[go: up one dir, main page]

JPS6214213B2 - - Google Patents

Info

Publication number
JPS6214213B2
JPS6214213B2 JP59118899A JP11889984A JPS6214213B2 JP S6214213 B2 JPS6214213 B2 JP S6214213B2 JP 59118899 A JP59118899 A JP 59118899A JP 11889984 A JP11889984 A JP 11889984A JP S6214213 B2 JPS6214213 B2 JP S6214213B2
Authority
JP
Japan
Prior art keywords
alloy
weight
corrosion resistance
heat treatment
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59118899A
Other languages
Japanese (ja)
Other versions
JPS60262943A (en
Inventor
Eiji Tsuji
Hirofumi Okabe
Takeo Ike
Fumihiro Uratani
Takashi Oota
Hiroyuki Kaneda
Juko Hanatachi
Tadashi Hamada
Hiroyasu Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKAFU
Original Assignee
OOSAKAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKAFU filed Critical OOSAKAFU
Priority to JP59118899A priority Critical patent/JPS60262943A/en
Priority to GB08514297A priority patent/GB2160892B/en
Priority to DE19853520473 priority patent/DE3520473A1/en
Priority to FR8508751A priority patent/FR2565603B1/en
Publication of JPS60262943A publication Critical patent/JPS60262943A/en
Publication of JPS6214213B2 publication Critical patent/JPS6214213B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/042Iron or iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、鉄―クロム―アルミニウム系医療用
インプラント合金に関するものである。本発明合
金は、医療用インプラント材として有用である。 従来技術 整形外科用インプラント材としては次のような
特性を有することが、要求されている。 (1) 生体内で溶解、吸収されないこと。 (2) 耐食性が優れていること。 (3) 機械的性質に優れており、かつ長期間変質し
ないこと。 (4) 無毒、無刺激であること。 これは直接的、局部的現象にとどまらず、総
合的現象として把握すべき問題である。 (5) 周囲の生体組織とよく器質化すること。 即ち、組織とのなじみつまり生体との親和性
に優れていることが必要である。異質化が強け
れば、インプラント材を使用する生体中に、イ
ンプラント材を包埋隔離するために繊維組織が
発生し、その結果インプラント材と生体との間
にゆるみが生じ種々の障害が現われる。 インプラント材としては、従来から鉄―ニツケ
ル―クロム系オーステナイト型ステンレス鋼が用
いられている。しかしながら、これは機械的性質
は良好であるが生体との親和性などに問題があ
り、さらには、耐応力腐食割れ性、耐孔食性、耐
隙間腐食性及びその他の耐食性が必ずしも十分で
はないためごく短時間の使用に限られている。加
えて、溶出した金属イオン、特にニツケルイオン
などの人体への有害性が問題となる。 また近年においては、α―Al2O3を主体とする
セラミツク材が試用されている。これは、耐食性
に優れ、生体内で長期間にわたつて安定性を保
ち、かつ生体に対して無毒性であり、また親和性
に富むなど多くの利点に恵まれている。しかし、
機械的性質、特に耐抗析性に乏しいという大きな
欠点を有している。 発明の構成 本発明者は、このような現状に鑑みて、種々研
究を重ねた結果、ステンレス材料の良好な機械的
性質とセラミツク材料の人体への優れた親和性及
び高耐食性とを併有する新規なインプラント合金
を完成するに至つた。 即ち、本発明は、Cr20〜32重量%、Al 0.5〜
5.0重量%、Mo0.5〜4.0重量%、Zr、Hf及びYの
少なくとも1種0.05〜0.5重量%、残部Feからな
る鉄―クロム―アルミニウム系医療用インプラン
ト合金に係るものである。 本発明インプラント合金は、Al、並びにZr、
Hf及びYの少なくとも1種を適量含有している
ため空気中または酸素中で加熱処理を行なうこと
により、表面に緻密で密着性の優れたα―Al2O3
を主体とした酸化物皮膜を形成する。この酸化物
皮膜は、生体との親和性において優れた性質を有
し、かつまた優れた耐食性を示す。更に、本発明
インプラント合金は、機械的性質については、従
来から生体用インプラント材料として用いられて
いるSUS316L又は本発明合金の基本合金である
Fe―30Cr―Mo系合金と比較しても、実用性にお
いて劣るものではなく、インプラント材として充
分な強度を有している。 本発明インプラント合金の含有元素について、
その含有量と作用を次に詳述する。 (1) Cr:20〜32重量% Crは安定な不働態皮膜を形成する成分とし
て鉄基合金の耐食性向上に不可欠の元素であ
り、その量を増すにつれて耐食性は増大する。
しかし、Al、Mo等の元素との共存下では相乗
的に合金の脆化をもたらすため、上限を32重量
%とする。また本発明合金の用途としての生体
内インプラントには2〜3ケ月程度の短期間使
用のケースがあり、この場合は、耐食性への要
求水準は若干緩和されるが、少なくとも18Cr
級高純度フエライト型ステンレス鋼以上の耐食
性は必要とするため下限を20重量%とする。 (2) Al:0.5〜5.0重量% Fe―Cr合金系において、Cr量を30重量%程
度とすると、AlやMoなどの元素の添加によ
り、靭性や冷間、熱間加工性が急激に減少す
る。耐食性向上のためMoを最低で1.5%、望ま
しくは3%程度添加することが必要なためAl
の含有量を抑えざるを得ず、よつて上限を5重
量%とする。また、Alの含有量が少ないと、
熱処理によつて生成するα―Al2O3が減少し、
Cr2O3の生成量が増加する。Cr2O3の比率が高
まると2種の酸化物の相境界が増すことにな
り、表面酸化物皮膜の靭性が劣化し、材料機能
が低下する。よつて、このような観点から大気
中または酸素中で熱処理を行なう場合には、
Alは2重量%程度以上が好ましい。また、大
気圧よりも低い圧力に雰囲気調整を行なつて熱
処理をする場合には、Al量の下限を0.5重量%
とすることができる。 (3) Mo:0.5〜4.0重量% Moは耐食性、特に耐孔食性、耐間隙腐食性
の向上に顕著な効果を有するが、そのためには
0.5重量%以上必要である。一方、Mo量を増す
と、脆化を起こしやすくなり、さらにはCr、
Alとの共存下では特に加工性の劣化を促進す
るため上限を4.0重量%とする。 (4) Zr、Hf及びYの少なくとも1種:0.05〜0.5
重量% Zr、Hf及びYの主な役割としては、α―
Al2O3主体の皮膜中に入つて、本来非常に脆い
皮膜に高い靭性を与えること、及び酸素との親
和性がAlよりも若干高いため、内部酸化し
て、微細な酸化物粒子となり、これにより表面
酸化物層の合金マトリツクスへの密着性を向上
させることなどがある。ただしこれらの元素の
含有量が多くなると、皮膜中への混入度が増
し、皮膜の緻密性を劣化させ、さらに合金マト
リツクスの耐食性、合金の冷間及び熱間加工性
や靭性にも悪影響を及ぼすことになる。従つ
て、Zr、Hf及びYの含有量は、合計量として
0.5重量%を上限する。一方、これらの元素の
含有量が少なすぎると、皮膜の靭性、密着性と
もに不充分となるので、Zr、Hf及びYの少な
くとも1種を0.05重量%以上含有させることが
必要である。 (5) その他 Siは合金脆化を起こし、また加熱処理時に
SiO2となつてα―Al2O3皮膜中に混入し、機能
を低下させることから0.3重量%以下とするこ
とが好ましい。C、Nは熱処理に伴つて容易に
Crと反応してCr系化合物を形成する。このCr
系化合物は、合金の結晶粒界に形成される傾向
が強く、その付近のCr濃度低下を招き、粒界
腐食を誘起する。さらにCはCOやCO2ガスと
なつてα―Al2O3皮膜を破壊する作用もある。
これらの点から、Cは0.008重量%以下、Nは
0.015重量%以下とすることが好ましい。Pは
鋼の靭性を損ずるため0.025重量%以下とする
ことが好ましい。Sも鋼の靭性を害するため
に、0.025重量%以下とすることが好ましい。 (6) 残部をFeとする。 本発明インプラント合金の作製方法は、特に
限定はなく、上記組成範囲のものを常法により
作製することができる。 本発明合金は、加熱処理を行つた後、インプラ
ント材として使用する。この加熱処理により緻密
であり、かつ合金マトリツクスとの密着性に優れ
たα―Al2O3を主体とする酸化物皮膜ができる。
加熱処理は、通常大気圧の空気中または酸素中
で、1100〜1300℃程度の温度で行なう。ただし
Al含有量が0.5〜2重量%程度の場合には、大気
圧よりも低い圧力下で加熱処理を行なうことが好
ましい。熱処理時間は、必要とする酸化皮膜の厚
さに応じて0.5〜30時間程度の間で適宜選択すれ
ばよい。 発明の効果 本発明インプラント合金は、熱処理により生成
する酸化皮膜により、人体との親和性に優れ、か
つ高耐食性を有する。更に、合金マトリツクス自
体も優れた耐食性を示す。また機械的性質もイン
