JPS6214481A - Heat-collecting medium device - Google Patents
Heat-collecting medium deviceInfo
- Publication number
- JPS6214481A JPS6214481A JP60153508A JP15350885A JPS6214481A JP S6214481 A JPS6214481 A JP S6214481A JP 60153508 A JP60153508 A JP 60153508A JP 15350885 A JP15350885 A JP 15350885A JP S6214481 A JPS6214481 A JP S6214481A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- collecting medium
- end surface
- ratio
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011810 insulating material Substances 0.000 claims abstract description 30
- 239000000725 suspension Substances 0.000 claims description 18
- 239000004020 conductor Substances 0.000 abstract description 5
- 230000003247 decreasing effect Effects 0.000 abstract 4
- 238000006243 chemical reaction Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 14
- 229920002050 silicone resin Polymers 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 239000003915 liquefied petroleum gas Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000021760 high fever Diseases 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
Landscapes
- Thermal Insulation (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は集熱媒休装置に関η′る。[Detailed description of the invention] The present invention relates to a heat collection medium suspension device.
従来この種の集熱媒休装置としては例えば高熱源との間
に熱の良伝導体を介在せしめるのみであって集熱効率が
あまり良好とはいえなかった。従って本発明は集熱効率
の改善された集熱媒休装置を提供しようとするものであ
る。Conventionally, this type of heat collection medium suspension device has only had a good heat conductor interposed between it and a high heat source, and the heat collection efficiency has not been very good. Therefore, the present invention seeks to provide a heat collection medium suspension device with improved heat collection efficiency.
以下図面に沿って本発明の集熱媒休装置を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat collecting medium suspension device of the present invention will be explained below along with the drawings.
第1図および第2図においてアルミニウム等の熱の良伝
導体によって形成された集熱媒体1の拡張端面2が高熱
源3の壁面4に適宜の手段によって密着されており縮小
端面5が低熱源6に接触Uしめられている。集熱媒体1
の側面7は断熱材8によって囲繞されている。In FIGS. 1 and 2, an expanded end surface 2 of a heat collecting medium 1 formed of a good heat conductor such as aluminum is in close contact with a wall surface 4 of a high heat source 3 by appropriate means, and a contracted end surface 5 is a low heat source. The contact U is shown at 6. Heat collecting medium 1
The side surface 7 of is surrounded by a heat insulating material 8.
集熱媒体1の拡張端面2の形状は矩形状で2alの面積
を有しており縮小端面5の形状は矩形状で2bRの面積
を有している。集熱媒体1の拡張端面2を介して高熱源
3の壁面4から集熱媒体1への熱伝達係数hHとし、集
熱媒体1の縮小端面5を介して集熱媒体1から低熱源6
への熱伝達係数をhcとする。高熱源3の壁面4から集
熱媒体1への単位時間に与えられる熱ffl Q I+
は熱伝達係数hHと拡張端面2の面積2alと、高熱源
3の壁面4と前記拡張端面2との間の温度差ΔTHとに
よって通常決定される。集熱媒体1から低熱源6へ栄位
時間に与えられる熱ff1Qcは熱伝達係数hcと縮小
端面5の面積2Mと前記縮小端面5と低熱ぬ6との闇の
温度差ΔTCとによって通常決定される。集熱媒体1か
ら断熱材8へ伝達される熱量を無視できるものとすれば
、寸なわら断熱材8が完全断熱材であるものとすれば、
高熱源3の壁面4から集熱媒体1に与えられた熱1iQ
Hと集熱媒体1から低熱119Gに与えられる熱量Qc
とは等しくなる。The expanded end surface 2 of the heat collecting medium 1 has a rectangular shape and an area of 2al, and the reduced end surface 5 has a rectangular shape and an area of 2bR. The heat transfer coefficient hH is from the wall surface 4 of the high heat source 3 to the heat collecting medium 1 via the expanded end surface 2 of the heat collecting medium 1, and the heat transfer coefficient from the heat collecting medium 1 to the low heat source 6 via the reduced end surface 5 of the heat collecting medium 1.
Let hc be the heat transfer coefficient to. Heat given per unit time from wall 4 of high heat source 3 to heat collecting medium 1 ffl Q I+
is usually determined by the heat transfer coefficient hH, the area 2al of the extended end surface 2, and the temperature difference ΔTH between the wall surface 4 of the high heat source 3 and the extended end surface 2. The heat ff1Qc given from the heat collecting medium 1 to the low heat source 6 during the heating time is usually determined by the heat transfer coefficient hc, the area 2M of the reduced end face 5, and the dark temperature difference ΔTC between the reduced end face 5 and the low heat source 6. Ru. Assuming that the amount of heat transferred from the heat collecting medium 1 to the heat insulating material 8 can be ignored, and assuming that the heat insulating material 8 is a perfect heat insulating material,
Heat 1iQ given to the heat collecting medium 1 from the wall surface 4 of the high heat source 3
Amount of heat Qc given to low heat 119G from H and heat collecting medium 1
is equal to
一方、第4図の如く高熱源9の壁面10に密接された集
熱媒体11の端面12が矩形状で2bρの面積を有し且
つ低熱源13に接触された集熱媒体11の端面14が矩
形状で2bl)の面積を有している場合、高熱源9と高
熱源3とが同温度同圧で且つ低熱源13と低熱源6とが
同温同圧であるものとザれば、高熱源9の壁面10から
集熱媒体11の端面に対し単位時間に与えられる熱F!
IQtloは熱伝達係数hlloと端面12の面積2b
lと前記高熱源9の壁面10と1η記端面12との間の
温度差ΔThoとによって通常決定され、集熱媒体11
の端面14から低熱源13に対し1偕時間に与えられる
熱ff1Qcoは熱伝達係数hcoと端面14の面積2
bl!と前記端面14と低熱源13との間の温度差ΔT
coとによって通常決定される。集熱媒体11の側面1
5を囲繞する断熱材16へ集熱媒体11から伝達される
熱量を無“視できるものとすれば、すなわち断熱材16
が完全断熱材であるものとすれば、高熱源9の壁面10
から集熱媒体11に与えられた熱量QHoと集熱媒体1
1から低熱源13に与えられる熱量Qcoとは等しくな
る。On the other hand, as shown in FIG. 4, the end surface 12 of the heat collecting medium 11 that is in close contact with the wall surface 10 of the high heat source 9 is rectangular and has an area of 2bρ, and the end surface 14 of the heat collecting medium 11 that is in contact with the low heat source 13 is rectangular and has an area of 2 bρ. If the high heat source 9 and the high heat source 3 have the same temperature and pressure, and the low heat source 13 and the low heat source 6 have the same temperature and pressure, then Heat F given from the wall surface 10 of the high heat source 9 to the end surface of the heat collecting medium 11 per unit time!
