[go: up one dir, main page]

JPS62139354A - Double heterojunction bipolar transistor and manufacture thereof - Google Patents

Double heterojunction bipolar transistor and manufacture thereof

Info

Publication number
JPS62139354A
JPS62139354A JP28026885A JP28026885A JPS62139354A JP S62139354 A JPS62139354 A JP S62139354A JP 28026885 A JP28026885 A JP 28026885A JP 28026885 A JP28026885 A JP 28026885A JP S62139354 A JPS62139354 A JP S62139354A
Authority
JP
Japan
Prior art keywords
layer
collector
carrier concentration
emitter
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28026885A
Other languages
Japanese (ja)
Inventor
Hideki Fukano
秀樹 深野
Yoshio Itaya
板屋 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28026885A priority Critical patent/JPS62139354A/en
Publication of JPS62139354A publication Critical patent/JPS62139354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent gain reduction under low-bias conditions by a method wherein a collector layer is of a two-layer laminate built of a collector first layer of high carrier concentration and a collector second layer of low carrier concentration and the collector layer in contact with a base layer is higher in carrier concentration than the other collector layer in contact with the former. CONSTITUTION:Grown on an InP substrate (n-type Sn-doped) 1 by the liquid phase growth method are an Sn-doped InP layer (collector second layer with a carrier concentration of 1X10<16>cm<-3>) 2, Sn-doped n-type InP layer (collector first layer with a carrier concentration of 1X10<18>cm<-3>) 3, Zn-doped p-type GaAsP layer (base layer with a carrier concentration of 1X10<18>cm<-3>) 4, and Sn-doped n-type InP layer (emitter layer with a carrier concentration of 5X10<17>cm<-3>) 5. On the grown substrate, an SiO2 film is formed, a resist etching mask is formed, and etching is accomplished for the removal of the resist. Diffusion of Zn is accomplished for the construction of a graft base structure. Finally, an emitter elector and collector electrode are built.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は、トランジスタ動作において低バイアス時の利
得低下のないダブルへテロ接合バイポーラトランジスタ
及びその製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a double heterojunction bipolar transistor that does not reduce gain at low bias during transistor operation, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第7図にヘテロ接合バイポーラトランジスタの構造図を
示す。同図において、■はコレクタ、2はベース、3は
エミッタ、4は各電極の絶縁用誘電体1臭、5はエミッ
タ用電極、6はベース用電極、7はコレクタ用電極であ
る。第8図にエミッタをInP  (n形、 N = 
s x 1o17Cx’)ベースをInGaAsP (
13、un組成、P形、 p 、= 3 X 1017
c’rrr5)、コレクタをInPCn形、N=3X1
0’″′crIL−’)で作製した場合のダブルへテロ
接合バイポーラトランジスタのエネルギーバンド構造図
を示した。このような構造ではベースとコレクタ接合部
においてエネルギーバンド構造に第8図に示したような
電子の通過を防げるエネルギーステップができる。その
ために、トランジスタ特性において第9図の様にコレク
タ・エミッタ間電圧の低い、低バイアス時に電流利得の
低下が生じていた。
FIG. 7 shows a structural diagram of a heterojunction bipolar transistor. In the figure, ■ is a collector, 2 is a base, 3 is an emitter, 4 is an insulating dielectric material of each electrode, 5 is an emitter electrode, 6 is a base electrode, and 7 is a collector electrode. In Fig. 8, the emitter is InP (n type, N =
s x 1o17Cx') based on InGaAsP (
13, un composition, P type, p, = 3 x 1017
c'rrr5), collector is InPCn type, N=3X1
The figure shows an energy band structure diagram of a double heterojunction bipolar transistor when fabricated with An energy step is created that prevents the passage of electrons.For this reason, in the transistor characteristics, as shown in FIG. 9, the current gain decreases when the collector-emitter voltage is low and the bias is low.

この低バイアス時の電流利得の低下を防ぐ方法として(
1)GaAs /AIGαAs系においてエミッタ・ベ
ース、ベース・コレクタ間に薄膜の多層膜を挿入する方
法(文献J、App1.Phys、54C11>、  
1983゜S、L、Stb、et、al、)第10図参
照、 (2JP−InGaAs (7)エミッタとn−
InPのコレクタ層の間に薄いルーInGaAsP層を
挿入する方法(文献Appl 、Phys 。
As a way to prevent this decrease in current gain at low bias (
1) Method of inserting a thin multilayer film between the emitter and base and base and collector in the GaAs/AIGαAs system (Reference J, App1. Phys, 54C11>,
1983°S, L, Stb, et, al,) See Figure 10, (2JP-InGaAs (7) Emitter and n-
A method of inserting a thin InGaAsP layer between InP collector layers (Reference Appl, Phys.

Lgtt、47(1)、 1985. P2B、LoM
、StL、et、al、)第11図参照などが報告され
ている。
Lgtt, 47(1), 1985. P2B, LoM
, StL, et, al, ), see Figure 11, etc. have been reported.

