JPS62145867A - image sensor - Google Patents
image sensorInfo
- Publication number
- JPS62145867A JPS62145867A JP60288547A JP28854785A JPS62145867A JP S62145867 A JPS62145867 A JP S62145867A JP 60288547 A JP60288547 A JP 60288547A JP 28854785 A JP28854785 A JP 28854785A JP S62145867 A JPS62145867 A JP S62145867A
- Authority
- JP
- Japan
- Prior art keywords
- type semiconductor
- semiconductor region
- light
- low
- image sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 claims description 44
- 230000003287 optical effect Effects 0.000 claims description 6
- 239000012535 impurity Substances 0.000 description 10
- 239000000969 carrier Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は原稿情報を高解像度で読み取る、複数列の画素
及びそれぞれの列に出力ラインを持つ、ライン読取りの
イメージセンサに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a line-reading image sensor that reads document information with high resolution and has a plurality of columns of pixels and an output line in each column.
従来の技術
各画素がPn−接合を受光部とするフォトダイオードま
たはフォトトランジスタに於いて、第3図(a)に示さ
れるような構造を持つ画素列からなる受光素子を使用す
ると隣接画素間にクロストークが生じる為、第3図(b
lに示されるようなP型半導体領域11を使用する方法
または絶縁層で各画素を分離するのが通例であり、殊に
標準バイポーラ半導体プロセスに於いては、第3図(b
lに示すようにPn接合が逆バイアスになるように素子
分離するのが一般的である。このような分離は同一半導
体基板上の全素子について行われているものである。BACKGROUND ART In a photodiode or phototransistor in which each pixel has a Pn-junction as a light-receiving part, when a light-receiving element consisting of a pixel row having the structure shown in FIG. Because crosstalk occurs, Figure 3 (b)
It is customary to separate each pixel by using a P-type semiconductor region 11 as shown in FIG.
Generally, elements are separated so that the Pn junction is reverse biased as shown in FIG. Such separation is performed for all elements on the same semiconductor substrate.
発明が解決しようとする問題点
第3図Tolに示すように通常の逆バイアスのPn接合
を用いるバイポーラICプロセスでは比較的低不純物濃
度を有するn型半導体3形成後、一般的にアクセプタ不
純物を拡散してP型半導体部分11を形成して素子分離
を行うが、この後の工程で作られるP型半導体領域9と
の短絡を防ぐためにマスク上のマージンを充分とること
が必要である。以上のように十分大きいマージンを確保
する事は高密度に画素を集積する上で不利である。Problems to be Solved by the Invention As shown in Figure 3, in the normal bipolar IC process using a reverse-biased Pn junction, acceptor impurities are generally diffused after forming an n-type semiconductor 3 having a relatively low impurity concentration. A P-type semiconductor portion 11 is then formed to perform element isolation, but it is necessary to provide a sufficient margin on the mask to prevent short circuit with the P-type semiconductor region 9 that will be formed in a subsequent step. As described above, securing a sufficiently large margin is disadvantageous in integrating pixels at high density.
また12に示す埋込n型半導体部分を同電位にして駆動
する際には表面で金属その他の低抵抗体による配線を行
う必要があり、より一層の集積度の低下を招く。Further, when driving the buried n-type semiconductor portion shown in 12 at the same potential, it is necessary to conduct wiring using metal or other low resistance material on the surface, which further reduces the degree of integration.
問題点を解決するための手段
本発明は上記問題点を解決するために、基板側のn型半
導体域を成る隣接した受光素子と同電位にて駆動する際
に、光情報の素子間での分離を、高密度のn型半導体領
域を低濃度のn型半導体領域に拡散して埋込拡散の低濃
度n型半導体領域に到達させるものである。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention aims to reduce the difference between the optical information elements when driving them at the same potential as the adjacent light-receiving elements forming the n-type semiconductor region on the substrate side. Separation is achieved by diffusing a high-density n-type semiconductor region into a low-concentration n-type semiconductor region to reach a buried diffusion low-concentration n-type semiconductor region.
