[go: up one dir, main page]

JPS62142375A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS62142375A
JPS62142375A JP60283614A JP28361485A JPS62142375A JP S62142375 A JPS62142375 A JP S62142375A JP 60283614 A JP60283614 A JP 60283614A JP 28361485 A JP28361485 A JP 28361485A JP S62142375 A JPS62142375 A JP S62142375A
Authority
JP
Japan
Prior art keywords
film
conductivity type
region
nitride
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60283614A
Other languages
Japanese (ja)
Other versions
JPH0473637B2 (en
Inventor
Hakobu Miyoshi
三好 運
Masayuki Yamaguchi
正之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60283614A priority Critical patent/JPS62142375A/en
Publication of JPS62142375A publication Critical patent/JPS62142375A/en
Publication of JPH0473637B2 publication Critical patent/JPH0473637B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve optical sensitivity to a large extent, by providing the optimum reflection preventing film structure against near infrared rays. CONSTITUTION:In order to improve sensitivity for near infrared rays, the thicknesses of an oxide film and a nitride film 5 on the surface of a reverse conductivity type region 3 are controlled, and a reflection preventing film structure is provided. Meanwhile, the thicknesses of oxide films 6 and nitride films 7 on the surface of the same conductivity type region 2 are changed in order that the sensitivity peak does not appear at a part other than the reverse conductivity region 3. Thus a reflecting film structure is obtained. The reflection preventing film is formed by two layers of the oxide film 4(200Angstrom ) and the nitride film 5(850Angstrom ). As the reflecting films, the oxide films 6(4,000Angstrom ) and the nitride films 7(5,000Angstrom ) are formed on the upper surface of the reverse conductivity type region 2. These parts are formed of hour layers.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特定の波長光に対して光感度を向上させた光半
導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical semiconductor device with improved photosensitivity to light of a specific wavelength.

従来の技術 従来の光半導体装置は第4図a、bに示すような平面構
造、断面構造であり、所定導電形半導体基板1の上に同
一導電形領域2を有し、その表面に反対導電形領域3を
2つ以上有している。第1の導電影領域2および第2の
導電影領域3の表面には酸化膜4と窒化膜5とが形成さ
れている。通常、酸化膜として9000〜16ooO人
、窒化膜として3000〜SOO〇への厚みがある。こ
の光半導体装置に光が入射されると表面近傍での反射な
どにより、特定の波長に対し光感度が低下することがあ
った。
2. Description of the Related Art A conventional optical semiconductor device has a planar structure and a cross-sectional structure as shown in FIGS. It has two or more shaped regions 3. An oxide film 4 and a nitride film 5 are formed on the surfaces of the first conductive shadow region 2 and the second conductive shadow region 3. Typically, the oxide film has a thickness of 9,000 to 1600 mm, and the nitride film has a thickness of 3,000 to SOO. When light is incident on this optical semiconductor device, the photosensitivity to a specific wavelength may be reduced due to reflection near the surface.

発明が解決しようとする問題点 このような従来の構成では、基板仕様の選定や反対導電
形領域を所定の波長光に合わせて形成する必要がある。
Problems to be Solved by the Invention In such a conventional configuration, it is necessary to select the substrate specifications and form regions of opposite conductivity type in accordance with a predetermined wavelength of light.

また、表面の酸化膜と窒化膜が5000Å以上では近赤
外光に対して反射効果があり、充分な光感度が得られな
い欠点があった。
Further, if the oxide film and nitride film on the surface have a thickness of 5000 Å or more, there is a reflection effect on near-infrared light, and there is a drawback that sufficient photosensitivity cannot be obtained.

本発明はこのような問題点を解決するもので、近赤外光
に対して高い光感度を有する光半導体装置を得ることを
目的とするものである。
The present invention is intended to solve these problems, and aims to provide an optical semiconductor device that has high photosensitivity to near-infrared light.