IQtlo is the heat transfer coefficient hllo and the area 2b of the end face 12
l and the temperature difference ΔTho between the wall surface 10 and the end surface 12 of the high heat source 9, and the heat collecting medium 11
The heat ff1Qco given to the low heat source 13 from the end face 14 in one hour is determined by the heat transfer coefficient hco and the area 2 of the end face 14.
bl! and the temperature difference ΔT between the end surface 14 and the low heat source 13
It is usually determined by co. Side surface 1 of heat collecting medium 11
If it is assumed that the amount of heat transferred from the heat collecting medium 11 to the heat insulating material 16 surrounding the heat insulating material 16 can be ignored,
is a perfect heat insulating material, the wall surface 10 of the high heat source 9
The amount of heat QHo given to the heat collecting medium 11 from the heat collecting medium 1
1 to the amount of heat Qco given to the low heat source 13.
熱伝達係数は一般に物質については一定であるが温度圧
力によって変化するので第1図第2図の集熱媒体1の拡
張端面2における熱伝達係数h t+と第4図の集熱媒
体11の端面における熱伝達係数hlloとは高熱源3
と高熱源9とが実質的に同一で高熱源3の壁面4と高熱
源9の壁面10とが実質的に同一であり、集熱媒体1と
集熱媒体11とが実質的に同一で低熱源6と低熱源13
とが実質的に同一である場合にも互いに等しくない。同
様に第1図第2図の集熱媒体1の縮小端面5における熱
伝達係数heと第4図の集熱媒体11の端面14におけ
る熱伝達係数hcoは互いに等しくない。The heat transfer coefficient is generally constant for substances, but changes depending on temperature and pressure, so the heat transfer coefficient h t+ at the extended end surface 2 of the heat collecting medium 1 in FIGS. 1 and 2 and the end surface of the heat collecting medium 11 in FIG. What is the heat transfer coefficient hllo in high heat source 3?
and the high heat source 9 are substantially the same, the wall surface 4 of the high heat source 3 and the wall surface 10 of the high heat source 9 are substantially the same, and the heat collecting medium 1 and the heat collecting medium 11 are substantially the same and the low Heat source 6 and low heat source 13
Even if they are substantially the same, they are not equal to each other. Similarly, the heat transfer coefficient he at the reduced end surface 5 of the heat collecting medium 1 in FIGS. 1 and 2 and the heat transfer coefficient hco at the end surface 14 of the heat collecting medium 11 in FIG. 4 are not equal to each other.
従って第1図第2図の集熱媒体1の拡張端面2に対し高
熱源3の壁面4から単位時間に与えられる熱fi Q
11と第4図の集熱媒体11の端面12に対し高熱源9
の壁面10から単位時間に与えられる熱ff1Qllo
とは拡張端面2の面積2ajと端面12の面積2bIと
の比に単に比例するのみではない。同様に第1図第2図
の集熱媒体1の縮小端面5から低熱源6に対し単位時間
に与えられる熱量QCと第4図の集熱媒体11の端面1
4から低熱源13に対し単位時間に与えられる熱’I
Q coとは縮小端面5の面積2Mと端面14の面積2
bjとが同一であっても一般に同一ではない。Therefore, the heat fi Q given per unit time from the wall surface 4 of the high heat source 3 to the extended end surface 2 of the heat collecting medium 1 in FIGS.
11 and a high heat source 9 to the end surface 12 of the heat collecting medium 11 in FIG.
Heat given per unit time from wall 10 of ff1Qllo
is not simply proportional to the ratio of the area 2aj of the extended end surface 2 to the area 2bI of the end surface 12. Similarly, the amount of heat QC given per unit time from the reduced end surface 5 of the heat collecting medium 1 in FIGS. 1 and 2 to the low heat source 6 and the end face 1 of the heat collecting medium 11 in FIG.
Heat 'I given per unit time from 4 to low heat source 13
Q co is the area 2M of the reduced end face 5 and the area 2M of the end face 14.
bj are generally not the same even if they are the same.
換言すれば熱ffi Q 11と熱MQIloとの間の
比Qll/QHoは、−・般に拡張端面2の面積と端面
12の面積との間の比2が大きくなれば大きく且つ小さ
くなれば小さくなり、熱伝達係数h11と熱伝達係数h
Hoとの間の比hH/hlloが大きくなれば大きく且
つ小さくなれば小さくなり、ia度差△T11と温度差
△T■0との間の比ΔT11/△T11oが大きくなれ
ば大きく且つ小さくなれば小さくなる。熱量Qcと熱1
Qcoとの間の比Qc/Qco−7cは、−・般に縮小
端面5の面積と端面14の面積との間の比が大きくなれ
ば大きく且つ小さくなれば小さくなり、熱伝達係数hc
と熱伝達係数hcoとの間の比hc/hcoが大きくな
れば大きく且つ小さくなれば小さくなり、温度差ΔTC
と温度差△Tcoとの間の比ΔTc/ΔTcoが大きく
なれば大きく小さくなれば小さくなり、熱faQHと熱
fiQlloとの間の比Qll/Ql(oが人さくなれ
ば大ぎくなり且つ小さくなれば小さくなる。従って熱f
f1Qcと熱量Qcoとの間の比Qc/QCO=γCは
、−・般に縮小端面5の面積と端面14の面積との比が
大きくなれば大きく且つ小さくなれば小さくなり、熱伝
達係数t1cと熱伝達係数hcoとの間の比hc/hc
oが大きくなれば大きく且つ小さくなれば小さくなり、
潟If差ΔTCと温度差へTcoとの間の比ΔTc/Δ
TCOが大ぎくなれば大ぎく且つ小さくなれば小さくな
り、拡張端面2の面積と端面12の面積との間の比Zが
大きくなれば大きく且つ小さくなれば小さり4【す、熱
伝達係数118と熱伝達係数1日10との間の比hH/
hHoが大きくなれば大きく且つ小さくなれば小さくな
り、温度差ΔTllと温度差へT11oとの閂の比ΔT
H/ΔTHOが大きくなれば大きく且つ小さくなれば小
さくなる。In other words, the ratio Qll/QHo between the heat ffi Q 11 and the heat MQIlo is generally larger when the ratio 2 between the area of the extended end face 2 and the area of the end face 12 is larger, and smaller when the ratio is smaller. The heat transfer coefficient h11 and the heat transfer coefficient h
The larger the ratio hH/hllo with Ho is, the smaller it becomes, and the larger the ratio ΔT11/△T11o between the ia degree difference △T11 and the temperature difference △T■0, the larger and smaller it becomes. It gets smaller. Heat quantity Qc and heat 1
The ratio Qc/Qco-7c between Qco and Qco generally increases as the ratio between the area of the reduced end face 5 and the area of the end face 14 increases, and decreases as the ratio decreases, and the heat transfer coefficient hc
The larger the ratio hc/hco is, the smaller the temperature difference ΔTC
The ratio ΔTc/ΔTco between the temperature difference ΔTco and the temperature difference ΔTco increases as it increases, and decreases as it decreases. Therefore, the heat f
The ratio between f1Qc and the amount of heat Qco, Qc/QCO=γC, generally increases as the ratio between the area of the reduced end face 5 and the area of the end face 14 increases, and decreases as the ratio decreases, and the heat transfer coefficient t1c The ratio between the heat transfer coefficient hco and the ratio hc/hc
The larger o becomes, the larger it becomes, and the smaller o becomes smaller,
The ratio ΔTc/Δ between the temperature difference ΔTC and the temperature difference Tco
The larger the TCO is, the larger the TCO is, and the smaller the TCO is, the smaller the TCO is. and the heat transfer coefficient 10 hH/
The larger hHo becomes larger, and the smaller hHo becomes smaller, the ratio ΔT of the temperature difference ΔTll and the temperature difference T11o
The larger H/ΔTHO becomes, the larger it becomes, and the smaller H/ΔTHO becomes, the smaller it becomes.
