JPS62146650A - Printing method - Google Patents
Printing methodInfo
- Publication number
- JPS62146650A JPS62146650A JP28740885A JP28740885A JPS62146650A JP S62146650 A JPS62146650 A JP S62146650A JP 28740885 A JP28740885 A JP 28740885A JP 28740885 A JP28740885 A JP 28740885A JP S62146650 A JPS62146650 A JP S62146650A
- Authority
- JP
- Japan
- Prior art keywords
- ink
- pulse
- transfer
- thermal head
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/325—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads by selective transfer of ink from ink carrier, e.g. from ink ribbon or sheet
Landscapes
- Electronic Switches (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ノンインパクト印写装置に関し、更に詳しく
は、熱と磁気の作用にLり、熱可i性磁気インクを被転
写媒体に転写させ2文字1画像を得る印写方法に係る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a non-impact printing device, and more specifically, to a non-impact printing device that transfers thermoplastic magnetic ink to a transfer medium using the action of heat and magnetism. The present invention relates to a printing method for obtaining two characters and one image.
小型、低価格のノンインパクト印写方法として。 As a small, low-cost, non-impact printing method.
磁気インクを用い友ものが多く発案されている〇例えば
、*開昭52−9.6541にある方法は。Many new methods have been proposed using magnetic ink. For example, the method described in *9.6541/1973.
浴融熱転写方法のインクに4JR気インクを用い、熱供
給手段とは別に設けられた一気手段に1つて。4JR ink is used as the ink for the bath melting thermal transfer method, and one is installed in the one-shot means provided separately from the heat supply means.
熱像に対応する該インクに磁気吸引力を作用させ転写さ
せるものである。すなわち、第11図に示ス如り、サー
マルヘッド111−インク媒体112−被転写紙115
−a1石116の順に設置し、インク媒体の熱可塑性磁
気インク114はサーマルヘッドによるベースフィルム
113面ニジの熱印加時(ヘッド直下)において被転写
紙と接触させ、爵触し几該インク金被転写に接着させた
後、インク媒体上被転写紙から引き剥がし、インク転写
式せるものである。更に、磁気吸引力にニジ、浴融した
インクの被転写紙への接触確率を高める作用、及び、イ
ンク媒体引き剥がし時に、7紙ヘの転写率を高める作用
を付加し1表面平滑性が劣る。ラフペーパーにも高品位
に文字1画像を印写できるようにし友ものである。A magnetic attraction force is applied to the ink corresponding to the thermal image to transfer the image. That is, as shown in FIG. 11, the thermal head 111 - ink medium 112 - transfer paper 115
- A1 stones 116 are placed in this order, and the thermoplastic magnetic ink 114 of the ink medium is brought into contact with the transfer paper when heat is applied to the base film 113 by the thermal head (directly below the head), and the ink is coated with the ink. After adhering to the transfer, the ink medium is peeled off from the transfer paper to perform the ink transfer process. Furthermore, the magnetic attraction force is added with the effect of increasing the probability of contact of the bath-melted ink with the transfer paper, and the effect of increasing the transfer rate to the paper when the ink medium is peeled off, resulting in poor surface smoothness. . This makes it possible to print a single character image with high quality even on rough paper.
しかし一前述の従来技術では、インク媒体引き剥がし時
において、転写されるべき記録部のインクが一ベースフ
ィルム及び、非記録部のインクと接触している九め、−
担溶融し、被転写紙に接着し次記録部のインク全ベース
フィルムと共に被転写紙から剥ぎ取る力が働き、転写不
良が起きる要因となってい友。第10口において、一般
の熱転写記録においては、記録部インクを被転写哲に転
写させる為の促進力となるFム(インク−被転写紙間接
着力)及びPi(インク凝集力)と、転写を妨げる力、
1Fa(インク−ベースフィルム間接着力)及びIFD
C記録部インク−非記録部インク間凝集力)の間に−F
Il l Fム)) F a 、 ? I)の関係が
常に成立する場合、転写は完全に行なわれるO
同図1101はベースフィルム−1[]2i記録部イン
ク、103は非記録部インク、104は被転写紙である
。However, in the above-mentioned prior art, when the ink medium is peeled off, the ink in the recording area to be transferred is in contact with the base film and the ink in the non-recording area.