問題点を解決するだめの手段 この問題点を解決するために、本発明は近赤外光に対し
て、反対導電形領域表面の酸化膜と窒化膜との厚みを制
御して反射防止膜を形成するとともて同一導電形領域表
面の酸化膜と窒化膜とを厚くして反射膜とすることによ
シ、光感度を大幅に高めたものである。この反射防止膜
の厚みとして酸化膜を500Å以下に窒化膜を500〜
1600人にしてちり、反射膜の厚みとしては酸化膜と
窒化膜との合計の厚みをほぼ5ooo八にしである。
Means to Solve the Problem In order to solve this problem, the present invention provides an antireflection film for near-infrared light by controlling the thickness of the oxide film and nitride film on the surface of the opposite conductivity type region. When formed, the oxide film and nitride film on the surface of the same conductivity type region are thickened to form a reflective film, thereby greatly increasing the photosensitivity. The thickness of this antireflection film is 500 Å or less for the oxide film and 500 Å or less for the nitride film.
For 1,600 people, the total thickness of the reflective film of the oxide film and the nitride film is approximately 5008.

作   用 本発明の光半導体装置の構造により、近赤外光に対して
反射が少なくなり、効率よく光を反対導電領域、つまり
、接合部に入射させることができる。また同一導電形領
域、つまり、非接合部表面の反射膜構造により前記反対
導電形領域周辺への入射に対する光感度を低減させるこ
とができる0実施例 第1図a、bは本発明の一実施例による反対導電形領域
が2つの場合のチップの平面図および断面図である。1
はN形導電形半導体基板、2は基板と同一導電形領域、
3は基板と反対のP形導電形領域、4,6は酸化膜、5
,7は窒化膜である。
Function: The structure of the optical semiconductor device of the present invention reduces reflection of near-infrared light, allowing light to efficiently enter the oppositely conductive region, that is, the junction. Furthermore, the reflection film structure on the surface of the same conductivity type region, that is, the non-junction part, can reduce the light sensitivity to the periphery of the opposite conductivity type region. FIGS. 1A and 1B show an embodiment of the present invention. FIG. 3 is a plan view and a cross-sectional view of a chip in which there are two regions of opposite conductivity type according to an example. 1
is an N-type conductivity type semiconductor substrate, 2 is a region of the same conductivity type as the substrate,
3 is a P-type conductivity type region opposite to the substrate, 4 and 6 are oxide films, and 5
, 7 are nitride films.

近赤外光に対して、感度を向上させるため、反対導電形
領域3の表面の酸化膜4と窒化膜6との厚みを制御して
反射防止膜構造としである。一方、感度ピークが反対導
電形領域3以外に表われないように、同一導電形領域2
の表面の酸化膜6と窒化膜7との厚みを変えて反射膜構
造としである。
In order to improve the sensitivity to near-infrared light, the thickness of the oxide film 4 and nitride film 6 on the surface of the opposite conductivity type region 3 is controlled to form an antireflection film structure. On the other hand, in order to prevent the sensitivity peak from appearing in areas other than the opposite conductivity type area 3,
A reflective film structure is obtained by changing the thickness of the oxide film 6 and the nitride film 7 on the surface.

本実施例では反射防止膜として酸化膜4 (200人)
と窒化膜5(850人)の2層で形成しており、反射膜
として酸化膜6(4000人)、窒化膜7(600o入
)をそれぞれ反対導電形領域2の上面に形成し、この部
分は4層で形成しである。なお、この反射膜部分の下層
酸化膜4は領域2を形成する際の数千人の拡散防止マス
クがそのまま残って存在していてもよく、第1図の断面
図はその例である。
In this example, oxide film 4 (200 people) was used as an antireflection film.
The oxide film 6 (4000 layers) and nitride film 7 (600 layers) are respectively formed on the upper surface of the opposite conductivity type region 2 as reflective films. is formed of four layers. Note that the lower layer oxide film 4 of this reflective film portion may be left with thousands of anti-diffusion masks used when forming the region 2, and the cross-sectional view of FIG. 1 is an example of this.