プラント材として実用上充分である。従つてイン
プラント材としての要求を満足するものであり、
有効に使用できる。 実施例 次に本発明インプラント合金について実施例を
示す。 実施例 1 第1表に示す組成の鉄―クロム―アルミニウム
系インプラント合金を常法に従つて作製した。
INDUSTRIAL APPLICATION FIELD The present invention relates to an iron-chromium-aluminum medical implant alloy. The alloy of the present invention is useful as a medical implant material. Prior Art Orthopedic implant materials are required to have the following properties. (1) Not dissolved or absorbed in the body. (2) Excellent corrosion resistance. (3) It has excellent mechanical properties and does not deteriorate over a long period of time. (4) Be non-toxic and non-irritating. This is a problem that should be understood as a comprehensive phenomenon, not just a direct or local phenomenon. (5) Be well organized with surrounding living tissues. That is, it is necessary to have excellent compatibility with tissues, that is, with the living body. If the heterogeneity is strong, fibrous tissue will be generated in the living body using the implant material to embed and isolate the implant material, resulting in loosening between the implant material and the living body, resulting in various problems. Iron-nickel-chromium austenitic stainless steel has traditionally been used as an implant material. However, although this has good mechanical properties, there are problems with compatibility with living organisms, and furthermore, stress corrosion cracking resistance, pitting corrosion resistance, crevice corrosion resistance, and other corrosion resistance are not necessarily sufficient. Limited to short-term use. In addition, there is a problem that eluted metal ions, especially nickel ions, are harmful to the human body. Furthermore, in recent years, ceramic materials mainly composed of α-Al 2 O 3 have been used on a trial basis. It has many advantages, such as excellent corrosion resistance, long-term stability in living organisms, non-toxicity to living organisms, and high affinity. but,
It has a major drawback of poor mechanical properties, particularly poor anti-deposition resistance. Composition of the Invention In view of the current situation, the present inventor has conducted various studies and has developed a new material that combines the good mechanical properties of stainless steel materials and the excellent affinity for the human body and high corrosion resistance of ceramic materials. We have now completed a new implant alloy. That is, in the present invention, Cr20-32% by weight, Al 0.5-32% by weight
This relates to an iron-chromium-aluminum medical implant alloy consisting of 5.0% by weight, Mo 0.5-4.0% by weight, 0.05-0.5% by weight of at least one of Zr, Hf and Y, and the balance Fe. The implant alloy of the present invention contains Al, Zr,
Since it contains an appropriate amount of at least one of Hf and Y, it can be heat-treated in air or oxygen to form α-Al 2 O 3 with a dense surface and excellent adhesion.
Forms an oxide film mainly composed of This oxide film has excellent properties in terms of affinity with living organisms and also exhibits excellent corrosion resistance. Furthermore, in terms of mechanical properties, the implant alloy of the present invention is SUS316L, which has been conventionally used as a biomedical implant material, or the basic alloy of the present alloy.
Compared to Fe-30Cr-Mo alloys, it is not inferior in practicality and has sufficient strength as an implant material. Regarding the elements contained in the implant alloy of the present invention,
Its content and effect will be explained in detail below. (1) Cr: 20 to 32% by weight Cr is an essential element for improving the corrosion resistance of iron-based alloys as a component that forms a stable passive film, and as its amount increases, the corrosion resistance increases.
However, coexistence with elements such as Al and Mo synergistically causes embrittlement of the alloy, so the upper limit is set at 32% by weight. In addition, there are cases in which the present alloy is used for in-vivo implants for a short period of about 2 to 3 months, and in this case, the required level of corrosion resistance is slightly relaxed, but at least 18Cr
The lower limit is set at 20% by weight, as corrosion resistance higher than that of grade high-purity ferritic stainless steel is required. (2) Al: 0.5 to 5.0% by weight In a Fe-Cr alloy system, when the Cr content is about 30% by weight, the toughness and cold and hot workability decrease rapidly due to the addition of elements such as Al and Mo. do. Al
