inside the outdoor unit, 4 is a capillary tube, 5 is a check valve, 6 is a compressor, 7 is a four-way valve, 8 is an outdoor heat exchanger, 9 is an indoor heat exchanger, 10 is a connection valve, and 11 is a throttle.

以上のように構成された冷媒分流装置について以下その
動作について説明する。まず、冷房運転の場合であるが
、圧縮機6で圧縮された高温高圧の吐出ガスは、室外側
熱交換器8にて凝縮し、冷媒分流装置1aを通って絞り
11で減圧され、接続バルブ10に至る。この時冷媒分
流装置1aの内部では、逆止弁5がバルブ側配管3側に
押されるので通路が開くため流通抵抗がなくなる。絞り
11で減圧され低温低圧となった冷媒は、冷媒分流装置
1bにて室内側熱交換器9へと分配される。
The operation of the refrigerant distribution device configured as described above will be described below. First, in the case of cooling operation, the high temperature and high pressure discharge gas compressed by the compressor 6 is condensed in the outdoor heat exchanger 8, passes through the refrigerant distribution device 1a, is depressurized by the throttle 11, and is reduced in pressure by the connecting valve. It reaches 10. At this time, inside the refrigerant distribution device 1a, the check valve 5 is pushed toward the valve-side piping 3 side, so a passage is opened and flow resistance is eliminated. The refrigerant whose pressure is reduced by the throttle 11 and becomes low temperature and low pressure is distributed to the indoor heat exchanger 9 by the refrigerant distribution device 1b.

この時絞りを出た冷媒は気液混合の二相流である。At this time, the refrigerant that exits the throttle is a two-phase flow of gas-liquid mixture.

この二相流が分流装置1bへ流れると、逆止弁5を室内
側熱交換器9側へ押しつける。よって二相流はキャピラ
リチューブ4内を流れる。このようにして室内側熱交換
器への分流を均一化する(実開昭5s−31275)。
When this two-phase flow flows to the flow dividing device 1b, it pushes the check valve 5 toward the indoor heat exchanger 9 side. Therefore, a two-phase flow flows within the capillary tube 4. In this way, the divided flow to the indoor heat exchanger is made uniform (Utility Model Publication No. 5S-31275).

発明が解決しようとする問題点 しかしながら、上記のような構成では以下に述べるよう
な問題点があった。
Problems to be Solved by the Invention However, the above configuration has the following problems.

(1)パスが多くなった場合、たくさんのキャピラリチ
ューブを引きまわさなくてはならないので、大きなスペ
ースを必要とする。
(1) When the number of passes increases, many capillary tubes must be routed around, which requires a large amount of space.

(2)分流のバランスがうまくいくようなキャビを選択
するのはむずかしい。
(2) It is difficult to select a cabinet that achieves a good balance of shunt flow.

(3)組み立て時の作業性が悪い。(3) Poor workability during assembly.

本発明は、上記問題点に鑑み、簡単な構造で冷媒の均一
分流が可能で、かつ伝熱管間のバランスも容易に設定で
き、組み立て時の作業性も良いフィン付熱交換器を提供
するものである。
In view of the above-mentioned problems, the present invention provides a finned heat exchanger that has a simple structure, allows uniform distribution of refrigerant, allows easy setting of balance between heat transfer tubes, and has good workability during assembly. It is.

問題点を解決するための手段 上記問題点を解決するために、本発明は、内部を冷媒が
流動する伝熱管群のうちの所定の本数に対してその開口
端側内部にオリフィスを設けるものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides orifices inside the open ends of a predetermined number of heat transfer tubes in which a refrigerant flows. be.

作  用 本発明は、上記した構成により、キャピラリチューブが
必要なくなるし、構造的にも簡単になり、分流量の設定
もオリフィスの変更だけでできるので大変容易となる。
Effects The present invention eliminates the need for a capillary tube due to the above-described configuration, and is structurally simple. Setting the divided flow rate is also very easy since it can be done by simply changing the orifice.