ここで第1図第2図の集熱媒体1の拡張端面2の面積が
2ai)とされ縮小端面5の面積が2bIとされWでお
り、第4図の集熱媒体11の端面12の面積が2Mとさ
れ端面14の面積が2b1!とされているので、熱fl
lQcと熱fiQcoとの間の比QC/Qco−γCは
、熱伝達係数hcと熱伝達係数hc。Here, the area of the extended end surface 2 of the heat collecting medium 1 in FIGS. 1 and 2 is 2ai), the area of the reduced end surface 5 is 2bI, and W, and the area of the end surface 12 of the heat collecting medium 11 in FIG. is 2M, and the area of the end face 14 is 2b1! Since it is said that the heat fl
The ratio QC/Qco-γC between lQc and heat fiQco is the heat transfer coefficient hc and the heat transfer coefficient hc.
との間の比hc/hcoと、i度差△Tcと温度差へT
COとの間の比ΔTc/八TCOと、拡張端面2の面積
と端面12の面積との間の比Z = a/bと、熱伝達
係数h IIと熱伝達係数h110との間の比h11/
hlloと、温度差ΔTl+と温度差ΔTHoとの間の
比ΔTl+/ΔTHoとに依存している。更に拡張端面
2の面積と縮小端面5の面積との比もa/bでZとなる
ので、熱FJiQCと熱@Qcoとの聞の比Qc/Qc
o−γCは、熱伝達係数hcと熱伝達係数hc。The ratio between hc/hco and the i degree difference △Tc and the temperature difference T
the ratio between the area of the extended end face 2 and the area of the end face 12 Z = a/b and the ratio h11 between the heat transfer coefficient h II and the heat transfer coefficient h110 /
hllo and the ratio ΔTl+/ΔTHo between the temperature difference ΔTl+ and the temperature difference ΔTHo. Furthermore, since the ratio of the area of the expanded end face 2 to the area of the reduced end face 5 is also Z at a/b, the ratio between the heat FJiQC and the heat @Qco is Qc/Qc.
o-γC is the heat transfer coefficient hc and the heat transfer coefficient hc.
との間の比hC/hcoと、温度差へTcと温度差ΔT
coとの間の比ΔTC/ΔTcoと、拡張端面2の面積
と端面12の面積との門の比すなわち拡張−面2の面積
と縮小端面5の面積との間の比2−a/bと、熱伝達係
数11と熱伝達係数h110との比hH/hlloとに
依存している。加えて熱伝達係数hco、 hlloを
一定と考えてもよいので、熱11QCと熱@Qcoとの
間の比QC/QCO−γCは、熱伝達係数hcが大きく
なけば大きく且つ小さくなれば小さくなり、熱伝達係数
hHが大きくなれば大きく且つ小さくなれば小さくなり
、拡張端面2の面積と縮小端面5の面積との間の比Z
= a/bが大きくなれば大きく且つ小さくなれば小さ
くなる。The ratio between hC/hco and the temperature difference Tc and the temperature difference ΔT
the ratio ΔTC/ΔTco between the area of the enlarged end face 2 and the area of the end face 12, i.e. the ratio 2-a/b between the area of the enlarged end face 2 and the area of the reduced end face 5; , depends on the ratio hH/hllo between the heat transfer coefficient 11 and the heat transfer coefficient h110. In addition, the heat transfer coefficients hco and hllo can be considered constant, so the ratio QC/QCO-γC between heat 11QC and heat @Qco will be large if the heat transfer coefficient hc is not large, and small if it is small. , the larger the heat transfer coefficient hH becomes, the smaller it becomes, and the ratio Z between the area of the expanded end surface 2 and the area of the reduced end surface 5.
= If a/b becomes larger, it becomes larger, and if it becomes smaller, it becomes smaller.
第3図には、第1図第2図の集熱媒体1をアルミニウム
(熱伝導係数λ−180kcal+ 10+h’c )
T:形成し且つ断熱材8を完全断熱材で形成した場合
の熱ff1Qcと熱l Q COとの間の比γCと熱伝
達係数hchllと拡張端面2の面積と縮小端面5の面
積との間化2との関係がZ−2とz−5とについて示さ
れている。In Fig. 3, the heat collecting medium 1 of Figs. 1 and 2 is made of aluminum (thermal conductivity coefficient λ-180kcal+10+h'c).
T: The ratio γC between the heat ff1Qc and the heat lQCO, the heat transfer coefficient hchll, the area of the expanded end surface 2 and the area of the reduced end surface 5 when the heat insulating material 8 is formed with a complete heat insulating material. The relationship with chemical formula 2 is shown for Z-2 and z-5.
第5図は本発明の集熱媒体v装置の他の実施例を示して
いる。第5図では、集熱媒体17が高熱源18の壁面1
9側の拡張端面20と低熱源21側の縮小端面22との
中間部で側面23が集束ゼしめられている。FIG. 5 shows another embodiment of the heat collecting medium v device of the present invention. In FIG. 5, the heat collecting medium 17 is the wall surface 1 of the high heat source 18.
The side surface 23 is converged at the intermediate portion between the expanded end surface 20 on the 9 side and the contracted end surface 22 on the low heat source 21 side.
集熱媒体1の側面23は第1図第2図の集熱媒休装置と
同様に断熱材24によって囲繞されている。The side surface 23 of the heat collecting medium 1 is surrounded by a heat insulating material 24, similar to the heat collecting medium suspension device shown in FIGS. 1 and 2.
第6図は本発明の集熱媒休装置の更に他の実施例を示し
ている。第6図では、集熱媒体25が高熱源26の壁面
27側の拡張端面28と低熱源29側の縮小端面30と
の中間部で側面31が断熱材32側へ膨出せしめられて
いる。FIG. 6 shows still another embodiment of the heat collecting medium suspension device of the present invention. In FIG. 6, the heat collecting medium 25 has a side surface 31 bulging toward the heat insulating material 32 at an intermediate portion between an expanded end surface 28 on the wall surface 27 side of the high heat source 26 and a reduced end surface 30 on the low heat source 29 side.
