JPS62143432A - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor deviceInfo
- Publication number
- JPS62143432A JPS62143432A JP28282285A JP28282285A JPS62143432A JP S62143432 A JPS62143432 A JP S62143432A JP 28282285 A JP28282285 A JP 28282285A JP 28282285 A JP28282285 A JP 28282285A JP S62143432 A JPS62143432 A JP S62143432A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- silicon
- wafers
- slip
- occurring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 14
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 229910052710 silicon Inorganic materials 0.000 abstract description 14
- 239000010703 silicon Substances 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 230000008646 thermal stress Effects 0.000 abstract description 3
- 235000012431 wafers Nutrition 0.000 description 39
- 239000013078 crystal Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for manufacturing a semiconductor device.
現在、シリコン半導体素子の製造においては直径5〜6
インチのウェーハが用いられており、さらに今後、7〜
8インチの大口径ウェーハが導入される状況となってい
る。大口径ウェーハを用いた場合の最大の問題は、高温
熱処理時における加熱、冷却の際につ王−ハ中央部と周
辺部との間に生じる温度差に起因した熱応力によりウェ
ーハ周辺部からスリップが発生し、ウェーハが簡単に変
形してしまうことである。Currently, in the manufacture of silicon semiconductor devices, diameters of 5 to 6
7-inch wafers are currently being used, and in the future
The situation is such that large-diameter 8-inch wafers are being introduced. The biggest problem when using large-diameter wafers is that the wafer slips from the periphery due to thermal stress caused by the temperature difference between the center and periphery of the wafer during heating and cooling during high-temperature heat treatment. occurs, and the wafer is easily deformed.
ウェーハ周辺部からのスリップ、すなわち転位の発生は
半導体素子の歩留を低下させるため、熱処理プロセスに
おいてスリップ発生の防止策を施す必要がある。スリッ
プの発生はウェーハの直径に依存することはもちろんの
こと、熱処理温度。Slip from the wafer periphery, that is, the occurrence of dislocations, reduces the yield of semiconductor devices, so it is necessary to take measures to prevent the occurrence of slips in the heat treatment process. The occurrence of slip depends not only on the wafer diameter but also on the heat treatment temperature.
ウェーハの挿入・引出し速度、ウェーハボートに並べる
ウェーハの間隔、ウェーハの格子間酸素濃度にも非常に
強く依存する。It also depends very strongly on the wafer insertion/extraction speed, the spacing between wafers on the wafer boat, and the interstitial oxygen concentration of the wafers.
このため、大口径ウェーハを1000℃以上の高温で熱
処理する際のスリップ防止策としては、ランピングと称
される除熱・徐冷方式を採用し、さらにボートに並べる
ウェーハの間隔を広げ、挿入および引出速度を遅くする
ことによって対処しているのが現状である。For this reason, as a measure to prevent slipping when heat treating large-diameter wafers at high temperatures of 1000°C or higher, a heat removal/slow cooling method called ramping is adopted, and the spacing between the wafers lined up on the boat is widened, and the insertion and The current solution is to slow down the withdrawal speed.
しかしながら、このようなスリップ発生防止法はウェー
ハが大口径化していくにつれ、熱処理の所要時間が増大
し、また、熱処理1回当りのウェーハ処理枚数が減少す
るため、スループットが低下し、大口径化のメリットが
失われる結果となる。However, as the diameter of wafers becomes larger, the time required for heat treatment increases, and the number of wafers processed per heat treatment decreases, resulting in a decrease in throughput. This results in the loss of benefits.
ところで、スリップ防止策としては前述したつエーハの
熱処理を工夫する方法とは別にシリコンウェーハ自身の
機械的強度を高めて対処する方法がある。1983年発
行のアメリカの学術論文誌ジャーナル・オブ・アプライ
ド・フィジックス(Journal of Appli
ed Physics) 54巻の5016〜5020
頁に掲載されている論文によると、シリコン結晶中のN
J7i子は転位を固着し、シリコン結晶の強度を高める
働きがある。したがって、シリコン結晶育成時にNJM
子をドープし、Nドープシリコンウェーハを用いること
により、スリップ防止対策を行う方法が考えられる。By the way, as a measure to prevent slippage, there is a method of increasing the mechanical strength of the silicon wafer itself, in addition to the above-mentioned method of devising heat treatment of the wafer. Journal of Applied Physics, an American academic journal published in 1983.
ed Physics) Volume 54, 5016-5020
According to a paper published on the page, N in silicon crystals
J7i particles have the function of fixing dislocations and increasing the strength of silicon crystals. Therefore, during silicon crystal growth, NJM
A possible method for preventing slippage is to dope the silicon wafer and use an N-doped silicon wafer.