The ink is molten, adhered to the transfer paper, and then peeled off from the transfer paper along with the entire base film of the ink in the recording section, which causes transfer defects. In the 10th port, in general thermal transfer recording, Fum (ink-to-transfer paper adhesion force) and Pi (ink cohesive force), which are the accelerating forces for transferring the recording part ink to the transfer target, and the transfer power to hinder,
1Fa (ink-base film adhesive strength) and IFD
C Cohesive force between recording area ink and non-recording area ink) -F
Il l Fm)) F a, ? If the relationship I) always holds true, the transfer is perfectly performed. In the same figure, 1101 is base film-1[]2i ink in the recording area, 103 is ink in the non-recording area, and 104 is the transfer paper.
従来の方法では、インク溶融された記録部インクを磁気
吸引力に工って被転写紙方向へ引張る几め、被転写紙と
の接触確率全高め、第10図におけるPAi増大させる
作用がある。すなわち、一般の熱転写方式に比べ、イン
クの転写率は高くなっているが、依然として−pa、l
t’bが存在する九め、特に表面平滑性が非常に悪い被
転写紙に転写させる場合は、前述のFム(F o +
F nの場合が発生し、転写不良を起こすという問題点
ヲ有してい九〇
そこで本発明は、この工う々問題点を解決するもので、
その目的とするところは1表面平滑性が非常に悪い被転
写紙、ま友は、インクとの親和性があまシ高くないフィ
ルムへも、非常に高品質な文字0画像を印字できる印字
方法全提供するところにある。The conventional method has the effect of pulling the melted recording part ink toward the transfer paper using a magnetic attraction force, increasing the probability of contact with the transfer paper, and increasing the PAi in FIG. 10. In other words, although the ink transfer rate is higher than that of general thermal transfer methods, it is still -pa, l.
t'b exists, especially when transferring to paper with very poor surface smoothness, the above-mentioned F m (F o +
There is a problem in that the case of Fn occurs and transfer defects occur.The present invention therefore solves this problem by using this technique.
The purpose of this is 1) A printing method that can print very high quality character 0 images even on transfer paper with very poor surface smoothness, and on film that does not have a high affinity with ink. It's there to provide.
本発明の印字力法は、第1図に示す如く熱可塑性磁気イ
ンクの記録部分13に熱エネルギーを印加する手段11
と、該インクに(111気吸引力?発生する手段15全
有し、熱エネルギー印加の制御にニジ、該インクの記録
部分子:磁気吸引力により被転写媒体14へ転写させる
印写方法であり、該インクと被転写媒体が該インクの非
記録部分12(F’Mは磁気吸引ベクトルである。)に
おいて接触しないことを*aとする。なお図中、更に、
上記の印写方法において、熱エネルギーt!:I]7J
IJする手段がサーマルヘッドであること’l徴とする
〇またさらに、上記の印写方法において1丈−マルへッ
ドエシ熱エネルギーを印加する際、熱エネルギーを複数
回に時分割して印加することを特徴とする。The printing force method of the present invention includes a means 11 for applying thermal energy to a recording portion 13 of thermoplastic magnetic ink as shown in FIG.
This is a printing method in which the ink has all means 15 for generating (111-attractive force), and the recording part molecules of the ink are transferred to the transfer medium 14 by magnetic attraction force. , *a indicates that the ink and the transfer medium do not come into contact with each other at the non-recording portion 12 of the ink (F'M is a magnetic attraction vector).
In the above printing method, thermal energy t! :I]7J
It is assumed that the IJ means is a thermal head.Furthermore, in the above printing method, when applying thermal energy to a single head, the thermal energy may be applied multiple times in a time-divided manner. It is characterized by
本発明の上記の構成に工れば、熱可塑性磁気インクと被
転写媒体が該インクの非記録部分において接触してない
。従って、インクの転写は、熱によるインクの活性化状
態で磁気吸引力にLり行なわれ、従来技術のインク媒体
を引き剥がすプロセスは不必要となる。すなわち、第1
0図において。With the above configuration of the present invention, the thermoplastic magnetic ink and the transfer medium do not come into contact with each other in the non-recording portion of the ink. Thus, ink transfer is effected by magnetic attraction in the thermally activated state of the ink, and the prior art process of peeling off the ink medium is unnecessary. That is, the first
In figure 0.