Therefore, the upper limit is set at 5% by weight. Also, if the Al content is low,
α-Al 2 O 3 generated by heat treatment is reduced,
The amount of Cr 2 O 3 produced increases. When the ratio of Cr 2 O 3 increases, the phase boundary between the two types of oxides increases, the toughness of the surface oxide film deteriorates, and the material function decreases. Therefore, from this point of view, when performing heat treatment in air or oxygen,
Al is preferably about 2% by weight or more. In addition, when performing heat treatment by adjusting the atmosphere to a pressure lower than atmospheric pressure, the lower limit of the amount of Al should be 0.5% by weight.
It can be done. (3) Mo: 0.5 to 4.0% by weight Mo has a remarkable effect on improving corrosion resistance, especially pitting corrosion resistance and crevice corrosion resistance.
0.5% by weight or more is required. On the other hand, increasing the amount of Mo tends to cause embrittlement, and furthermore, Cr,
The upper limit is set at 4.0% by weight because coexistence with Al particularly promotes deterioration of workability. (4) At least one of Zr, Hf and Y: 0.05 to 0.5
Weight% The main roles of Zr, Hf and Y are α-
It enters the Al 2 O 3- based film and gives high toughness to the film, which is originally very brittle, and has a slightly higher affinity with oxygen than Al, so it oxidizes internally and becomes fine oxide particles. This may improve the adhesion of the surface oxide layer to the alloy matrix. However, when the content of these elements increases, their degree of incorporation into the film increases, deteriorating the density of the film, and also having a negative effect on the corrosion resistance of the alloy matrix, cold and hot workability, and toughness of the alloy. It turns out. Therefore, the content of Zr, Hf and Y is the total amount
The upper limit is 0.5% by weight. On the other hand, if the content of these elements is too small, the toughness and adhesion of the film will be insufficient, so it is necessary to contain at least 0.05% by weight of at least one of Zr, Hf and Y. (5) Others Si causes alloy embrittlement, and during heat treatment
Since it becomes SiO 2 and mixes into the α-Al 2 O 3 film, reducing its functionality, the content is preferably 0.3% by weight or less. C and N are easily removed by heat treatment.
Reacts with Cr to form Cr-based compounds. This Cr
These compounds have a strong tendency to form at grain boundaries of alloys, leading to a decrease in Cr concentration in the vicinity and inducing intergranular corrosion. Furthermore, C becomes CO or CO 2 gas and has the effect of destroying the α-Al 2 O 3 film.
From these points, C is 0.008% by weight or less, and N is
The content is preferably 0.015% by weight or less. Since P impairs the toughness of steel, it is preferable to limit it to 0.025% by weight or less. Since S also impairs the toughness of steel, it is preferable to limit it to 0.025% by weight or less. (6) The remainder is Fe. The method for producing the implant alloy of the present invention is not particularly limited, and implant alloys within the above-mentioned composition range can be produced by conventional methods. The alloy of the present invention is used as an implant material after being subjected to heat treatment. This heat treatment produces an oxide film mainly composed of α-Al 2 O 3 that is dense and has excellent adhesion to the alloy matrix.
The heat treatment is usually performed in air at atmospheric pressure or in oxygen at a temperature of about 1100 to 1300°C. however
When the Al content is about 0.5 to 2% by weight, it is preferable to perform the heat treatment under a pressure lower than atmospheric pressure. The heat treatment time may be appropriately selected from about 0.5 to 30 hours depending on the required thickness of the oxide film. Effects of the Invention The implant alloy of the present invention has excellent compatibility with the human body and high corrosion resistance due to the oxide film formed by heat treatment. Furthermore, the alloy matrix itself also exhibits excellent corrosion resistance. Furthermore, the mechanical properties are sufficient for practical use as an implant material. Therefore, it satisfies the requirements as an implant material.
Can be used effectively. Examples Next, examples will be shown regarding the implant alloy of the present invention. Example 1 Iron-chromium-aluminum implant alloys having the compositions shown in Table 1 were prepared according to a conventional method.