作用
各受光素子が低抵抗n型半導体領域に囲まれる構造とな
るので、成る一つの受光素子内で発生したキャリヤは他
の隣接した受光素子の中へ流れ込む事がなくなり、通常
バイポーラICプロセスで行われている、逆バイアスP
n接合を各素子の周囲に形成することで素子分離を行な
った場合と同様に、各受光素子間での光信号のクロスト
ークを防止できる。Function Since each photodetector is surrounded by a low-resistance n-type semiconductor region, carriers generated in one photodetector will not flow into other adjacent photodetectors, which is normally achieved using a bipolar IC process. reverse bias P
By forming an n-junction around each element, crosstalk of optical signals between each light receiving element can be prevented, similar to when element isolation is performed.
また本来的に低不純物濃度乍らもn型の半導体領域の一
部を同じn型のまま一層低抵抗化するので、一般的素子
分離用のP゛型半導体に転換する場合に比べて、素子内
に形成するP型半導体領域とのマージンを大きくとる必
要がないので、プロセス的に易しく微細に形成できる。In addition, even though the impurity concentration is inherently low, part of the n-type semiconductor region remains the same n-type and has a lower resistance, so compared to converting to a P-type semiconductor for general device isolation, Since there is no need to provide a large margin with respect to the P-type semiconductor region formed within, the process can be easily formed and finely formed.
更に表面までこの低抵抗n型半導体層が存在する事によ
り、表面に及んでいる低不純物濃度領域にも水平方向に
電界がかかり、より多くの光励起キャリヤを捕捉利用で
きる。Furthermore, since this low-resistance n-type semiconductor layer exists up to the surface, an electric field is applied in the horizontal direction even to the low impurity concentration region extending to the surface, making it possible to capture and utilize more photoexcited carriers.
実施例
第1図は+al、(b)は本発明のイメージセンサの受
−光素子の実施例を示す。(81は構造例を山)はその
回路的記号で表したものである。Pn接合からなるフォ
トダイオードからなる受光素子が3素子示しであるが、
1はアノードを形成するP型半導体層、3はカソードを
形成する低不純物濃度のn型半導体層である。2及び4
は共に低抵抗n型半導体からなり、図中の3つのフォト
ダイオードのカソード3を結線し、共通カソード電極7
へつなぐ役割を果たすが、中でも2の低抵抗n型半導体
層は各受光素子をとり囲んでいる為、成る一つの受光素
子内で生じた光励起キャリヤは隣接した受光素子内へと
流れ込む事がない。つまりこの低抵抗n型半導体2の形
成の代わりに第3図(blの様にP型半導体11を形成
して逆バイアスPn接合を各受光素子の回りに生ぜしめ
た場合と同様に、各受光素子間での光信号のクロストー
クを防止する効果を持つ。第3図(a)のように低抵抗
n型半導体領域2が無ければカソード3の領域中で生じ
る光励起キャリヤが隣接したフォトダイオードへ漏れて
しまう。Embodiment FIG. 1 shows +al, and FIG. 1(b) shows an embodiment of the light receiving element of the image sensor of the present invention. (81 is a mountain representing a structural example) is a circuit symbol. Three light-receiving elements are shown, each consisting of a photodiode consisting of a Pn junction.
1 is a P-type semiconductor layer forming an anode, and 3 is a low impurity concentration N-type semiconductor layer forming a cathode. 2 and 4
are both made of low-resistance n-type semiconductors, connect the cathodes 3 of the three photodiodes in the figure, and form a common cathode electrode 7.
Among them, the low-resistance n-type semiconductor layer 2 surrounds each light-receiving element, so the photoexcited carriers generated in one light-receiving element do not flow into the adjacent light-receiving element. . In other words, instead of forming this low-resistance n-type semiconductor 2, a P-type semiconductor 11 is formed as shown in FIG. It has the effect of preventing crosstalk of optical signals between elements.If there is no low resistance n-type semiconductor region 2 as shown in FIG. It will leak.
第1図ではアノードを形成するP型半導体領域1とクロ
ストーク防止用のn型半導体領域2とが異なる形の半導
体であるので、マスク設計上この両頭域がこの両頭域が
多少接近しても短絡を生じる危険性が少なく、元々低不
純物濃度乍らも同形の半導体であるカソード3の一部分
であった所に更に同形不純物を拡散して低抵抗化してク
ロスト一り防止用す型半導体領域2を形成するのである
からマスク上のマージンを大きくとる必要がない。In FIG. 1, the P-type semiconductor region 1 forming the anode and the N-type semiconductor region 2 for crosstalk prevention are semiconductors of different shapes, so even if these two-head regions are somewhat close together due to mask design, A type semiconductor region 2 which has a low risk of short-circuiting and which is a part of the cathode 3 which is originally a semiconductor with a low impurity concentration and the same shape, and which is further diffused with the same type of impurity to lower the resistance and prevent cross-crossing. Therefore, there is no need to provide a large margin on the mask.