転写を妨げていたFO,F’Bが0になる為、転写率は
非常に高くなる0更に補足すれば1本発明によるインク
転写時においても前述した第11図におけるFOIF!
+はインク転写の抵抗力として劾ぐが、インクが活性化
しているため、引き剥がし時(インク温度が下がった状
態)のそれエリも小さい。Since FO and F'B, which were hindering the transfer, become 0, the transfer rate becomes very high.Additionally, even during ink transfer according to the present invention, the FOIF in FIG. 11 mentioned above!
+ refers to resistance to ink transfer, but since the ink is activated, the resistance is small when peeling off (when the ink temperature has dropped).
ま几非接触であるため、印加され7を熱エネルギーの一
部が被転写体等へ伝熱して失なわれる熱損失がきわめて
少ない。Since it is non-contact, there is very little heat loss due to a part of the applied thermal energy being transferred to the transfer target or the like.
また更に、熱エネルギーを複数回に分けて印加する友め
に不必要にインクの温度を上昇させることなく、インク
の浴融状態を長時間保持できる。Furthermore, the melted state of the ink can be maintained for a long time without unnecessarily increasing the temperature of the ink by applying thermal energy in multiple steps.
このため(従来の持触型のものに比べ)少ない印加エネ
ルギーでかつ転写率は非常に高くなる。For this reason, less energy is applied (compared to conventional contact type) and the transfer rate is extremely high.
〔実施り1j〕2
累2図に本発明の実施例の傳成図上水す。、熱エネルギ
ー印加手段としてサーマルヘッド21を。[Practice 1j] 2 Figure 2 shows a diagram of the construction of an embodiment of the present invention. , a thermal head 21 is used as a thermal energy applying means.
磁気吸引力発生手段として永久磁石26を用いた0図に
示す如く、非記録時において(ζ、インク媒体22と被
転写、i25は接触させず、ヘッド直下において1間隔
全100μmに保つ九〇
インク媒体は、厚さ6μmのPETフィルム23に下記
のigO熱可泣性a %インク24を厚さ6μmに均一
にコートしtものを用い九〇〔組成〕
1 マグネタイト微粒子 40 w t、%2 カ
ルナウバワックス 20wtチ3 パラフィンワッ
クス 30wtチ4 Fli V A
5 w t%5 分散剤
1wtチロ 染料 4w
t%ま几融点は70゛C±5°Cである0
永久出石は−a大エネルギーa15MGエルステッドの
s a mi石を用い1分解i[180DPIのサーマ
ルヘッドにて印字を行なつ友。As shown in Figure 0, a permanent magnet 26 is used as a magnetic attraction force generating means. During non-recording (ζ, the ink medium 22 and the transferred object, i25 are not in contact with each other, and the 90 ink is maintained at a total interval of 100 μm directly below the head. The medium used was a PET film 23 with a thickness of 6 μm, uniformly coated with the following igO thermocrystalline a% ink 24 to a thickness of 6 μm. [Composition] 1 Magnetite fine particles 40 wt, %2 Karna Uba wax 20wt Chi 3 Paraffin wax 30wt Chi 4 Fli V A
5 wt%5 Dispersant
1wt Chiro dye 4w
The melting point of t% is 70°C ± 5°C. Permanent stone is -a large energy a15MG Ørsted's sami stone is used for printing with a thermal head of 1 resolution i [180DPI.
印字は第3図(a)に示す回路で行なったパルにつない
で、サーマルヘッド発熱用抵抗34に第3図(b)に示
す様に1ドツトにつき
印加電圧 5.Ov
印加時間 Q、7m、J!c
全力口える様にしfc。Printing was performed by connecting to the pulses using the circuit shown in FIG. 3(a), and applying a voltage per dot to the thermal head heating resistor 34 as shown in FIG. 3(b).5. Ov application time Q, 7m, J! c Do your best to speak fc.