第7図は本発明の第1図第2図の集熱媒休装置の利用例
を示している。集熱媒体33の拡張端面34は高熱源3
5例えば排気ダクト等の壁面36に対し適宜の手段を介
して密着されている。集熱媒体33の縮小端面37には
熱電変換装置38の一面39がシリコン樹脂等の接着剤
によって密着されている。熱電変換装置38の他面40
は低熱源41例えば外気に露出されている。集熱媒体3
3の側面42は断熱材43によって囲繞されている。FIG. 7 shows an example of the use of the heat collecting medium suspension device of FIGS. 1 and 2 of the present invention. The extended end surface 34 of the heat collecting medium 33 is the high heat source 3
5. For example, it is closely attached to a wall surface 36 of an exhaust duct or the like via appropriate means. One surface 39 of a thermoelectric conversion device 38 is adhered to the reduced end surface 37 of the heat collecting medium 33 with an adhesive such as silicone resin. Other surface 40 of thermoelectric conversion device 38
is exposed to a low heat source 41, for example, to the outside air. Heat collecting medium 3
3 is surrounded by a heat insulating material 43.
第8図は本発明の第1図第2図の集熱媒休装置の他の利
用例を示している。集熱媒体44の拡張端面45は高熱
源^6例えば損気ダクト等の壁面41に対し適宜手段を
介して密着されている。集熱媒体44の縮小端面4Bに
は熱雷変換装置49の一面50がシリコン樹脂等の)1
鴇剤によって密着されている。熱電変換装置49の他面
51には低熱11952例えば外気に露出された冷気フ
ィン53が配設されている。集熱媒体44の側面54は
断熱155によって囲繞されている。第8図の場合、冷
却フィン53に対して強制送風してやれば更に好適であ
ろう。FIG. 8 shows another example of the use of the heat collecting medium suspension device of FIGS. 1 and 2 of the present invention. The extended end surface 45 of the heat collecting medium 44 is in close contact with the wall surface 41 of a high heat source^6, for example, a loss-of-air duct, etc., via appropriate means. On the reduced end surface 4B of the heat collecting medium 44, one surface 50 of the thermal lightning conversion device 49 is made of silicone resin, etc.
It is adhered with a glue. On the other surface 51 of the thermoelectric conversion device 49, a low heat 11952, for example, a cold air fin 53 exposed to the outside air is arranged. The side surface 54 of the heat collection medium 44 is surrounded by a heat insulation 155. In the case of FIG. 8, it would be more preferable to forcefully blow air to the cooling fins 53.
第9図は本発明の第1図第2図の集熱媒休装置の更に他
の利用例を示している。集熱媒体56の拡張端面57は
高熱源58例えば排気ダクト等の壁面59に対し適宜手
段を介して密着されている。集熱媒体56の縮小端面6
0には熱電変換装置J61の一面62がシリコン樹脂等
の接着剤によって密着されている。FIG. 9 shows still another example of the use of the heat collecting medium suspension device of FIGS. 1 and 2 of the present invention. The extended end surface 57 of the heat collecting medium 56 is in close contact with a wall surface 59 of a high heat source 58, such as an exhaust duct, through appropriate means. Reduced end face 6 of heat collecting medium 56
One surface 62 of the thermoelectric conversion device J61 is adhered to the thermoelectric conversion device J61 with an adhesive such as silicone resin.
熱雷変換VR回61の他面63には低熱y264例えば
通水ダクトに接触された熱の良伝導材ら5が配設されて
いる。集熱媒体56の側面66は断熱材67によって囲
繞されている。On the other surface 63 of the thermal lightning conversion VR circuit 61, a low heat Y264, for example, a material 5 with good thermal conductivity that is in contact with a water duct, is disposed. A side surface 66 of the heat collecting medium 56 is surrounded by a heat insulating material 67.
第10図において、アルミニウム等の熱の良伝導体によ
って形成された集熱媒体68の拡張端面69が低熱源7
0の壁面71に適宜の手段によって密着されており縮小
端面72が高熱源73に接触せしめられている。集熱媒
体68の側面74は断熱材75によって囲繞されている
。In FIG. 10, an extended end surface 69 of a heat collecting medium 68 formed of a good heat conductor such as aluminum is connected to a low heat source 7.
The reduced end surface 72 is brought into contact with a high heat source 73. A side surface 74 of the heat collecting medium 68 is surrounded by a heat insulating material 75.
集熱媒体68の拡張端面69の形状は矩形状で2alの
面積を有しており縮小端面12の形状は矩形状で2Mの
面積を有している。集熱媒体68の縮小端面72を介し
て高熱源73から集熱媒体68への熱伝達係数hHとし
集熱媒体68の拡張端面69を介して集熱媒体68から
低熱源70の壁面71への熱伝達係数をhcとする。高
熱源73から集熱媒体68へ単位時間に与えられる熱I
Q I+は熱伝達係数hllと縮小端面72の面積2
11と高熱it!73と前記縮小端面72との間の温度
差ΔTl+とによって通常決定される。集熱媒体68か
ら低熱源70の壁面71へ単位時間に与えられる熱fa
Qcは熱伝達係数hcと拡大端面69の面$ 2alと
前記拡大端面69と低熱源70との間の温度差△Tcと
によって通常決定される。集熱媒体68から断熱材75
へ伝達される熱漬を無視できるらのとすれば、すなわち
断熱材75が完全断熱材であるものとすれば、高熱源7
3から集熱媒体6Bに与えられた熱ffi Q 11と
集熱媒体68から低熱11170の壁面71に与えられ
る熱ff1Qcとは等しくなる。The expanded end face 69 of the heat collecting medium 68 has a rectangular shape and an area of 2al, and the reduced end face 12 has a rectangular shape and an area of 2M. The heat transfer coefficient hH is from the high heat source 73 to the heat collecting medium 68 via the reduced end surface 72 of the heat collecting medium 68, and the heat transfer coefficient is hH from the heat collecting medium 68 to the wall surface 71 of the low heat source 70 via the expanded end surface 69 of the heat collecting medium 68. Let hc be the heat transfer coefficient. Heat I given per unit time from high heat source 73 to heat collecting medium 68
Q I+ is the heat transfer coefficient hll and the area 2 of the reduced end surface 72
11 and high fever! 73 and the reduced end surface 72, typically determined by the temperature difference ΔTl+. Heat fa given per unit time from the heat collecting medium 68 to the wall surface 71 of the low heat source 70
Qc is usually determined by the heat transfer coefficient hc, the surface $2al of the enlarged end face 69, and the temperature difference ΔTc between said enlarged end face 69 and the low heat source 70. From the heat collecting medium 68 to the heat insulating material 75
If the heat transfer to the high heat source 7 can be ignored, that is, if the insulation material 75 is a perfect insulation material, then
The heat ffi Q 11 given to the heat collecting medium 6B from the heat collecting medium 68 is equal to the heat ff1Qc given to the wall surface 71 of the low heat 11170 from the heat collecting medium 68.