【表】 この合金を酸素中で加熱処理し、酸化物皮膜を
形成させた。熱処理時間と酸化増量及び生成した
皮膜の厚みとの関係を第1図に示す。また、この
酸化皮膜の断面構造を調べた結果、合金マトリツ
クスと表面酸化物層の境界は、復雑に入り込み、
密着性が非常に優れたものであることがわかつ
た。なお空気中で熱処理した場合にも同様の結果
が得られた。 (i) 機械的性質 本発明合金の熱処理前の機械的性質を第2表
に示す。比較として従来から生体用インプラン
ト材として用いられているSUS316Lの機械的
性質を併せて示す。なお、引張り強さ及び伸び
は、JIS―Z―2201に準じて試験を行ない、硬
さはJIS―Z―2244に準じて試験を行なつた。
[Table] This alloy was heat treated in oxygen to form an oxide film. FIG. 1 shows the relationship between heat treatment time, oxidation weight gain, and thickness of the formed film. Furthermore, as a result of examining the cross-sectional structure of this oxide film, the boundary between the alloy matrix and the surface oxide layer is complicated;
It was found that the adhesion was very excellent. Similar results were obtained when heat-treated in air. (i) Mechanical properties Table 2 shows the mechanical properties of the alloys of the present invention before heat treatment. For comparison, the mechanical properties of SUS316L, which has been conventionally used as a biological implant material, are also shown. The tensile strength and elongation were tested according to JIS-Z-2201, and the hardness was tested according to JIS-Z-2244.