第2図a、bはP影領域3が6つの場合のチップの平面
図および断面図である。1はN形半導体基板、2はN影
領域、3は基板と反射のP影領域、4および6は酸化膜
、5および7は窒化膜である。
FIGS. 2a and 2b are a plan view and a sectional view of a chip in which there are six P shadow areas 3. 1 is an N-type semiconductor substrate, 2 is an N shadow region, 3 is a P shadow region reflecting the substrate, 4 and 6 are oxide films, and 5 and 7 are nitride films.

反射防止膜として窒化膜(1000人)を形成してあり
、反射膜には第1図同様に酸化膜と窒化膜との4層で形
成しである。なお、反射膜の上にAe等の金属を付設し
て反射効果を高めても効果があるのはいうまでもない。
A nitride film (1000 layers) is formed as an anti-reflection film, and the reflection film is formed of four layers of an oxide film and a nitride film as in FIG. It goes without saying that it is also effective to enhance the reflection effect by attaching a metal such as Ae on the reflective film.

第3図に本発明実施例装置の光感度特性を従来例装置と
比較して示す。破線8は本発明の光感度分布を示してお
り、実線9は従来の光半導体装置の光感度分布である。
FIG. 3 shows the photosensitivity characteristics of an apparatus according to an embodiment of the present invention in comparison with a conventional apparatus. The broken line 8 shows the photosensitivity distribution of the present invention, and the solid line 9 shows the photosensitivity distribution of the conventional optical semiconductor device.

反射防止膜の周辺に反射膜を形成した本発明では光感度
分布が平坦な特性となり、反対導電形領域上に感度ピー
クが発生することはない。本発明の実施例ではN形基板
を使用した場合について述べたが、P形基板で第1導電
形領域をP形に、第2導電形領域をN形にしても同様の
効果が得られることは言うまでもない。
In the present invention in which a reflective film is formed around the antireflection film, the photosensitivity distribution is flat, and no sensitivity peak occurs on the opposite conductivity type region. Although the embodiments of the present invention have been described using an N-type substrate, the same effect can be obtained by using a P-type substrate with the first conductivity type region being P type and the second conductivity type region being N type. Needless to say.

発明の効果 以上のように、本発明によれば近赤外光に対する最適な
反射防止膜構造により、光感度が大幅に向上した。たと
えば波長800 n mのレーザ光に対して、第1図示
の本実施例装置では約1.5倍の光感度向上が達成でき
た。
Effects of the Invention As described above, according to the present invention, the optical sensitivity was significantly improved due to the optimal antireflection film structure for near-infrared light. For example, with respect to a laser beam having a wavelength of 800 nm, the apparatus of this embodiment shown in FIG. 1 was able to achieve an improvement in photosensitivity of about 1.5 times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは本発明の一実施例による光半導体装置の
平面図および断面図、第2図a、bは他の実施例装置の
平面図および断面図、第3図は本発明と実施例装置と従
来光半導体装置との各感度分布特性図、第4図は従来例
装置の平面図および断面図である。 1・・・・・N形半導体基板、2・・・・・N影領域、
3・・・・・P影領域、4,6・・・・・・酸化膜、5
,7・・・・・・窒化膜Q 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 第4図
1A and 1B are a plan view and a sectional view of an optical semiconductor device according to an embodiment of the present invention, FIGS. 2A and 2B are a plan view and a sectional view of an optical semiconductor device according to another embodiment, and FIG. Each sensitivity distribution characteristic diagram of the example device and the conventional optical semiconductor device, and FIG. 4 is a plan view and a sectional view of the conventional example device. 1...N type semiconductor substrate, 2...N shadow area,
3...P shadow area, 4,6... Oxide film, 5
,7...Nitride film Q Name of agent Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)所定導電形半導体基板上に、同一導電形領域を有
し、その表面に反対導電形領域を少なくとも2つ以上有
し、前記反対導電形領域の表面に酸化膜と窒化膜との積
層もしくは窒化膜だけによる反射防止膜および前記同一
導電形領域の表面にのみ反射膜をそなえたことを特徴と
する光半導体装置。
(1) A semiconductor substrate of a predetermined conductivity type has a region of the same conductivity type, and has at least two regions of opposite conductivity type on its surface, and a stack of an oxide film and a nitride film on the surface of the region of the opposite conductivity type. Alternatively, an optical semiconductor device comprising an antireflection film made only of a nitride film and a reflective film provided only on the surface of the same conductivity type region.
(2)反射防止膜が酸化膜を500Å以下、窒化膜を5
00〜1500Åの各厚みの範囲に選定されたことを特
徴とする特許請求の範囲第1項に記載の光半導体装置。
(2) The anti-reflection film is an oxide film of 500 Å or less and a nitride film of 50 Å or less.
The optical semiconductor device according to claim 1, wherein each thickness is selected in a range of 00 to 1500 Å.
JP60283614A 1985-12-17 1985-12-17 Optical semiconductor device Granted JPS62142375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283614A JPS62142375A (en) 1985-12-17 1985-12-17 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283614A JPS62142375A (en) 1985-12-17 1985-12-17 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS62142375A true JPS62142375A (en) 1987-06-25
JPH0473637B2 JPH0473637B2 (en) 1992-11-24