この時印写されたドツトの形状は従来の接散潰の熱転写
で印写したドツトに比べ、リンかぐかはつきυと抜けて
おり、ま九ドットを体も高温度で高品質なものであつ次
0これは4力式が非接触な几め、熱の逃げ字汚れ等が少
ないためである〇尚、使用し^破転写紙にペック平滑度
4秒のものであった。The shape of the dots printed at this time is much sharper than the dots printed using conventional heat transfer, and the dots are of high quality and have a high temperature. This is because the 4-force type is non-contact, and there is less heat escaping and staining.In addition, the torn transfer paper used had a Peck smoothness of 4 seconds.
〔実施例〕2
冥胞911のインクの温度変化を記録したもの全第4図
に示す。これによると印加パルスを加えてから11m5
ec後に温度上昇をはじめ、インクの融点である70°
Cに到達するのはα’!m5ec後である。[Example] 2 The temperature change of the ink in the underground cell 911 is recorded and shown in FIG. 4. According to this, 11m5 after applying the applied pulse
After EC, the temperature begins to rise and reaches 70°, which is the melting point of the ink.
α' reaches C! It is after m5ec.
ま7’(1,Om 5IIC付近では、20口゛C付近
にまで到達している。7' (1, Om Around 5IIC, the temperature has reached around 20 °C.
インクが融点以上の時、つまりインク溶融時にはじめて
印写が可能となるから実質の印字有効時間は70°C以
上の時で0.3mgになる。Since printing is only possible when the ink has a temperature above its melting point, that is, when the ink melts, the actual effective printing time is 0.3 mg when the temperature is 70°C or above.
この実質の印字有効時間を長くする様に第5図(a)の
回路を作成し7’C。The circuit shown in FIG. 5(a) was created in order to lengthen the actual effective printing time.7'C.
パルス−IEf)IS51でパルス奮発生させ、パルス
発生部52で発生させたパルスをインバータ53で反転
させ念ものとNAND54で組み合わせ。Pulse-IEf) The IS51 generates a pulse, the pulse generated by the pulse generator 52 is inverted by the inverter 53, and the pulse is combined with the NAND54.
トランジスタ550ベースへ流すことでサーマルヘッド
う1熱部56に第5図(kl)に示す様な′電圧印加を
行なつ友〇
この時、第6図に示す様な温度変化を記録し之(友だし
他の条件(グー切変えていない)。By flowing the voltage to the base of the transistor 550, a voltage is applied to the heating section 56 of the thermal head as shown in FIG. We are friends and other conditions (we haven't changed much).
これによると実質の印字有効時間は0.2mzになる。According to this, the actual printing effective time is 0.2 mz.
この印加パルスで印字を行なったところ実施例1で得ら
れた印字工りさらに高品質で高濃度の印字が得られた。When printing was performed using this application pulse, a print of higher quality and higher density than that obtained in Example 1 was obtained.
池に、印加パルス七分割せずに友だ印加時間を長くする
と刀島、印加電圧をふやすだけという方法もあるが、こ
の時の温度変化を記録すると印加時間を長くし次場合は
第7図(a)の様に、印加電圧をふやした場合は第7図
(1))の様になり、どちらも印字有効時間(グふえる
が−200’Ci超える箇所がでてしまう。There is also a method of simply increasing the applied voltage by lengthening the application time without dividing the applied pulse into seven parts, but if you record the temperature change at this time, you can increase the application time and see Figure 7. When the applied voltage is increased as shown in (a), the result becomes as shown in FIG. 7 (1), and in both cases, there are places where the effective printing time (increases) exceeds -200'Ci.
200’Cを超えると支持層であるPETが軟化して形
状が変化してしまい最悪の場合インクフィルムが切れる
といった熱破壊上おこすことがある。If the temperature exceeds 200'C, the PET that is the support layer will soften and change its shape, and in the worst case, the ink film may be cut or thermal damage may occur.