更に基板内で埋込n型半導体層4によって上記n型半導
体領域2は電気的につながっている為に、表面配線の必
要がなく、これも受光素子の高密度化に寄与する。Furthermore, since the n-type semiconductor region 2 is electrically connected within the substrate by the buried n-type semiconductor layer 4, there is no need for surface wiring, which also contributes to higher density of the light-receiving elements.
またP型半導体領域1と上記低抵抗n型半導体領域2と
に狭まれた低不純物濃度n型半導体領域3は表面に於い
ても水平方向に電界が作くかかる事になり、この領域に
入射した光による励起キャリヤも効率的に収集される。Furthermore, an electric field is created in the horizontal direction on the surface of the low impurity concentration n-type semiconductor region 3 which is narrowed between the P-type semiconductor region 1 and the low-resistance n-type semiconductor region 2. Excited carriers caused by the emitted light are also efficiently collected.
第1図のセンサは、共通カソード側端子7をアクセスす
る事で、各フォトダイオードから各アノード端子6へと
同時に光情報信号が読出す事ができ、また一つのフォト
ダイオードについてアノード端子6をアクセスすると該
フォトダイオードの光情報信号が共通カソード側端子7
から詠み出す事もできる。In the sensor shown in FIG. 1, optical information signals can be simultaneously read from each photodiode to each anode terminal 6 by accessing the common cathode side terminal 7, and the anode terminal 6 for one photodiode can be read out simultaneously. Then, the optical information signal of the photodiode is transmitted to the common cathode side terminal 7.
You can also compose a poem from.
第2図は第1図のアノードたるP型半導体領域1の中に
更にエミッタとなるn型半導体領域8を形成し、受光素
子をフォトダイオードからフォトトランジスタとした例
である。(alは構造図、To)はその回路記号的に表
した図である。図中の10はエミッタ端子、13は共通
コレクタ端子で各々第1図のアノード端子6、共通カソ
ード端子7に該当し使用上に差はない。FIG. 2 shows an example in which an n-type semiconductor region 8 serving as an emitter is further formed in the P-type semiconductor region 1 serving as an anode shown in FIG. 1, and the light-receiving element is changed from a photodiode to a phototransistor. (Al is a structural diagram, and To is a diagram symbolically representing the circuit. In the figure, 10 is an emitter terminal, and 13 is a common collector terminal, which correspond to the anode terminal 6 and common cathode terminal 7 in FIG. 1, respectively, and there is no difference in usage.
以上第1図、第2図に示した例では第3図(alにて生
しるクロス!・−りの問題は回避できるし、第3図[b
)のPn接合による素子分離した場合よりも受光素子を
詰めて並べることができる。In the examples shown in FIGS. 1 and 2 above, the problem of cross !-- which occurs in FIG.
) The light-receiving elements can be arranged closer together than in the case where the elements are separated by Pn junctions.
第4図(alは第1図に示すようなイメージセンサの更
に発展した構成例の平面図を示すものである。FIG. 4 (al shows a plan view of a further developed configuration example of the image sensor shown in FIG. 1).
第4図(blは回路記号で表したものである。第1図(
a)の断面図は第4図(a)では一点鎖線14に示され
るような所で素子を切断した場合等に相当する。Figure 4 (bl is the circuit symbol. Figure 1 (
The sectional view a) corresponds to the case where the element is cut at a point as shown by a dashed line 14 in FIG. 4(a).