しかし、現時点においてはN原子の機械的強度を増加さ
せる効果は明瞭なものの、半導体素子への電気的な影響
1.および、シリコン中での結晶欠陥発生の原因となり
うる酸素、炭素原子との相互作用が未だ明確となってい
ないため、NJJK子を半導体素子を形成する領域まで
ドープするのは、素子の信頼性を考える上で問題がある
。However, at present, although the effect of increasing the mechanical strength of N atoms is clear, the electrical influence on semiconductor devices is 1. In addition, since the interaction with oxygen and carbon atoms that can cause crystal defects in silicon is not yet clear, doping NJJK elements into the region where semiconductor devices are formed may reduce the reliability of the device. I have a problem thinking about it.
本発明の目的は上記大口径ウェーハにおけるスリップの
発生を抑制し、高品質な半導体素子を製造することので
きる半導体装置の製造方法を提供することにある。An object of the present invention is to provide a method for manufacturing a semiconductor device that can suppress the occurrence of slip in the large-diameter wafer and manufacture high-quality semiconductor elements.
上記目的を達成するため、本発明は熱処理時に熱応力の
影響を最も受けやすいウェーハ周辺領域のみにシリコン
の機械的強度を増加させるNM子を含ませることにより
、大口径シリコンウェーハにおけるスリップ抑制を行う
ものである。To achieve the above object, the present invention suppresses slip in large-diameter silicon wafers by including NM elements that increase the mechanical strength of silicon only in the wafer peripheral region that is most susceptible to thermal stress during heat treatment. It is something.
以下、本発明を実施例にもとづいて詳細に説明する。 Hereinafter, the present invention will be explained in detail based on examples.
まず、P形(抵抗率8〜12Ω口)、5インチ径、厚み
550μmのCZシリコンウェーハを1000℃、 w
et○2n囲気中で酸化し、約300nmの酸化膜を形
成した後、第1図に示すような酸化膜パターンを通常の
フォトリソグラフィを用いて形成し、素子形成を行わな
いウェーハ周辺部(周辺部6mm)のみにNイオンを打
込む。このときの、ウェーハの断面を第2図に示す。First, a CZ silicon wafer of P type (resistivity: 8 to 12 Ω), 5 inches in diameter, and 550 μm in thickness was heated at 1000°C.
After forming an oxide film with a thickness of approximately 300 nm through oxidation in an et○2n atmosphere, an oxide film pattern as shown in Fig. N ions are implanted only in the area (6 mm). A cross section of the wafer at this time is shown in FIG.
Nイオンの打込みは加速電圧100keV、ドーズ量5
X 1010cxm−”の条件で行い、濃度ピーク値
が固溶限4.5 X 10”cm−’以下になるように
し。N ions are implanted at an acceleration voltage of 100 keV and a dose of 5.
The concentration peak value was set to be below the solid solubility limit of 4.5 x 10" cm.
打込み後、酸化膜を除去した。After implantation, the oxide film was removed.
このようにウェーハ周辺部にNイオンをドープしたウェ
ーハ15枚を、同じインゴットから作成した15枚のウ
ェーハ(以後、これを標準ウェーハと呼ぶ)とともに1
石英ボートに5m間隔で計30枚並べ、9.0m/分の
速度で1000℃の拡散炉に挿入し、Nz雰囲気中で3
0分保持した後、挿入と同じ速度で炉から引出した。引
出し後、全く任意に石英ボート上のウェーハ位置を入れ
換えた。この一連の処理を1サイクルとし、同様な熱処
理をさらに4回繰返した。すなわち、1000℃。In this way, 15 wafers doped with N ions at the periphery of the wafer were combined with 15 wafers (hereinafter referred to as standard wafers) made from the same ingot.
A total of 30 sheets were arranged at 5 m intervals in a quartz boat, inserted into a 1000°C diffusion furnace at a speed of 9.0 m/min, and heated in a Nz atmosphere for 30 minutes.
After holding for 0 minutes, it was pulled out of the oven at the same speed as it was inserted. After withdrawal, the wafer positions on the quartz boat were interchanged quite arbitrarily. This series of treatments was defined as one cycle, and the same heat treatment was repeated four more times. That is, 1000℃.
30分の熱処理を計5回行った後、ウェーハ周辺におけ
るスリップの発生状況を5eccoエツチング液を用い
て調べた。その結果、ウェーハ周辺がら入った最長スリ
ップラインの長さ1−を判定基準にしてまとめると、N
イオン打込みしたウェーハでは15枚中の1枚において
のみ、1■以上のスリップラインが観察されたが、標準
ウェーハでは15枚すべてにおいてlaw以上のスリッ
プが発生していた。After a total of five 30-minute heat treatments, the occurrence of slip around the wafer was examined using 5ecco etching solution. As a result, when summarized using the length 1- of the longest slip line that included the wafer periphery as a criterion, N
In the ion-implanted wafers, a slip line of 1 square or more was observed only in one of the 15 wafers, but in all 15 standard wafers, slips of 1 or more were observed.