一方、第11図の如く低熱[76の壁面71に密接され
た集熱媒体78の端面79が矩形状で2bρの面積を有
し且つ高熱源80に接触された集熱媒体78の端面81
が矩形状で2Mの面積を有している場合、低熱源76と
低熱源70とが同温同圧で且つ高熱源80と高熱源73
とが同温同圧であるものとすれば高熱源80から集熱媒
体18の端面81に対し単位時間に与えられる熱IQI
IOは熱伝達係数htloと端面81の面積2Mと前記
高熱源と端面81との間の温度差へT11゜とによって
通常決定され、!!熱媒体78の端面79から低熱源7
6の壁面71に対し単位時間に与えられる熱fiQco
は熱伝達係数hcoと端面79の面積2blljと前記
端面79と低熱源76の壁面77との間の温度差ΔTc
oとによって通常決定される。集熱媒体78の側面82
を囲1S111′る断熱材83へ集熱媒体78から伝達
される熱量を無視できるものとすれば、すなわち断熱材
83が完全断熱材であるものとすれば、高熱源80から
集熱媒体78に与えられた熱ff1Qlloと集熱媒体
82から低熱源76の壁面77に与えられる熱情Qco
とは等しくなる。On the other hand, as shown in FIG. 11, the end surface 79 of the heat collecting medium 78 that is in close contact with the wall surface 71 of the low heat [76] is rectangular and has an area of 2bρ, and the end surface 81 of the heat collecting medium 78 that is in contact with the high heat source 80.
is rectangular and has an area of 2M, the low heat source 76 and the low heat source 70 have the same temperature and pressure, and the high heat source 80 and the high heat source 73
and are at the same temperature and pressure, the heat IQI given to the end surface 81 of the heat collecting medium 18 from the high heat source 80 per unit time is
IO is usually determined by the heat transfer coefficient htlo, the area 2M of the end face 81, and the temperature difference T11° between the high heat source and the end face 81, ! ! Low heat source 7 from end surface 79 of heat medium 78
Heat fiQco given to the wall surface 71 of 6 per unit time
is the heat transfer coefficient hco, the area 2bllj of the end surface 79, and the temperature difference ΔTc between the end surface 79 and the wall surface 77 of the low heat source 76.
Usually determined by o. Side surface 82 of heat collecting medium 78
If the amount of heat transferred from the heat collecting medium 78 to the heat insulating material 83 surrounding 1S111' is negligible, that is, if the heat insulating material 83 is a perfect heat insulating material, then The given heat ff1Qllo and the heat given to the wall surface 77 of the low heat source 76 from the heat collecting medium 82 Qco
is equal to
熱伝達係数は一般に物質については一定であるが温度圧
力によって変化するので、第10図の集熱媒体68の縮
小端面72における熱伝達係数hllと第11図の集熱
媒体78の端面81におIJる熱伝達係数hlloとは
高熱源73と高熱源80とが実質的に同一・であり、集
熱媒体68と集熱媒体78とが実質的に同一であって、
低熱1970と低熱源76とが実質的に同一で且つ低熱
源70の壁面71と低熱源7Gの壁面77とが実質的に
同一である場合にも互いに等しくない。The heat transfer coefficient is generally constant for substances, but changes depending on temperature and pressure. Therefore, the heat transfer coefficient hll at the reduced end face 72 of the heat collecting medium 68 in FIG. 10 and the end face 81 of the heat collecting medium 78 in FIG. The heat transfer coefficient hllo of IJ means that the high heat source 73 and the high heat source 80 are substantially the same, the heat collecting medium 68 and the heat collecting medium 78 are substantially the same,
Even when the low heat 1970 and the low heat source 76 are substantially the same, and the wall surface 71 of the low heat source 70 and the wall surface 77 of the low heat source 7G are substantially the same, they are not equal to each other.
同様に第10図の集熱媒体68の拡大端面69における
熱電達係数hcと11811図の集熱媒体78の端面7
9における熱電達係数hcoとはUいに等しくない。Similarly, the heat transfer coefficient hc at the enlarged end surface 69 of the heat collecting medium 68 in FIG. 10 and the end surface 7 of the heat collecting medium 78 in FIG.
The heat transfer coefficient hco at 9 is not equal to U.
従って第10図の集熱媒体68の縮小端面72に対して
高熱源13から単位時間に与えられる熱MiQHと第1
1図の集熱媒体78の端面81に対し高熱源80から単
位時間に与えられる熱fiQIIoとは縮小端面72の
面積2blと端面81の面積2J)との比が1であるか
らといって等しくはない。同様に第10図の集熱媒体6
8の拡大端面69から低熱源70の壁面71に対し単位
時間に与えられる熱ff1Qcと第11図の集熱媒体7
8の端面79から低熱源76の壁面77に対し単位時間
に与えられる熱1Qcoとは拡大端面69の面gI2a
ρと端面79の面積2Mとの比に単に比例するのみでは
ない。Therefore, the heat MiQH given per unit time from the high heat source 13 to the reduced end surface 72 of the heat collecting medium 68 in FIG.
The heat fiQIIo given per unit time from the high heat source 80 to the end surface 81 of the heat collecting medium 78 in FIG. There isn't. Similarly, the heat collecting medium 6 in FIG.
The heat ff1Qc given per unit time from the enlarged end surface 69 of No. 8 to the wall surface 71 of the low heat source 70 and the heat collecting medium 7 of FIG.
The heat 1Qco given to the wall surface 77 of the low heat source 76 from the end surface 79 of 8 per unit time is the surface gI2a of the enlarged end surface 69.
It is not simply proportional to the ratio of ρ to the area 2M of the end face 79.