実施例 以下本発明の一実施例のフィン付熱交換器について図面
を参照しながら説明する。
EXAMPLE Hereinafter, a finned heat exchanger according to an example of the present invention will be described with reference to the drawings.

第1図はフィン付熱交換器の断面図、第2図はフィン付
熱交換器の全体図を示す。第1図、第2図において、1
2はフィン、13は伝熱管、14はオリフィスである。
FIG. 1 is a sectional view of a finned heat exchanger, and FIG. 2 is an overall view of the finned heat exchanger. In Figures 1 and 2, 1
2 is a fin, 13 is a heat exchanger tube, and 14 is an orifice.

第3図は配管接続時の伝熱管部断面図である。同図にお
いて、15は分岐管、16は配管である。
FIG. 3 is a sectional view of the heat exchanger tube section when the pipes are connected. In the figure, 15 is a branch pipe, and 16 is a pipe.

第4図は冷凍サイクルを示すもので、17は圧縮器、1
8は四方弁、19は室外側のフィン付熱交換器、20は
キャピラリチューブ、21は室内側のフィン付熱交換器
である。
Figure 4 shows the refrigeration cycle, where 17 is a compressor, 1
8 is a four-way valve, 19 is a finned heat exchanger on the outdoor side, 20 is a capillary tube, and 21 is a finned heat exchanger on the indoor side.

このような冷凍サイクルにてその動作を説明する。まず
暖房運転時であるが、圧縮機17から吐出された高温高
圧の冷媒は、室内側のフィン付熱交換器21にて凝縮し
液化する。この液化した冷媒はキャピラリチューブ20
にて減圧され、気液二相の冷媒となる。この二相の冷媒
が室外側のフィン付熱交換器19へと流入する。ここで
室外側のフィン付熱交換器19は2パスであるので、二
つの経路に冷媒を分流する必要がある。ところが、室外
側のフィン付熱交換器19へ流入する冷媒は、気液二相
流であるため、そのまま流入させると気液のバランスが
悪くなり、各伝グ1管に均一に冷媒が流れなくなる。又
、それぞれの経路によって抵抗も異なるので、直接流入
させるのでは均一には分流しない。そこで本実施例にお
いては、第1図〜第3図に示すように伝熱管13の開口
端の内側にオリフィス14を設けている。
The operation of such a refrigeration cycle will be explained. First, during heating operation, the high temperature and high pressure refrigerant discharged from the compressor 17 is condensed and liquefied in the finned heat exchanger 21 on the indoor side. This liquefied refrigerant is transferred to the capillary tube 20.
The pressure is reduced at , and the refrigerant becomes a gas-liquid two-phase refrigerant. This two-phase refrigerant flows into the finned heat exchanger 19 on the outdoor side. Here, since the finned heat exchanger 19 on the outdoor side has two passes, it is necessary to divide the refrigerant into two paths. However, since the refrigerant flowing into the finned heat exchanger 19 on the outdoor side is a gas-liquid two-phase flow, if it is allowed to flow in as it is, the gas-liquid balance will be poor, and the refrigerant will not flow uniformly into each transmission pipe. . Furthermore, since the resistance differs depending on each path, the flow will not be uniformly divided if the flow is made to flow directly. Therefore, in this embodiment, an orifice 14 is provided inside the open end of the heat exchanger tube 13, as shown in FIGS. 1 to 3.