また、インク中のマグネタイト微粒子は@度が上昇する
につれて出力が弱まり200°C以上になると6気吸引
力が弱まってしまう。このため印加パルス全分割せずに
ただ印加時間を長くし友り。Further, as the temperature of the magnetite particles in the ink increases, the output becomes weaker, and when the temperature exceeds 200°C, the 6 atmosphere suction force becomes weaker. For this reason, it is better to simply lengthen the application time without dividing the entire applied pulse.
印加電圧tふやすだけという方法は印字には不適当であ
る。The method of simply increasing the applied voltage t is inappropriate for printing.
これから印加有効時…1を増やすためには一パルスを分
′利して加える方法が望ブしい。From now on, when the application is effective...In order to increase the number by 1, it is preferable to add one pulse at a time.
〔実施例〕3
実施例2で行なったパルス?、できるだけ印字エネルギ
ー+C減らして、かつインクが融点以上200 ’C以
下である時間が長くなる様に設定しなおした第8図(a
)に示す回路で印字全行なった。[Example] 3 Pulse performed in Example 2? , the printing energy +C has been reduced as much as possible, and the settings have been reset so that the time during which the ink remains above the melting point and below 200'C is reconfigured.
) All printing was done using the circuit shown in ).
パルス発生部81で発生させ次パルスと、パルス発生部
82のパルスtインバータ83で反転させたもの、パル
ス発生部84のパルスをインバータ85で反転させたも
の、パルス発生部86のパルスをインバータ87で反転
させたものをNANDl路88で組み合わせ、トランジ
スタ890ペースへ流すことでサーマルヘッド発熱部9
0に第8図(1))に示す様な電圧印加を行なつ几。The next pulse generated by the pulse generating section 81, the pulse generated by the pulse generating section 82, which is inverted by the inverter 83, the pulse generated by the pulse generating section 84, which is inverted by the inverter 85, and the pulse generated by the pulse generating section 86 are generated by the inverter 87. The inverted outputs are combined in the NANDl path 88 and flowed to the transistor 890 to generate the thermal head heat generating part 9.
At 0, a voltage is applied as shown in FIG. 8 (1)).
この時のインクの温度変化を記僑すると第9図の様にな
シー印字有効時間はIIL8m、、Ocになった。Recording the temperature change of the ink at this time, as shown in Fig. 9, the effective printing time was IIL8m, Oc.
この時の印加電力は
s、 o (v ) x (o、 s+α1×3)〔m
5elc〕=18(mw:]となつ友。 この印加パル
スで印字を行なったとこ実施例1工りさらに高品質な印
字が潜られた。The applied power at this time is s, o (v) x (o, s+α1×3) [m
5elc] = 18 (mw:]. When printing was performed using this applied pulse, even higher quality printing was achieved than in Example 1.
これら、〔実施例2.3〕以外の1分割パルスの設定で
も印字ができなければ工い。If printing is not possible even with these 1-division pulse settings other than those in [Example 2.3], do not proceed.
またインクの融点や、サーマルヘッドの発熱体抵抗値が
変すつ7′I:、場合は、印加電圧や分割パルスの設定
を変えても良い。Furthermore, if the melting point of the ink or the resistance value of the heating element of the thermal head changes, the settings of the applied voltage and divided pulses may be changed.
以上述べた工うに1本発明によれば、熱可塑性磁気イン
クの記録部分に熱エネルギー金印加する手設と、該イン
クに缶気吸引力を発生する手段全有し、熱エネルギー印
刀口の制8vCxL該イ、ンクの記録部分1に磁気吸引
力にエフ被転写媒体へ転写させる印字装置において、該
インクと破転写媒体が、該インクの非記録部分において
接触しない構造になっているため、従来技術でのインク
フィルムを引き剥がすプロセスが不必決となり、かつ。According to the above-mentioned method, the present invention includes a manual device for applying thermal energy to the recording portion of the thermoplastic magnetic ink and a means for generating can air suction force to the ink, and controls the thermal energy stamping hole. 8vCxL In a printing device that transfers the recording portion 1 of the ink to the transfer medium using magnetic attraction force, the ink and the transfer medium are structured so that they do not come into contact with each other in the non-recording portion of the ink. The process of peeling off the ink film with technology becomes inconvenient, and.