Family

ID=17667782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283614A Granted JPS62142375A (en) 1985-12-17 1985-12-17 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS62142375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248676A (en) * 1988-03-30 1989-10-04 Matsushita Electron Corp Photo-semiconductor device
JPH03206671A (en) * 1990-01-08 1991-09-10 Nec Corp Photodiode
JP2001028454A (en) * 1999-07-15 2001-01-30 Sumitomo Electric Ind Ltd Semiconductor light receiving element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248676A (en) * 1988-03-30 1989-10-04 Matsushita Electron Corp Photo-semiconductor device
JPH03206671A (en) * 1990-01-08 1991-09-10 Nec Corp Photodiode
JP2001028454A (en) * 1999-07-15 2001-01-30 Sumitomo Electric Ind Ltd Semiconductor light receiving element

Also Published As

Publication number Publication date
JPH0473637B2 (en) 1992-11-24

Similar Documents

Publication Publication Date Title
JP2706113B2 (en) Photoelectric conversion element
US4608451A (en) Cross-grooved solar cell
US3763372A (en) Zone plate optics monolithically integrated with photoelectric elements
JPH06188439A (en) Antimonide indium photodetector with wide band reflection preventive coating
JPH0224389B2 (en)
US20040195641A1 (en) Semiconductor chip for optoelectronics
EP0130847B1 (en) Semiconductor device manufacturing method
EP0772248B1 (en) Microactivity LED with photon recycling
JPS6236858A (en) Semiconductor photodetector
US4606115A (en) Method of manufacturing optically sensitive semiconductor devices including anti-reflective coatings
JPS62142375A (en) Optical semiconductor device
JP3225103B2 (en) Light-emitting / light-receiving element and manufacturing method thereof
JPH0463478A (en) Sic light emitting device
JP3203106B2 (en) Photovoltaic device
JP2952906B2 (en) Photodiode
JP3165458B2 (en) Thyristor and manufacturing method thereof
JP2798772B2 (en) Method for manufacturing photovoltaic device
US5327005A (en) Striped contact IR detector
JPS6381986A (en) Photoelectric conversion element
JP2664142B2 (en) Manufacturing method of light receiving element
JPH11121728A (en) Solid-state image pick-up device
JP2883370B2 (en) Photovoltaic device
JPH01205462A (en) Semiconductor element
EP0515025A1 (en) Enhanced long wavelength response for thinned CCD devices
JP3203104B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term