【表】 第2表に示す結果から本発明合金は、従来品
と同等の機械的性質を有していることが明らか
である。 本発明合金を大気中、1250℃で熱処理した場
合の機械的性質の変化を第3表に示す。
[Table] From the results shown in Table 2, it is clear that the alloy of the present invention has mechanical properties equivalent to those of conventional products. Table 3 shows changes in mechanical properties when the alloy of the present invention was heat treated at 1250° C. in the atmosphere.

【表】 第3表に示す結果から、加熱時間が長くなつ
ても本発明合金の機械的性質の変化は少なく、
実用上差支えないことが明らかである。 (ii) 耐食性試験 耐食性については、加熱処理により酸化皮膜
に覆われた状態では良好な耐食性を示すことは
実験的に判明している。即ち、後記第4表、第
5表に示す耐食試験項目において全く腐食や減
耗が認められなかつた。 ここでは、機械的衝撃による損傷を受けた場
合やねじ止めに伴う擦過傷を受けるなどして合
金マトリツクスが露出した場合の耐食性を検討
した。まず実施例1の合金について加熱処理前
の試料の隙間腐食性を調べた。即ち、平板試料
を10%FeCl3水溶液中に浸漬し、試料板上に5
mmφのガラス棒をおき、24時間経過後の試料と
ガラス棒の隙間に発生する腐食状態を観察し
た。結果を第4表に示す。
[Table] From the results shown in Table 3, even if the heating time becomes longer, the mechanical properties of the alloy of the present invention do not change much;
It is clear that there is no problem in practical use. (ii) Corrosion resistance test Regarding corrosion resistance, it has been experimentally found that good corrosion resistance is exhibited when covered with an oxide film due to heat treatment. That is, no corrosion or wear was observed in the corrosion resistance test items shown in Tables 4 and 5 below. Here, we investigated corrosion resistance when the alloy matrix is exposed due to damage caused by mechanical impact or abrasion caused by screw fastening. First, the crevice corrosion of a sample of the alloy of Example 1 before heat treatment was investigated. That is, a flat plate sample is immersed in a 10% FeCl 3 aqueous solution, and 50% is placed on the sample plate.
A mmφ glass rod was placed and the corrosion state occurring in the gap between the sample and the glass rod after 24 hours was observed. The results are shown in Table 4.

【表】 ○:隙間腐食なし △:隙間腐食の痕跡
あり ×:激しい隙間腐食発生
次に加熱処理をしてない試料について耐アル
カリ性、耐粒界腐食性、耐酸性及び耐応力腐食
性を調べた結果を第5表に示す。なお、試験
は、JIS―G―0573に準じて行なつた。
[Table] ○: No crevice corrosion △: Evidence of crevice corrosion ×: Severe crevice corrosion occurred Next, the alkali resistance, intergranular corrosion resistance, acid resistance, and stress corrosion resistance of the samples that had not been heat treated were investigated. The results are shown in Table 5. The test was conducted in accordance with JIS-G-0573.