第4図fat中で1はP型半導体領域、2は低抵抗のn
型半導体領域で、本図中ではPn接合で素子分離された
各低濃度不純物n型半導体領域からなる島15の中の3
唾のフォトダイオード間のクロストークを防くと共に共
通カソード側端子7に低抵抗埋込n型半導体層を介して
つながっている。破線で示した19は斜線で表されてい
る表面配線16.17,18.7と半導体との接触をと
る窓である。本図のような3列の受光素子からなるイメ
ージセンサで、共通アノード線16にアノードが接続し
ている受光素子列と、共通アノード線17にアノードが
接続していいる受光素子列と共通アノード線18にアノ
ードが接続している受光素子列とで相異なる色フィルタ
を付加する事で、各色毎に異なる3本の出力ライン16
.i7゜18から映像出力を出し得るカラーラインイメ
ージセンサが実現できる。この第4図に示すようなイメ
ージセンサを更に縦にも横にも受光素子数を増やせばエ
リアセンサも可能である。In Figure 4 fat, 1 is a P-type semiconductor region, 2 is a low resistance n
In this figure, three of the islands 15 consisting of each low-concentration impurity n-type semiconductor region separated by a Pn junction are
It prevents crosstalk between the photodiodes and is connected to the common cathode side terminal 7 via a low resistance buried n-type semiconductor layer. A window 19 indicated by a broken line is a window through which the surface wirings 16.17, 18.7 indicated by diagonal lines are in contact with the semiconductor. An image sensor consisting of three rows of light-receiving elements as shown in this figure, one row of light-receiving elements whose anodes are connected to a common anode line 16, one row of light-receiving elements whose anodes are connected to a common anode line 17, and a common anode line. By adding different color filters to the light-receiving element rows to which the anodes are connected to 18, three different output lines 16 for each color are created.
.. A color line image sensor capable of outputting video from i7°18 can be realized. If the image sensor shown in FIG. 4 is further increased in number of light-receiving elements both vertically and horizontally, an area sensor is also possible.
発明の効果
以上述べてきたように、本発明によれば、きわめて簡単
な方法により、一つの端子を共有する受光素子間のマー
ジンを少なくでき高密度な受光素子配置が可能であり、
該受光素子間のクロストークもなく、光励起キャリヤの
生しる低不純物濃度n型半導体領域のうちの半導体表面
に露出している部分で生じる光励起キャリヤも有効に捕
捉でき、極めて実用的である。Effects of the Invention As described above, according to the present invention, it is possible to reduce the margin between light-receiving elements sharing one terminal and to arrange the light-receiving elements in high density using an extremely simple method.
There is no crosstalk between the light-receiving elements, and photo-excited carriers generated in the portion exposed to the semiconductor surface of the low impurity concentration n-type semiconductor region where photo-excited carriers are generated can be effectively captured, making it extremely practical.
第1図(alはフォI・ダイオードを受光素子とする本
発明の実施例を示す断面図、第1図(b)は同回路記号
図、第2図(alはフォトトランジスタを受光素子とす
る本発明の実施例を示す断面図、第2図fblは同回路
記号図、第3図(alは素子分離を行っていない場合の
イメージセンサの断面図、第3図fblは一般的なPn
接合による素子分離を行なったイメージセンサの断面図
。第4図+alは第1図に示すようなイメージセンサの
更に発展した実施例を示す平面図、第4図(1))は同
回路記号図である。
4・・・・・・低抵抗埋込n型半導体層、5・・・・・
・P型半導体基板、9・・・・・・P型半導体領域。
代理人の氏名 弁理士 中尾敏男 はか1名区
\
へ へFigure 1 (al is a cross-sectional view showing an embodiment of the present invention in which a photodiode is used as a light-receiving element, Figure 1 (b) is a symbol diagram of the same circuit, Figure 2 (al is a cross-sectional view in which a phototransistor is used as a light-receiving element) A sectional view showing an embodiment of the present invention, FIG. 2 fbl is a symbol diagram of the same circuit, FIG.
FIG. 2 is a cross-sectional view of an image sensor in which elements are separated by bonding. FIG. 4+al is a plan view showing a further developed embodiment of the image sensor shown in FIG. 1, and FIG. 4(1)) is a symbol diagram of the same circuit. 4...Low resistance buried n-type semiconductor layer, 5...