以上の実施例からもわかるように、Nイオンをウェーハ
周辺部にドープしたウェーハでは、高温熱処理時にスリ
ップの発生が抑制されている。なお、イオン打込み量を
変えた実験の結果、a度ピーク値が4 X 10 ”0
11−”以上あれば有効である。As can be seen from the above examples, the occurrence of slip during high-temperature heat treatment is suppressed in the wafer in which the periphery of the wafer is doped with N ions. In addition, as a result of an experiment in which the amount of ion implantation was changed, the peak value of a degrees was 4 x 10 ''0
It is valid if it is 11-” or more.
以上、説明したごとく1本発明を用いることにより、ウ
ェーハ周辺部におけるスリップ発生が抑制できるため、
大口径ウェーハを高温熱処理する場合でも、スループッ
トを落とすことなく高性能なシリコン半導体素子を歩留
りよく製造することができる。As explained above, by using the present invention, it is possible to suppress the occurrence of slips in the periphery of the wafer.
Even when large-diameter wafers are subjected to high-temperature heat treatment, high-performance silicon semiconductor devices can be manufactured with high yield without reducing throughput.
第1図および第2図は、それぞれ本発明の一実施例を示
す平面図および断面図である。FIG. 1 and FIG. 2 are a plan view and a sectional view, respectively, showing an embodiment of the present invention.
Claims (1)
り周辺部において多いウェーハを用いて素子形成を行う
ことを特徴とする半導体装置の製造方法。1. A method of manufacturing a semiconductor device, characterized in that elements are formed using a wafer in which nitrogen atoms are distributed more in the wafer's periphery than in its center.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28282285A JPS62143432A (en) | 1985-12-18 | 1985-12-18 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28282285A JPS62143432A (en) | 1985-12-18 | 1985-12-18 | Manufacturing method of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62143432A true JPS62143432A (en) | 1987-06-26 |
Family
ID=17657531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28282285A Pending JPS62143432A (en) | 1985-12-18 | 1985-12-18 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62143432A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000022205A1 (en) * | 1998-10-12 | 2000-04-20 | IHP GMBH Innovations for High Performance Microelectronics Institut für innovative Mikroelektronik | Large-diameter high temperature stable semiconductor substrate wafer |
-
1985
- 1985-12-18 JP JP28282285A patent/JPS62143432A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000022205A1 (en) * | 1998-10-12 | 2000-04-20 | IHP GMBH Innovations for High Performance Microelectronics Institut für innovative Mikroelektronik | Large-diameter high temperature stable semiconductor substrate wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6930375B2 (en) | Silicon on insulator structure having an epitaxial layer and intrinsic gettering | |
EP0030457B1 (en) | Method of manufacturing a silicon wafer with interior microdefects capable of gettering | |
KR100770190B1 (en) | Oxygen Precipitation Czochralski Silicon Wafers | |
JP2006261632A (en) | Method of thermally treating silicon wafer | |
JP5251137B2 (en) | Single crystal silicon wafer and manufacturing method thereof | |
US4432809A (en) | Method for reducing oxygen precipitation in silicon wafers | |
JPWO2003009365A1 (en) | Method for manufacturing silicon wafer, method for manufacturing silicon epitaxial wafer, and silicon epitaxial wafer | |
KR100625822B1 (en) | Silicon wafer and process for producing it | |
JPH06295912A (en) | Manufacture of silicon wafer and silicon wafer | |
WO2010131412A1 (en) | Silicon wafer and method for producing the same | |
JP7495238B2 (en) | Silicon wafer manufacturing method | |
JP7519784B2 (en) | Silicon wafer manufacturing method | |
JPS62143432A (en) | Manufacturing method of semiconductor device | |
JPH0341437B2 (en) | ||
JPH0523494B2 (en) | ||
JP3294723B2 (en) | Silicon wafer manufacturing method and silicon wafer | |
JP4151876B2 (en) | Silicon wafer manufacturing method | |
JPH06295913A (en) | Manufacture of silicon wafer and silicon wafer | |
JP2010073782A (en) | Method of heat-treating semiconductor wafer | |
JP3032565B2 (en) | Method for manufacturing semiconductor device | |
JP2008227060A (en) | Annealed wafer manufacturing method | |
JPH11288942A (en) | Manufacture of semiconductor device | |
CN107154354B (en) | Method for heat treatment of wafer | |
JPS6115335A (en) | Gettering method for silicon wafer | |
CN107154353B (en) | Method for heat treatment of wafer |