【表】 更に、生理食塩水(3%NaCl)中への溶出
試験を行つた結果、20℃12日間でFe、Cr及び
Alの溶出量は、それぞれ1ppm末満であり、沸
騰液中5時間浸漬した場合は、Feが2ppmで他
は1ppm未満であつた。 以上の結果から、本発明合金の耐食性は、加熱
処理により酸化皮膜を形成させない状態において
も、従来品より優れていることがわかる。 更に、加熱処理後の合金マトリツクスの耐食性
も処理前と同程度であることが判明した。例え
ば、第1表に示す合金を1250℃、5時間大気中で
熱処理した後、酸化皮膜を完全に研摩除去し、前
記第4表、第5表の各項目の試験を行なつた結
果、第4表及び第5表に示す結果と差異は全く認
められなかつた。 実施例 2 実施例1の第1表に示す合金のZrをHfに代え
た合金及びZrをYに代えた合金の各々について、
実施例1と同様の試験を行なつた。 加熱処理を行なつた時の酸化増量は、Hf含有
合金及びY含有合金ともに実施例1の合金よりも
少なかつた。例えば、1200℃20時間熱処理を行な
つた場合、酸化増量は、Hf含有合金では約2.0
mg/cm2、Y含有合金では約1.0mg/cm2であつた。
この酸化皮膜の密着性は、実施例1と同様に優れ
たものであつた。 つづいて機械的性質及び耐食性について実施例
1と同様の方法で試験を行なつた結果、Hf含有
合金、Y含有合金ともに、実施例1の結果とほぼ
同様の結果が得られた。 実施例 3 下記第6表に示す組成の鉄―クロム―アルミニ
ウム系インプラント合金を常法に従つて作製し
た。尚、不純物として混入するSi、C、N及びO
の量は実施例1のインプラント合金と同程度であ
つた。
[Table] Furthermore, as a result of a dissolution test in physiological saline (3% NaCl), Fe, Cr and
The amount of Al eluted was less than 1 ppm, and when immersed in boiling liquid for 5 hours, Fe was 2 ppm and the others were less than 1 ppm. From the above results, it can be seen that the corrosion resistance of the alloy of the present invention is superior to conventional products even in a state where no oxide film is formed by heat treatment. Furthermore, it was found that the corrosion resistance of the alloy matrix after heat treatment was also comparable to that before treatment. For example, after heat treating the alloy shown in Table 1 at 1250°C for 5 hours in the air, the oxide film was completely removed by polishing, and the tests for each item in Tables 4 and 5 were conducted. No difference was observed from the results shown in Tables 4 and 5. Example 2 For each of the alloys shown in Table 1 of Example 1 in which Zr was replaced with Hf and Zr was replaced with Y,
A test similar to Example 1 was conducted. Both the Hf-containing alloy and the Y-containing alloy had less weight gain due to oxidation when heat-treated than the alloy of Example 1. For example, when heat treated at 1200°C for 20 hours, the weight gain due to oxidation is approximately 2.0 for Hf-containing alloys.
mg/cm 2 , and about 1.0 mg/cm 2 for the Y-containing alloy.
The adhesion of this oxide film was as excellent as in Example 1. Subsequently, mechanical properties and corrosion resistance were tested in the same manner as in Example 1. As a result, almost the same results as in Example 1 were obtained for both the Hf-containing alloy and the Y-containing alloy. Example 3 Iron-chromium-aluminum implant alloys having the compositions shown in Table 6 below were produced according to a conventional method. In addition, Si, C, N and O mixed as impurities
The amount of was comparable to that of the implant alloy of Example 1.

【表】【table】

【表】 上記合金No.1〜13の各合金について、大気中で
1200℃で熱処理を行なつてAl2O3皮膜を形成さ
せ、更に大気中の熱処理では均一なAl2O3皮膜が
形成されなかつた試料については2×10-2トール
の減圧下で1200℃で熱処理を行なつてAl2O3皮膜
を形成させた。結果を下記の記号により第7表に
示す。 〇:大気中で均一なAl2O3皮膜形成 △:減圧下で均一なAl2O3皮膜形成 ×:均一なAl2O3皮膜を形成せず また、上記合金No.1〜13の各試料について、引
張り強度、耐隙間腐食性、耐アルカリ性、耐粒界
腐食性、耐酸性及び耐応力腐食割れ性の試験を実
施例1と同様にして行なつた。 引張り強度については測定値を示し、その他の
試験結果については、SUS316Lの試験結果との
比較結果を下記の記号により第7表に示す。 ◎:SUS316Lよりも大幅に優れている 〇:SUS316Lよりも少し優れている △:SUS316Lと同程度である ×:SUS316Lよりも劣る
[Table] For each alloy No. 1 to 13 above, in the atmosphere
Heat treatment was performed at 1200℃ to form an Al 2 O 3 film, and for samples where a uniform Al 2 O 3 film was not formed by heat treatment in the atmosphere, the sample was heated at 1200℃ under a reduced pressure of 2 × 10 -2 Torr. A heat treatment was performed to form an Al 2 O 3 film. The results are shown in Table 7 using the symbols below. 〇: Uniform Al 2 O 3 film formed in the atmosphere △: Uniform Al 2 O 3 film formed under reduced pressure ×: Uniform Al 2 O 3 film not formed In addition, each of the above alloys No. 1 to 13 The samples were tested for tensile strength, crevice corrosion resistance, alkali resistance, intergranular corrosion resistance, acid resistance, and stress corrosion cracking resistance in the same manner as in Example 1. For tensile strength, measured values are shown, and for other test results, comparison results with test results for SUS316L are shown in Table 7 using the symbols below. ◎: Significantly better than SUS316L 〇: Slightly better than SUS316L △: Same as SUS316L ×: Inferior to SUS316L