換言すれば熱ff1QHと熱1Qlloとの間の比Ql
l/ Q HO−γ11は、−・般に縮小端面72の面
積と端面81の面積との間の比が大きくなれば大きく且
つ小さくなれば小さくなり、熱伝達係数h11と熱伝達
係数hHoと閂の比hH/hlloが大きくなれば大き
く且つ小さくなれば小さくなり、温度差ΔTHと温度差
△THoとの間の比ΔTll/△TIIoが大きくなれ
ば大きく且つ小さくなれば小さくなる。熱kQcと熱量
Qcoとの間の比QC/Qcoは一般に拡張端面69の
面積と端面79の面積との間の比Zが大きくなれば大き
く且つ小さくなれば小さくなり、熱伝達係数t1cと熱
伝達係数hcoとの間の比hc/hcoが大きくなれば
大きく1つ小さくなれば小さくなり、温度差ΔT11と
温度差へTl1oとの間の比△T11/ΔT11oが大
きくなれば大きく且つ小さくなれば小さくなり、熱l
Q IIと熱fiQlloとの間の比Qll/QIIO
が大きくなれば大ぎくなり且つ小ざくなれば小さくなる
。従って熱fi Q 11と熱量Q]10との間の比Q
II / Q 1lo=γHは、一般に縮小端面72
の面積と端面81の面積との比が大きくなれば大きくD
つ小さくなれば小さくなり、熱伝達係数hHと熱伝達係
数hlloとの間の比hit/hlloが大きくなれば
大きく小さくなれば小さくなり、温度差△T11と温度
差ΔTl1oとの間の比△T11/△T110が大きく
なれば大きく且つ小さくなれば小ざくなり、拡張端面6
9の面積と端面79の面積との間の比Zが大きくなれば
大きく且つ小さくなれば小さくなり、熱伝達係数hcと
熱伝達係数hcoとの間の比hc/hcoが大きくなれ
ば大きく且つ小さくなれば小さくなり、温度差ΔTcと
温度差ΔTcoとの間の比ΔTC/ΔTCOが大きくな
れば大きく且つ小さくなれば小さくなる。In other words, the ratio Ql between the heat ff1QH and the heat 1Qllo
l/Q HO-γ11 generally increases as the ratio between the area of the reduced end face 72 and the area of the end face 81 increases, and decreases as the ratio decreases. The larger the ratio hH/hllo is, the larger the ratio becomes, and the smaller the ratio ΔTll/ΔTIIo between the temperature difference ΔTH and the temperature difference ΔTHo is, the larger the ratio is, and the smaller the ratio is, the smaller the ratio is. Generally, the ratio QC/Qco between the heat kQc and the amount of heat Qco increases as the ratio Z between the area of the extended end surface 69 and the area of the end surface 79 increases, and decreases as the ratio Z decreases. The larger the ratio hc/hco with the coefficient hco is, the larger it is, and the smaller it is if it is smaller by one. It's hot l
The ratio Qll/QIIO between Q II and heat fiQllo
The larger the value, the larger the value, and the smaller the value, the smaller the value. Therefore, the ratio Q between the heat fi Q 11 and the amount of heat Q]10
II/Q 1lo=γH is generally the reduced end surface 72
The larger the ratio of the area of D to the area of the end face 81, the larger D
The smaller the ratio hit/hllo between the heat transfer coefficient hH and the heat transfer coefficient hllo, the larger the larger the smaller the smaller the ratio. The larger /△T110 becomes larger, and the smaller it becomes, the smaller the extended end surface 6 becomes.
The larger the ratio Z between the area of 9 and the area of the end face 79 is, the larger the ratio Z is, and the smaller the ratio Z is, the larger the ratio hc/hco between the heat transfer coefficient hc and the heat transfer coefficient hco is. If the ratio ΔTC/ΔTCO between the temperature difference ΔTc and the temperature difference ΔTco increases, it increases, and if it decreases, it decreases.
ここで第10図の集熱媒体68の拡張端面69の面積が
281!とされ縮小端面72の面積が2bNとされてJ
3す、第11図の集熱媒体78の端面79の面積が2b
j)とされ端面81の面積が2Mとされているので、熱
槽Ql+と熱1Qlloとの間の比QH/Qllo−7
11は、熱伝達係数h++と熱伝達係数h110との聞
の比hll/htloと、温度差ΔTl+と温度差ΔT
Hoとの閂の比△TH/△THoと、熱伝達係数h c
と熱伝達係数hcoとの閂の比hC/hcoと、温度差
ΔTc温度差ΔTcoとの間の比ΔTc/ΔTCOとに
依存している。更に拡張端面69の面積と縮小面積72
との比もa/bでZとなるので、熱温Q IIと熱F!
1QII。Here, the area of the extended end surface 69 of the heat collecting medium 68 in FIG. 10 is 281! and the area of the reduced end surface 72 is 2bN, J
3. The area of the end surface 79 of the heat collecting medium 78 in FIG. 11 is 2b.
j) and the area of the end face 81 is 2M, so the ratio between the heat tank Ql+ and the heat 1Qllo is QH/Qllo-7
11 is the ratio hll/htlo between the heat transfer coefficient h++ and the heat transfer coefficient h110, and the temperature difference ΔTl+ and the temperature difference ΔT.
The bar ratio △TH/△THo with Ho and the heat transfer coefficient h c
and the heat transfer coefficient hco, and the ratio ΔTc/ΔTCO between the temperature difference ΔTc and the temperature difference ΔTco. Furthermore, the area of the expanded end surface 69 and the reduced area 72
Since the ratio of a/b is Z, the heat temperature Q II and the heat F!
1QII.
との間の比Qll/Qlloと温度差△Tl+と温度差
ΔT11oとの閂の比△T11/ΔTl1oと、拡張端
面69の面積と端面79の面積との間の比すなわら拡張
端面69の面積と縮小端面720面積との間の比Z−a
/bと、熱伝達係数hcと熱伝達係数hcoとの比hc
/hcoと、温度差ΔTcと温度差ΔTcoとの間の比
ΔTc/ΔTcoとに依存している。加えて熱伝達係数
hcOhlloを一定と考えてもよいので、熱電QHと
熱量Q110との間の比QH/ Qtlo = 7Hは
、熱伝達係数h11が大きくなれば大きくなり且つ小さ
くなれば小さくなり、熱伝達係数hcが大きくなれば大
ぎく且つ小さくなれば小さくなり、拡張端面69の面積
と縮小端面72の面積との門の比7−a/bが大きくな
れば大きく且つ小さくなれば小さくなる。Qll/Qllo, the ratio ΔT11/ΔTl1o between the temperature difference ΔTl+ and the temperature difference ΔT11o, and the ratio between the area of the extended end surface 69 and the area of the end surface 79; The ratio Z-a between the area and the reduced end surface 720 area
/b and the ratio hc of the heat transfer coefficient hc to the heat transfer coefficient hco
/hco and the ratio ΔTc/ΔTco between the temperature difference ΔTc and the temperature difference ΔTco. In addition, the heat transfer coefficient hcOhllo can be considered to be constant, so the ratio QH/Qtlo = 7H between the thermoelectricity QH and the amount of heat Q110 increases as the heat transfer coefficient h11 increases and decreases as the heat transfer coefficient h11 decreases. The larger the transmission coefficient hc is, the larger the value becomes, and the larger the ratio 7-a/b of the area of the expanded end face 69 and the area of the reduced end face 72 is, the larger the ratio is, and the smaller the ratio, the smaller the ratio.
第10図の本発明の集熱媒休装置において集熱媒体68
を第5図の集熱媒体17もしくは第6図の集熱媒体25
と置換してもよいことは明らかであろう。In the heat collecting medium suspension device of the present invention shown in FIG. 10, the heat collecting medium 68
The heat collecting medium 17 in Fig. 5 or the heat collecting medium 25 in Fig. 6
It is clear that it may be replaced with
第12図は本発明の第10図の集熱媒体5Affの利用
例を示している。集熱媒体84の拡張端面85は低熱源
86例えば液化石油ガスダクト等の壁面87に対し適宜
の手段を介して密着されている。集熱媒体84の縮小端
面88には熱電変換装と89の一面90がシリコン81
詣等の接着剤によって密着されている。熱電変換装置8
9の他面91は高熱源92例えば外気に露出されている
。集熱媒体84の側面93Gよ断熱材94にて囲繞され
ている。FIG. 12 shows an example of the use of the heat collecting medium 5Aff of FIG. 10 of the present invention. The extended end surface 85 of the heat collecting medium 84 is in close contact with a wall surface 87 of a low heat source 86, such as a liquefied petroleum gas duct, through appropriate means. The reduced end surface 88 of the heat collecting medium 84 has a thermoelectric conversion device, and one surface 90 of the heat collecting medium 84 has a silicon 81.