従来技術でのインクの転写率を下げる要因となっていた
力を場減することが可能となった。これにより、従来技
術で表面が非常に粗い被転写紙、すなわちラフペーパー
への印字品質が悪いという欠点全本質的に解決し一4f
Ii転写紙の表面状態に影響されること女(、非常に高
品質な印字ができるという効果を有する。It has become possible to reduce the force that was a factor in lowering the ink transfer rate in the conventional technology. This essentially solves the problem with the conventional technology of poor printing quality on transfer paper with a very rough surface, that is, rough paper.
It has the effect of being able to print very high quality characters because it is affected by the surface condition of the transfer paper.
まt非凄触である九め、印加されfc熱エネルギーの一
部が被転写体等へ伝熱して失われることがなく、熱損失
がきわめて少ない。Ninth, it is non-intrusive, and a part of the applied fc thermal energy is not transferred to the object to be transferred and lost, resulting in extremely low heat loss.
−また更に、熱エネルギーt−復数回に分けて印加する
ために不必要にインクの温度全上昇させることなくイン
クのt6融状態を長時間保持できる。-Furthermore, since the thermal energy is applied several times, the t6 melting state of the ink can be maintained for a long time without unnecessarily increasing the temperature of the ink.
このtも従来の接触型のものに比べ一部ない印刀ロエネ
ルギーで、更に高品質な印字ができるという効果を有す
る。This t also has the effect of being able to print even higher quality characters with less energy than the conventional contact type.
ま九本発明は、不実癩しUに限定されることなく。Furthermore, the present invention is not limited to the following.
熱エネルギーの制御にニジ、熱可塑性fB 2 イy
りの記録一部分全4!1気吸引カにより破転写媒体へ転
写させる印字方法のすべてについて有効である。Thermoplastic fB 2 is useful for controlling thermal energy
This method is effective for all printing methods in which a part of the recording is transferred to a destructible transfer medium using 4!1 suction force.
ユi!1図は1本発明の印写方法の原理図である。
第2図(C1不発明による一溝成しIlt示す図〇第3
図は、実施例1のときのサーマルヘッドに印加する回路
とパルスを示す図。
第4図は、実施例1のときのインクの温度変化を記録し
t図である。
第5図は、実施例2のときのサーマルヘッドに印加する
回路とパルスを示す図。
第6図は、実施例2のときのインクの温度変化を記録し
た図である。
第7図(ハ、ハルス分割しないときのインクの温度変化
を記録した図である。
第8囚は、実砲例3のときのサーマルヘッドに印加する
回路とパルスを示す図。
第9図は、実へ例5のときのインクの温度変化を記録し
た図である〇
第10図は一一般の熱転写力式におけるインク媒体引き
剥がし時のインクに作用する各電力を説明する図。
第11図は、従来の印写方法の原理図である。
11・・・熱エネルギー印v口手段
12・・・インクの非記録部分
13・・・インクの記録部分
14・・・彼転写謀体
15・・・磁気吸引力発生手段
FM・・・3気吸引ベクトル
21・・・サーマルヘッド
22・・・インク媒体
23・・・ベースフィルム
24・・・熱可塑性B気インク
25・・・被転写紙
26・・・永久磁石
27・・・印写されたドツト
以上
出願人 セイコーエプソン株式会社
第1図
第2図
(α)
印〃0蒔叫 [m5ecl
(b)
第3図
1:P 7JD M間[爪父C〕
第4図
(α)
第5図
印加時間Etlt5eC3
(b)
印加vj間[/!n5ec 1
第6図
印〃0@閲〔罹5ec1
第7図
第8図
第8図
第9図
AFB
@IO図
第11図Yui! FIG. 1 is a diagram showing the principle of the printing method of the present invention. Figure 2 (Figure 3 showing one groove formed by C1 invention)
The figure is a diagram showing a circuit and pulses applied to the thermal head in Example 1. FIG. 4 is a t diagram recording the temperature change of the ink in Example 1. FIG. 5 is a diagram showing a circuit and pulses applied to the thermal head in Example 2. FIG. 6 is a diagram recording the temperature change of ink in Example 2. Figure 7 (C) is a diagram recording the temperature change of ink when no Hals division is performed. Figure 8 is a diagram showing the circuit and pulses applied to the thermal head in actual gun example 3. Figure 9 is This is a diagram recording the temperature change of the ink in Example 5. Figure 10 is a diagram illustrating each electric power acting on the ink when the ink medium is peeled off in a general thermal transfer force type. 11 is a principle diagram of a conventional printing method. 