第3図を用いてその動作について説明する。キャピラリ
チューブにて減圧され気液の二相となった冷媒は、室外
側のフィン付熱交換器入口の部分にて分岐管15にて2
方へ分岐される。分岐管15から伝熱管13へ入る部分
にオリフィス14が設けられているため、この部分にて
冷媒の動圧が静正に変換され、2本の伝熱管に均等に冷
媒が流れようとする。又、前記オリフィス14は、各々
の伝熱管1aにてその抵抗を変えであるため、各々の伝
熱管自身の流通抵抗の違いはこのオリフィスによって打
ち消される。このようにして各々の伝熱管には二相の冷
媒が均一に分流することになる。
The operation will be explained using FIG. The refrigerant, which has been depressurized in the capillary tube and becomes two-phase gas-liquid, is transferred to the branch pipe 15 at the inlet of the finned heat exchanger on the outdoor side.
It is branched in the direction. Since the orifice 14 is provided at the part where the branch pipe 15 enters the heat exchanger tube 13, the dynamic pressure of the refrigerant is converted to static and positive at this part, and the refrigerant tends to flow equally into the two heat exchanger tubes. Further, since the orifice 14 has a different resistance in each heat exchanger tube 1a, the difference in flow resistance of each heat exchanger tube itself is canceled out by this orifice. In this way, the two-phase refrigerant is uniformly divided into each heat exchanger tube.

次に第1図を用いてその構造について説明しておく。冷
媒の分流部分は、伝熱管13を拡管した部分にオリフィ
ス14を挿入しただけのものである。このオリフィスの
径を変えることにより各伝熱管間のバランスを調節する
ことができる。又、この拡管部分は、従来の熱交換器と
同様に管接続部分もかねているので、この部分にて配管
とろう付けすることができる。
Next, the structure will be explained using FIG. 1. The refrigerant branching portion is simply an expanded portion of the heat transfer tube 13 into which an orifice 14 is inserted. By changing the diameter of this orifice, the balance between each heat transfer tube can be adjusted. In addition, this expanded tube portion also serves as a tube connection portion, similar to the conventional heat exchanger, so that piping can be brazed to this portion.

以上のように、伝熱管13の開口端内部にオリフィス1
4を設けたことにより、簡単な構造で冷媒の均一分流が
可能で、かつ伝熱管間のバランスも容易に設定でき、組
み立て時の作業性も良くすることができた。
As described above, the orifice 1 is formed inside the open end of the heat exchanger tube 13.
4, it is possible to uniformly divide the refrigerant with a simple structure, the balance between the heat transfer tubes can be easily set, and workability during assembly can be improved.

なお、本実施例においては、フィン付熱交換器の伝熱管
13と配管16を分岐管15にて接続したが、この分岐
管15の代わりにヘッダーまたはディストリビュータ−
等を用いてもよい。
In this embodiment, the heat transfer tubes 13 of the finned heat exchanger and the piping 16 are connected by a branch pipe 15, but instead of this branch pipe 15, a header or a distributor is connected.
etc. may also be used.

発明の効果 以上のように、本発明は伝熱管のうち所定の本数に対し
てその開口端内部にオリフィスを設けたことにより、簡
単な構造で冷媒の均一分流が可能で、かつ伝熱管間のバ
ランスも容易に設定でき、組み立て時の作業性も良くす
ることができる。
Effects of the Invention As described above, the present invention provides orifices inside the open ends of a predetermined number of heat exchanger tubes, thereby making it possible to uniformly divide the refrigerant with a simple structure, and to improve the flow of the refrigerant between the heat exchanger tubes. Balance can be easily set, and work efficiency during assembly can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるフィン付熱交換器の
要部断面図、第2図(a>は同フィン付熱交換器の側面
図、第2図(b)は同正面図、第3図は配管接読時の伝
熱管部断面図、第4図は冷凍サイクルを示す図、第5図
は従来の空気調和機における冷媒分流装置の断面図、第
6図は第5図の装置を用いた空気調和機の冷媒配管図で
ある。 12・・・・・・フィン、13・・・・・・伝熱管、1
4・・・・・・オリフィス。 代理人の氏名 弁理士 中 尾 敏 男 ほか18第 
 1  図                    
     12−−− フイ/ノ3−−− イ云、六〜
51【 第2図 (cL)                   (b
ン第3図 φ閣寵電凧晴 (−一峡l吟
FIG. 1 is a cross-sectional view of a main part of a finned heat exchanger according to an embodiment of the present invention, FIG. 2 (a> is a side view of the finned heat exchanger, and FIG. 2(b) is a front view of the same, Figure 3 is a sectional view of the heat transfer tube section when piping is read directly, Figure 4 is a diagram showing a refrigeration cycle, Figure 5 is a sectional view of a refrigerant distribution device in a conventional air conditioner, and Figure 6 is the same as in Figure 5. It is a refrigerant piping diagram of an air conditioner using the device. 12... Fins, 13... Heat exchanger tubes, 1
4... Orifice. Name of agent: Patent attorney Toshio Nakao et al. 18th
1 figure
12--- F/NO3--- Iun, 6~
51 [Figure 2 (cL) (b
Figure 3