It is attached with adhesive such as Pilgrimage. Thermoelectric conversion device 8
The other surface 91 of 9 is exposed to a high heat source 92, for example to the outside air. A side surface 93G of the heat collecting medium 84 is surrounded by a heat insulating material 94.
第13図は本発明の第10図の集熱媒休装置の他の利用
例を示している。集熱媒体95の拡張端面96は低熱源
97例えば液化石油ガスダクト等の壁面98に対し適宜
の手段を介して密着されている。集熱媒体95の縮小端
面99には熱電変換装と100の一面101がシリコン
樹脂等の接着剤によって密着されている。熱電変換装@
100の他面102には高熱源103例えば外気に露出
された集熱フィン104が配設されている。集熱媒体9
5の側面105は断熱材106によって囲繞されている
。FIG. 13 shows another example of the use of the heat collecting medium suspension device of FIG. 10 of the present invention. The extended end surface 96 of the heat collecting medium 95 is in close contact with a wall surface 98 of a low heat source 97, such as a liquefied petroleum gas duct, through appropriate means. One surface 101 of a thermoelectric conversion device 100 is tightly adhered to the reduced end surface 99 of the heat collecting medium 95 using an adhesive such as silicone resin. Thermoelectric converter @
A high heat source 103, for example a heat collecting fin 104 exposed to the outside air, is disposed on the other surface 102 of the heat exchanger 100. Heat collecting medium 9
5 is surrounded by a heat insulating material 106.
第14図は本発明の集熱媒休装置の別の利用例を示して
いる。第1の集熱媒体107の拡大端面108は^熱源
109例えば排気ダクト等の壁面110に対し適宜の手
段を介して密着されている。第1の集熱媒体107の縮
小端面111には熱雷変換装δ112の一面113がシ
リコン樹脂等の接着剤によって密着されている。熱電変
換装置i! 112の他面114は第2の集熱媒体11
5の縮小端面11Gに対しシリコン樹脂等の接着剤によ
って密着されている。第2の集熱媒体115の拡大端面
117は低熱11i118例えば外気に露出されている
。第1の集熱媒体107の側面119および第2の集熱
媒体115の側面120は断熱材121によって囲繞さ
れている。FIG. 14 shows another example of use of the heat collecting medium suspension device of the present invention. The enlarged end surface 108 of the first heat collecting medium 107 is in close contact with the wall surface 110 of the heat source 109, for example, an exhaust duct, etc., via appropriate means. One surface 113 of the thermal lightning converter δ 112 is tightly adhered to the reduced end surface 111 of the first heat collecting medium 107 with an adhesive such as silicone resin. Thermoelectric conversion device i! The other surface 114 of 112 is the second heat collecting medium 11
It is closely attached to the reduced end surface 11G of No. 5 with an adhesive such as silicone resin. The enlarged end surface 117 of the second heat collecting medium 115 is exposed to the low heat 11i118, for example, to the outside air. A side surface 119 of the first heat collection medium 107 and a side surface 120 of the second heat collection medium 115 are surrounded by a heat insulating material 121 .
第15図は第14図の集熱媒休装置の利用例を改良した
利用例を示している。第1の集熱媒体122の拡大端面
123は高熱11i124例えば排気ダクト笠の壁面1
25に対し適宜の手段を介して密着されている。第1の
集熱媒体122の縮小端面12Gには熱電変換M 置1
27の一面128がシリコン樹脂等の接着剤によって密
着さ゛れている。熱電変換装置1127の他面129は
第2の集熱媒体130の縮小端面131に対しシリコン
樹脂等の接着剤によって密着されている。第2の集熱媒
体130の拡大端面132には低熱源133例えば外気
に露出された冷却フィン134が配設されている。第1
の集熱媒体122の側面135および第2の集熱媒体1
30の側面136は断熱材137によって囲繞されてい
る。第15図の場合、冷却フィン134に対して強制送
風してやれば史に好適であろう。FIG. 15 shows an improved example of the use of the heat collecting medium suspension device shown in FIG. 14. The enlarged end surface 123 of the first heat collecting medium 122 has a high temperature 11i124, for example, the wall surface 1 of an exhaust duct shade.
25 through appropriate means. The reduced end surface 12G of the first heat collecting medium 122 has a thermoelectric converter M placed 1
One surface 128 of 27 is tightly adhered with an adhesive such as silicone resin. The other surface 129 of the thermoelectric conversion device 1127 is tightly adhered to the reduced end surface 131 of the second heat collecting medium 130 with an adhesive such as silicone resin. A low heat source 133 , for example, a cooling fin 134 exposed to the outside air, is disposed on the enlarged end surface 132 of the second heat collecting medium 130 . 1st
side surface 135 of the heat collection medium 122 and the second heat collection medium 1
A side surface 136 of 30 is surrounded by a heat insulating material 137. In the case of FIG. 15, it would be best to forcefully blow air to the cooling fins 134.
第16図は第14図又は第15図の集熱媒体TA置の利
用例を改良した利用例を示している。第1の集熱媒体1
38の拡大端面139は高熱源140例えば排気ダクト
等の壁面141に対し適宜の手段を介して密着されてい
る。第1の集熱媒体138の縮小端面142には熱電変
換装′?1143の−・面144がシリコン樹脂等の接
石剤によって密着されている。熱電変換装置143の他
面145は第2の集熱媒体146の縮小端面147に対
しシリコン樹脂等の接着剤によって密着されてる。第2
の集熱媒体146の拡大端面148には低熱源149例
えば通水ダクトに接触された熱の良伝導材150が配設
されている。第1の集熱媒体138の側面151および
第2の集熱媒体146の側面152は断熱材153によ
って囲繞されている。FIG. 16 shows an improved example of the use of the heat collecting medium TA device shown in FIG. 14 or 15. First heat collection medium 1
The enlarged end surface 139 of 38 is in close contact with a wall surface 141 of a high heat source 140, for example, an exhaust duct, etc., via appropriate means. The reduced end surface 142 of the first heat collection medium 138 has a thermoelectric conversion device'? The - face 144 of 1143 is closely bonded with a stone contact agent such as silicone resin. The other surface 145 of the thermoelectric conversion device 143 is tightly adhered to the reduced end surface 147 of the second heat collecting medium 146 with an adhesive such as silicone resin. Second
A heat conductive material 150 that is in contact with a low heat source 149, for example, a water duct, is disposed on the enlarged end surface 148 of the heat collecting medium 146. A side surface 151 of the first heat collection medium 138 and a side surface 152 of the second heat collection medium 146 are surrounded by a heat insulating material 153.
第17図は本発明の集熱媒休装置の更に別の利用例を示
している。第1の集熱媒体154の端面1551よ低熱
源156例えば液化石油ガスダクト等の壁面157に対
し適宜の手段を介してt&Wされている。FIG. 17 shows yet another example of use of the heat collecting medium suspension device of the present invention. The end surface 1551 of the first heat collecting medium 154 is t&Wed to the wall surface 157 of the low heat source 156, for example, a liquefied petroleum gas duct, etc. via an appropriate means.