- P-type semiconductor substrate, 9...P-type semiconductor region. Name of agent: Patent attorney Toshio Nakao
\ to to
Claims (1)
ォトトランジスタを読取画素とし、連なる該画素複数個
で一組の画素組として多数の画素組を持ち、各画素組に
含まれる画素は埋込層を画素組の共通端子とし、各画素
組の中の画素相互間に該埋込層と同型の低抵抗半導体領
域を形成しこれを該埋込層に到達せしめて該画素相互間
の光信号電流の混交を防いでいるイメージセンサ。A reading pixel is a photodiode or a phototransistor having a buried layer serving as one terminal, and a plurality of consecutive pixels constitute one pixel group, and the pixels included in each pixel group have a buried layer. A common terminal for the pixel sets is formed, and a low resistance semiconductor region of the same type as the buried layer is formed between the pixels in each pixel set, and this is made to reach the buried layer, so that the optical signal current between the pixels is Image sensor that prevents mixing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60288547A JPH0682817B2 (en) | 1985-12-20 | 1985-12-20 | Image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60288547A JPH0682817B2 (en) | 1985-12-20 | 1985-12-20 | Image sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62145867A true JPS62145867A (en) | 1987-06-29 |
JPH0682817B2 JPH0682817B2 (en) | 1994-10-19 |
Family
ID=17731651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60288547A Expired - Lifetime JPH0682817B2 (en) | 1985-12-20 | 1985-12-20 | Image sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0682817B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0511683A2 (en) * | 1991-05-01 | 1992-11-04 | Kabushiki Kaisha Toshiba | Layer-built solid state image sensing device |
US5480811A (en) * | 1990-06-14 | 1996-01-02 | Chiang; Shang-Yi | Isolation of photogenerated carriers within an originating collecting region |
US6037643A (en) * | 1998-02-17 | 2000-03-14 | Hewlett-Packard Company | Photocell layout for high-speed optical navigation microchips |
JP2015188083A (en) * | 2014-03-13 | 2015-10-29 | 株式会社半導体エネルギー研究所 | Imaging apparatus |
JP2020077889A (en) * | 2014-04-23 | 2020-05-21 | 株式会社半導体エネルギー研究所 | Semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61141177A (en) * | 1984-12-14 | 1986-06-28 | Hamamatsu Photonics Kk | Semiconductor photodetecting device |
-
1985
- 1985-12-20 JP JP60288547A patent/JPH0682817B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61141177A (en) * | 1984-12-14 | 1986-06-28 | Hamamatsu Photonics Kk | Semiconductor photodetecting device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480811A (en) * | 1990-06-14 | 1996-01-02 | Chiang; Shang-Yi | Isolation of photogenerated carriers within an originating collecting region |
EP0511683A2 (en) * | 1991-05-01 | 1992-11-04 | Kabushiki Kaisha Toshiba | Layer-built solid state image sensing device |
US6037643A (en) * | 1998-02-17 | 2000-03-14 | Hewlett-Packard Company | Photocell layout for high-speed optical navigation microchips |
JP2015188083A (en) * | 2014-03-13 | 2015-10-29 | 株式会社半導体エネルギー研究所 | Imaging apparatus |
JP2020077889A (en) * | 2014-04-23 | 2020-05-21 | 株式会社半導体エネルギー研究所 | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH0682817B2 (en) | 1994-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1138081A (en) | Multi-spectrum photodiode devices | |
US10908302B2 (en) | Semiconductor photo-detection device and radiation detection apparatus | |
KR100969123B1 (en) | Detector | |
KR100237133B1 (en) | Photoelectric conversion apparatus and image reading apparatus | |
KR20010034780A (en) | Color separation in an active pixel cell imaging array using a triple-well structure | |
JPH06500431A (en) | Image sensor with transfer gate between photodiode and CCD element | |
JP3413078B2 (en) | Photoelectric conversion device and contact image sensor | |
JPH09266296A (en) | Solid-state imaging device | |
EP2092563B1 (en) | Semiconductor photodetector and radiation detecting apparatus | |
JPS62145867A (en) | image sensor | |
EP0118568B1 (en) | Semiconductor image pickup device | |
JPS59178769A (en) | Solid-state image pickup device | |
JP3284986B2 (en) | Photoelectric conversion element and solid-state imaging device using the same | |
JP3164069B2 (en) | Solid-state imaging device | |
JP3047965B2 (en) | Solid-state imaging device | |
US5066994A (en) | Image sensor | |
JPS5833373A (en) | Semiconductor image pickup device | |
JPS604255A (en) | Photoelectric conversion device | |
JP2957834B2 (en) | Photodetector with built-in circuit | |
JPS63174357A (en) | Semiconductor integrated circuit device | |
JPS62206878A (en) | Solid-state image pickup element | |
JPH065729B2 (en) | One-dimensional contact type image sensor | |
JPS6255961A (en) | Solid state image pick-up device | |
JP3086514B2 (en) | Optical semiconductor device | |
JP2594923B2 (en) | Solid-state imaging device |