Claims (1)

【特許請求の範囲】[Claims] 複数のフィンが所定間隔で平行に並べられ、その間を気
流が流動するフィン群と、このフィン群に直角に挿入さ
れ、内部を冷媒が流動する伝熱管群を備え、前記伝熱管
のうち、所定の本数に対してその開口端側内部にオリフ
ィスを設けたことを特徴とするフィン付熱交換器。
A group of fins in which a plurality of fins are arranged in parallel at predetermined intervals, through which air flows, and a group of heat transfer tubes inserted at right angles to the group of fins, through which a refrigerant flows, A heat exchanger with fins, characterized in that an orifice is provided inside the open end side for the number of fins.
JP28850185A 1985-12-20 1985-12-20 Finned heat exchanger Pending JPS62147296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28850185A JPS62147296A (en) 1985-12-20 1985-12-20 Finned heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28850185A JPS62147296A (en) 1985-12-20 1985-12-20 Finned heat exchanger

Publications (1)

Publication Number Publication Date
JPS62147296A true JPS62147296A (en) 1987-07-01

Family

ID=17731035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28850185A Pending JPS62147296A (en) 1985-12-20 1985-12-20 Finned heat exchanger

Country Status (1)

Country Link
JP (1) JPS62147296A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221792A (en) * 1990-01-29 1991-09-30 Fuji Electric Co Ltd Cooling water supply equipment heat exchanger
JPH0417292U (en) * 1990-06-04 1992-02-13
JPH05264115A (en) * 1992-03-16 1993-10-12 Matsushita Electric Ind Co Ltd Absorption heat pump device
US7527089B2 (en) * 2005-02-02 2009-05-05 Carrier Corporation Heat exchanger with multiple stage fluid expansion in header

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221792A (en) * 1990-01-29 1991-09-30 Fuji Electric Co Ltd Cooling water supply equipment heat exchanger
JPH0417292U (en) * 1990-06-04 1992-02-13
JPH05264115A (en) * 1992-03-16 1993-10-12 Matsushita Electric Ind Co Ltd Absorption heat pump device
US7527089B2 (en) * 2005-02-02 2009-05-05 Carrier Corporation Heat exchanger with multiple stage fluid expansion in header

Similar Documents

Publication Publication Date Title
CN214581751U (en) Heat Exchangers and Air Conditioners
JP2001174047A (en) Air conditioner indoor unit
KR19980066449A (en) Chiller condenser
JPS62147296A (en) Finned heat exchanger
JP2004251556A (en) Heat exchanger
JPH07208831A (en) Distributor for refrigerator
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
CN106871496B (en) Indoor heat exchanger and air conditioner
JP2644900B2 (en) Heat exchanger
JP3083385B2 (en) Heat exchanger
JP2574488B2 (en) Heat exchanger
JPH0642885Y2 (en) Refrigerator Evaporator
JPH0218449Y2 (en)
JPS602545Y2 (en) Heat exchanger
JPH06129732A (en) Refrigerant condenser
EP4542138A1 (en) Air conditioner
CN110243108A (en) Condenser, heat exchange system and air conditioner
CN221881770U (en) Heat exchanger, refrigerant circulation system and air conditioner
JPH0411781B2 (en)
JP2677420B2 (en) Heat exchanger for refrigerant condenser
JP2000314573A (en) Heat exchanger for air conditioner
JP7106814B2 (en) Heat exchanger
JPH02219986A (en) Heat exchanger
JPS64542Y2 (en)
JPS6340762Y2 (en)