第1の集熱媒体154の縮小端面158には熱電変換装
e159の−・面160がシリコン樹脂等の接乞剤によ
って密着されている。熱電変換装置159の他面161
は第2の集熱媒体162の縮小端面163に対しシリコ
ン樹脂等の接着剤によって密着されている。The - face 160 of the thermoelectric conversion device e159 is in close contact with the reduced end face 158 of the first heat collecting medium 154 by a binder such as silicone resin. Other surface 161 of thermoelectric conversion device 159
is closely attached to the reduced end surface 163 of the second heat collecting medium 162 with an adhesive such as silicone resin.
第2の集熱媒体162の拡大端面164は高熱源165
例えば外気に露出されている。第1の集熱媒体154の
側面166および第2の集熱媒体162の側面167は
断熱材168によって囲繞されている。The enlarged end surface 164 of the second heat collecting medium 162 is a high heat source 165
For example, it is exposed to the outside air. A side surface 166 of the first heat collection medium 154 and a side surface 167 of the second heat collection medium 162 are surrounded by a heat insulating material 168 .
第18図は第17図の集熱媒休装置の利用倒台改良した
利用例を示している。第1の集熱媒体169の拡大端面
170は低熱源171例えば液化石油ガスダクト等の壁
面172に対し適宜の手段を介して密着されている。第
1の集熱媒体169の縮小端面173には熱電変換i[
174の−・面175がシリコン樹脂等の接も剤によっ
て密着されている。熱熱電変換装置174の他面176
は第2の集熱媒体177の縮小端面178に対しシリコ
ン樹脂等の接着剤によって密着されている。第2の集熱
媒体177の拡大端面179には高熱源180例えば外
気に露出された集熱フィン181が配設されている。第
1の集熱媒体169の側面182および第2の集熱媒体
177の側面183(よ断熱材184によって囲繞され
ている。FIG. 18 shows an example of the use of the heat collecting medium suspension device shown in FIG. 17, which is an improved version of the inverted table. The enlarged end surface 170 of the first heat collecting medium 169 is in close contact with a wall surface 172 of a low heat source 171, such as a liquefied petroleum gas duct, through appropriate means. The reduced end surface 173 of the first heat collecting medium 169 has a thermoelectric conversion i[
The negative side 175 of 174 is tightly bonded with a bonding agent such as silicone resin. The other surface 176 of the thermothermoelectric conversion device 174
is closely attached to the reduced end surface 178 of the second heat collecting medium 177 with an adhesive such as silicone resin. A high heat source 180 , for example a heat collecting fin 181 exposed to the outside air, is disposed on the enlarged end surface 179 of the second heat collecting medium 177 . A side surface 182 of the first heat collection medium 169 and a side surface 183 of the second heat collection medium 177 (surrounded by a heat insulating material 184).
上述より明らかな如く本発明の集熱媒休装置は拡大端面
ど縮小端面とによって熱流収束拡散せしめることによっ
て適宜に集熱作用を達成している。As is clear from the above description, the heat collecting medium suspension device of the present invention achieves the appropriate heat collecting action by converging and diffusing the heat flow using the enlarged end face and the contracted end face.
第1図は本発明の集熱媒休装置の実施例の説明対照例の
説明図、第5図および第6図は同地の実施例の説明図、
第7図乃至第18図は同利用例参県Φ説明図である。
1・・・・・・集熱媒体、2・・・・・・拡張端面、3
・・・・・・高熱源、4・・・・・・壁面、5・・・・
・・縮小端面、6・・・・・・低熱源、7・・・・・・
側面、8・・・・・・断熱材。
第1図 第4図
第5図 第6図
第9図 第10図
第11図 第12図Fig. 1 is an explanatory diagram of an explanatory comparative example of an embodiment of the heat collecting medium suspension device of the present invention, Fig. 5 and Fig. 6 are explanatory diagrams of an embodiment of the same place,
Figures 7 to 18 are explanatory diagrams of examples of the same usage. 1...Heat collecting medium, 2...Extended end surface, 3
...High heat source, 4...Wall surface, 5...
・・・Reduced end face, 6...Low heat source, 7...
Side, 8... Insulation material. Figure 1 Figure 4 Figure 5 Figure 6 Figure 9 Figure 10 Figure 11 Figure 12
Claims (1)
なることを特徴とする集熱媒休装置。[Scope of Claims] A heat collecting medium suspension device comprising: a) a heat collecting medium having an expanded end face and a contracted end face; and b) a heat insulating material surrounding a side surface of the heat collecting medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60153508A JPS6214481A (en) | 1985-07-12 | 1985-07-12 | Heat-collecting medium device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60153508A JPS6214481A (en) | 1985-07-12 | 1985-07-12 | Heat-collecting medium device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6214481A true JPS6214481A (en) | 1987-01-23 |
Family
ID=15564077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60153508A Pending JPS6214481A (en) | 1985-07-12 | 1985-07-12 | Heat-collecting medium device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6214481A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9666772B2 (en) | 2003-04-30 | 2017-05-30 | Cree, Inc. | High powered light emitter packages with compact optics |
-
1985
- 1985-07-12 JP JP60153508A patent/JPS6214481A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9666772B2 (en) | 2003-04-30 | 2017-05-30 | Cree, Inc. | High powered light emitter packages with compact optics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1102885A (en) | Portable thermoelectric refrigerator with an internal thermal sink | |
Bergles et al. | Extended performance evaluation criteria for enhanced heat transfer surfaces | |
JPH0690030A (en) | Thermo-element sheet | |
Chen et al. | Solar/heat-driven thermoacoustic engine | |
JPH0448150Y2 (en) | ||
JPS6214481A (en) | Heat-collecting medium device | |
JPS62189774A (en) | Thermoelectric generator | |
EP0872698A3 (en) | Laminated heat exchanger | |
GB2218790A (en) | Regenerators for cooling apparatus | |
RU32253U1 (en) | Thermoelectric heat exchanger | |
JPS5948485U (en) | Roofs for heating and cooling spaces such as living spaces | |
JPS60232496A (en) | Heat exchanger | |
SU1372176A1 (en) | Temperature-sensitive diode | |
JPS6073194U (en) | Heater for drain pipe of cooling system | |
JP2535603B2 (en) | Heat storage device | |
JP3546491B2 (en) | Fluid cooling device using thermoelectric conversion element | |
Brunschwiler et al. | Extended tensor description to design non-uniform heat-removal in interlayer cooled chip stacks | |
JPS585847Y2 (en) | Dehumidifier heat exchanger mechanism | |
JPS5858348U (en) | electronic cooling device | |
JPS6229826Y2 (en) | ||
JPS6251770U (en) | ||
JPH0530093Y2 (en) | ||
JPS63137588U (en) | ||
JPH03160273A (en) | Heat storage device | |
JPS6179270U (en) |