【表】【table】

【表】 また、Zrに代えてHf又はYを配合した合金に
ついても、上記した各種試験を行なつたところ、
ほぼ同様の結果であつた。 比較例 1 Cr20.5重量%、Al 0.3重量%、Mo1重量%、
Zr0.1重量%及び残部Feからなる合金について、
大気中及び減圧下において、1100〜1250℃の温度
範囲において加熱を行なつたが、いずれの条件に
おいても均一なAl2O3皮膜が形成されなかつた。
従つて上記合金はインプラント材としては不適当
である。 比較例 2 Cr32重量%、Al 6.0重量%、Mo5.0重量%、
Zr0.6重量%及び残部Feからなる合金を作製し、
冷間加工を行なつたところ、加工性が悪く亀裂が
発生した。
[Table] Additionally, various tests described above were conducted on alloys containing Hf or Y in place of Zr.
The results were almost the same. Comparative example 1 Cr20.5% by weight, Al 0.3% by weight, Mo1% by weight,
Regarding the alloy consisting of 0.1% by weight of Zr and the balance Fe,
Heating was performed in the air and under reduced pressure in a temperature range of 1100 to 1250°C, but no uniform Al 2 O 3 film was formed under any of the conditions.
The above alloys are therefore unsuitable as implant materials. Comparative example 2 Cr32% by weight, Al 6.0% by weight, Mo5.0% by weight,
An alloy consisting of 0.6% by weight of Zr and the balance Fe was prepared,
When cold working was performed, workability was poor and cracks occurred.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱処理時間と酸化増量及び酸化皮膜
の膜厚との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between heat treatment time, oxidation weight gain, and oxide film thickness.

Claims (1)

【特許請求の範囲】[Claims] 1 Cr20〜32重量%、Al 0.5〜5.0重量%、
Mo0.5〜4.0重量%、Zr、Hf及びYの少なくとも
1種0.05〜0.5重量%、残部Feからなる鉄―クロ
ム―アルミニウム系医療用インプラント合金。
1 Cr20-32% by weight, Al 0.5-5.0% by weight,
An iron-chromium-aluminum medical implant alloy consisting of 0.5-4.0% by weight of Mo, 0.05-0.5% by weight of at least one of Zr, Hf and Y, and the balance Fe.
JP59118899A 1984-06-08 1984-06-08 Iron-chromium-aluminum implant alloy for medical treatment Granted JPS60262943A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59118899A JPS60262943A (en) 1984-06-08 1984-06-08 Iron-chromium-aluminum implant alloy for medical treatment
GB08514297A GB2160892B (en) 1984-06-08 1985-06-06 Fe-cr-al type implant alloy for medical treatment
DE19853520473 DE3520473A1 (en) 1984-06-08 1985-06-07 IMPLANTATION ALLOY OF FE-CR-AL TYPE FOR MEDICAL TREATMENT AND METHOD FOR PRODUCING SUCH AN ALLOY
FR8508751A FR2565603B1 (en) 1984-06-08 1985-06-10 FE-CR-AL PROSTHETIC ALLOY FOR MEDICAL TREATMENT AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118899A JPS60262943A (en) 1984-06-08 1984-06-08 Iron-chromium-aluminum implant alloy for medical treatment

Publications (2)

Publication Number Publication Date
JPS60262943A JPS60262943A (en) 1985-12-26
JPS6214213B2 true JPS6214213B2 (en) 1987-04-01

Family

ID=14747921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118899A Granted JPS60262943A (en) 1984-06-08 1984-06-08 Iron-chromium-aluminum implant alloy for medical treatment

Country Status (4)