11... Thermal energy stamping means 12... Ink non-recording area 13... Ink recording area 14... Transfer plot 15. ...Magnetic attraction force generating means FM...3 air attraction vector 21...Thermal head 22...Ink medium 23...Base film 24...Thermoplastic B air ink 25...Transfer paper 26 ...Permanent magnet 27...More than the printed dot Applicant Seiko Epson Co., Ltd. Claw C] Fig. 4 (α) Fig. 5 Application time Etlt5eC3 (b) Between application vj[/!n5ec 1 Fig. 6 mark〃0@view [Infection5ec1 Fig. 7 Fig. 8 Fig. 8 Fig. 9 AFB @IO diagram Figure 11
Claims (1)
る手段と、該インクに磁気吸引力を発生する手段を有し
、熱エネルギー印加の制御により、該インクの記録部分
を磁気吸引力により被転写媒体へ転写させる印写方法で
あり、該インクと被転写媒体が該インクの被記録部分で
転写せず、1ドットを印写する該熱エネルギーを二回以
上、複数個に時分割して前記インクに印加することを特
徴とする印写方法。It has a means for applying thermal energy to a recorded portion of thermoplastic magnetic ink and a means for generating a magnetic attraction force to the ink, and by controlling the application of thermal energy, the recorded portion of the ink is transferred to a transfer medium by the magnetic attraction force. This is a printing method in which the ink and the transfer medium are not transferred at the recording area of the ink, but the thermal energy for printing one dot is time-divided into two or more times to transfer the ink to the ink. A printing method characterized in that a voltage is applied to the image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28740885A JPS62146650A (en) | 1985-12-20 | 1985-12-20 | Printing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28740885A JPS62146650A (en) | 1985-12-20 | 1985-12-20 | Printing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62146650A true JPS62146650A (en) | 1987-06-30 |
Family
ID=17716945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28740885A Pending JPS62146650A (en) | 1985-12-20 | 1985-12-20 | Printing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62146650A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63154394A (en) * | 1986-12-19 | 1988-06-27 | Dainippon Printing Co Ltd | Thermal transfer ink ribbon |
-
1985
- 1985-12-20 JP JP28740885A patent/JPS62146650A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63154394A (en) * | 1986-12-19 | 1988-06-27 | Dainippon Printing Co Ltd | Thermal transfer ink ribbon |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2778331B2 (en) | Ink jet recording device | |
JPS6325063A (en) | Printing method | |
JPS62146650A (en) | Printing method | |
US4769649A (en) | Imprinting apparatus | |
JPS6280078A (en) | Printer | |
JPS62149452A (en) | Printing method | |
JPS625863A (en) | printing device | |
JPS62170353A (en) | printing device | |
JPS6333769A (en) | Magneto-optical printing method | |
JPH02136248A (en) | printing device | |
JPS62244665A (en) | Printer | |
JPH0197657A (en) | Printer | |
JPS62149454A (en) | Printing method | |
JPH0450190B2 (en) | ||
JPS62176898A (en) | Printing method | |
JPS62148269A (en) | Printing method | |
JPS62146686A (en) | Printing method | |
JPS62299351A (en) | printing device | |
JPS63283966A (en) | Printing method | |
JPS6218291A (en) | Printing method | |
JPS6313768A (en) | Printing method | |
JPS6381063A (en) | Image printer | |
JPS62170354A (en) | Printer | |
JPS62148281A (en) | ink medium | |
JPS62170352A (en) | Printer |