Country Link
JP (1) JPS60262943A (en)
DE (1) DE3520473A1 (en)
FR (1) FR2565603B1 (en)
GB (1) GB2160892B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3706415A1 (en) * 1987-02-27 1988-09-08 Thyssen Edelstahlwerke Ag SEMI-FINISHED FERRITIC STEEL PRODUCT AND ITS USE
SE461191B (en) * 1988-04-21 1990-01-22 Sandvik Ab APPLICATION OF A STAINLESS FERRIT-AUSTENITIC STEEL ALLOY AS IMPLANT IN PHYSIOLOGICAL ENVIRONMENT
DE3908526A1 (en) * 1989-03-16 1990-09-20 Vdm Nickel Tech FERRITIC STEEL ALLOY
JP2637250B2 (en) * 1989-11-06 1997-08-06 松下電工株式会社 Fe-Cr-Ni-Al ferrite alloy
JP3027279B2 (en) * 1993-03-25 2000-03-27 日本碍子株式会社 Method for improving oxidation resistance of Fe-Cr-Al alloy
EP1281783B9 (en) * 1996-05-29 2005-07-27 Sumitomo Metal Industries, Ltd. Stainless steel for ozone added water and manufacturing method thereof
CN103182100A (en) * 2013-03-14 2013-07-03 东莞宜安科技股份有限公司 Medical degradable magnesium alloy material and preparation process of sputtered iron ion film on the surface

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1833723A (en) * 1923-06-07 1931-11-24 Gen Electric Alloy
DE686244C (en) * 1937-03-23 1940-01-05 Heraeus Vacuumschmelze Akt Ges Objects made of highly heat-resistant ferritic steels with 2 to 16% aluminum and possibly chromium up to 40%
GB727174A (en) * 1951-11-16 1955-03-30 Kanthal Ab Improvements in and relating to heating apparatus heated by liquid or gaseous fuel
AT222679B (en) * 1958-05-14 1962-08-10 Boehler & Co Ag Geb Steel alloys for workpieces that are in a three-axis stress state in use
GB2082631A (en) * 1980-02-28 1982-03-10 Firth Brown Ltd Ferritic iron-aluminium-chromium alloys
FR2500010A1 (en) * 1981-02-13 1982-08-20 Inst Fiz Tverdogo Tela Stainless steel, esp. for mfg. surgical instruments - has very high purity and very high corrosion resistance, obtd. esp. by electron beam melting of steel electrode made by powder metallurgy
GB2114599B (en) * 1982-01-21 1986-07-16 Jgc Corp Apparatus for treating hydrocarbons or carbon monoxide-containing fluid high temperatures substantially without carbon deposition

Also Published As

Publication number Publication date
FR2565603B1 (en) 1988-05-20
FR2565603A1 (en) 1985-12-13
GB2160892B (en) 1988-06-29
DE3520473A1 (en) 1986-01-02
GB8514297D0 (en) 1985-07-10
DE3520473C2 (en) 1988-05-05
JPS60262943A (en) 1985-12-26
GB2160892A (en) 1986-01-02

Similar Documents

Publication Publication Date Title
US5868879A (en) Composite article, alloy and method
US5820707A (en) Composite article, alloy and method
EP0359446B1 (en) High strength, low modulus titanium alloy
Imam¹ et al. Titanium alloys as implant materials
Oh et al. Properties of titanium–silver alloys for dental application
IE47003B1 (en) Hot-forged co-cr-mo alloy articles
US4952236A (en) Method of making high strength, low modulus, ductile, biocompatible titanium alloy
JPH0673475A (en) Biocompatible low-modulus titanium alloy for medical graft
JP5156943B2 (en) Method for producing bio-based Co-based alloy having excellent plastic workability
JPS6214213B2 (en)
WO2006054368A1 (en) BIO-Co-Cr-Mo ALLOY WITH ION ELUTION SUPPRESSED BY REGULATION OF TEXTURE, AND PROCESS FOR PRODUCING THE SAME
US5849417A (en) Titanium implantation materials for the living body
JPH01290731A (en) Oxidation-resistant alloy
Kim et al. Elastic modulus and in vitro biocompatibility of Ti− xNb and Ti− xTa alloys
US5089223A (en) Fe-cr-ni-al ferritic alloys
US4668585A (en) Fe-Cr-Al type implant alloy composite for medical treatment
Park et al. Electrochemical and mechanical properties of cast Ti-V alloys for dental applications
DE2511745A1 (en) ALLOY FOR OBJECTS OF LARGE CORROSION RESISTANCE AND / OR STRONG MECHANICAL STRESS
JP3779368B2 (en) Biological composite implant material
Martin et al. Corrosion behaviour of a beta-titanium alloy
JP2003073761A (en) beta-TYPE TITANIUM ALLOY FOR LIVING BODY
CN106319289B (en) Co-Cr-W alloys and its processing method and application
Kartikasari et al. DEVELOPMENT OF FE-13.8 CR-8.9 MN ALLOY FOR STEEL BIOMATERIALS.
KR930003601B1 (en) Non precious nickel based chromium containing alloy for dental prostheser
EP4133117B1 (en) Bioresorbable fe-mn-si-x alloys for medical implants