しかしく1)の方法は成長にMBE法を用いる必要があ
り通常用いられる液相成長法には適用できない。(2)
の方法は実効的にベース領域が拡がり、電流増幅率が低
減してしまうなどの欠点があった。
However, method 1) requires the use of the MBE method for growth and cannot be applied to the commonly used liquid phase growth method. (2)
This method had drawbacks such as effectively expanding the base region and reducing the current amplification factor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ダブルへテロ接合バイポーラトランジ
スタにおいてベースコレクタ間に存在するエネルギース
テップに基づ(低バイアス時の利得低下のないダブルへ
テロ接合バイポーラトランジスタ及びその製法を提供す
ることにある。
An object of the present invention is to provide a double heterojunction bipolar transistor based on the energy step that exists between the base and the collector in the double heterojunction bipolar transistor (without a decrease in gain at low bias) and a method for manufacturing the same.

本発明は、第4図の様にダブルへテロ接合バイポーラト
ランジスタにおいてコレクタ層が高キャリア濃度で数百
)以下のコレクタ第一層と低キヤリア濃度のコレクタ第
二層より構成されることを主要な特徴とする。
The main feature of the present invention is that the collector layer in a double heterojunction bipolar transistor is composed of a first collector layer with a high carrier concentration of less than several hundred) and a second collector layer with a low carrier concentration, as shown in FIG. Features.

従来の構造はコレクタ層は低キヤリア濃度の半導体/層
構造になっており、本発明は、キャリア濃度の高い第−
屓と低キヤリア濃度の第二層の二層構造より成る点が異
なる。
In the conventional structure, the collector layer has a semiconductor/layer structure with a low carrier concentration, but in the present invention, the collector layer has a semiconductor/layer structure with a high carrier concentration.
The difference is that it consists of a two-layer structure consisting of a layer and a second layer with a low carrier concentration.

本発明は、更に、ダブルへテロ接合バイポーラトランジ
スタにおいてエミッタに隣接するコレクタ部分に、この
部分に続くコレクタ組成よりも小さいエネルギーギャッ
プを有する組成を付けた構造になっている。すなわち、
コレクタ層が従来の一層構造に比べ、上述の様な二層構
造になっている点が異なる。これを具体的に云うと、X
 −1rLP基板上にルーInPもしくはtylnGα
AsP(エネルギーギャップEg2) 0) D L/
クタ第二層、n、−1nGctAsh(エネルギーギャ
ップEg1. Eg+ < A;’、!72)のコレク
タ第一層、P−1nGcLAsP(エネルギーギャップ
E、q3. Egs < Eg2)のヘース層、n−I
nPエミッタ層を順次成長させるものである。
The present invention further provides a structure in which the collector portion adjacent to the emitter of the double heterojunction bipolar transistor has a composition having a smaller energy gap than the collector composition following this portion. That is,
The difference is that the collector layer has a two-layer structure as described above, compared to the conventional single-layer structure. To put this specifically,
−1rLP substrate with LuInP or tylnGα
AsP (energy gap Eg2) 0) D L/
collector second layer, n, −1nGctAsh (energy gap Eg1. Eg+ <A;', !72), collector first layer of P-1nGcLAsP (energy gap E, q3. Egs < Eg2), n-I
In this method, nP emitter layers are sequentially grown.

本発明において、低バイアスにて利得が低下することが
ない理由は、定性的には、次のように説明される。
In the present invention, the reason why the gain does not decrease at low bias can be qualitatively explained as follows.

即ち、第8図のように、低バイアスではベース・コレク
タ間にある伝導帯のエネルギースパイク′がベースを通
過してきた電子に対して大きな障壁となるため電子がコ
レクタまで到達できず、利得の低下が生じるが、バイア
スを大きくして行くと、ベース・コレクタ間の電位傾斜
によりエネルギースパイクの影響が顕著に出なくなり利
得の低下が起らなくなる。
In other words, as shown in Figure 8, at low bias, the energy spike in the conduction band between the base and collector becomes a large barrier to electrons passing through the base, preventing the electrons from reaching the collector, resulting in a decrease in gain. However, as the bias is increased, the influence of the energy spike becomes less noticeable due to the potential gradient between the base and the collector, and no decrease in gain occurs.

〔実施例1〕 第1図乃至第4図に本発明製作手順例を示す。[Example 1] An example of the manufacturing procedure of the present invention is shown in FIGS. 1 to 4.

CVD、MBE法を用いてもよいし、他のCaAs/A
j!GaAs等の結晶系を用いても同様のことが期待で
きる。
CVD or MBE methods may be used, or other CaAs/A
j! The same effect can be expected even if a crystal system such as GaAs is used.

InP基板(n形SnドープN = 2 X 1018
cm−5) ;l上にSnドープn形InP層、(キャ
リア濃度I X 1016cm ’5 μm厚コレクタ
第二層);2.Snドープn形rnP層(キャリア濃度
I X1018cm−’、 0.05μm厚コレクタ第
一層);3.ZnドープP形1nGaAsP層(1,3
μm組成、キャリア濃度lx l Q18cm−’ 0
.2 p m厚、エミッタ);4.5n)−ブn形In
P層(キャリア濃度5XIO”Cm−’ 10.5μm
厚、エミッタ層);5を液相成長法により成長する。第
1図参照。
InP substrate (n-type Sn doped N = 2 x 1018
cm-5) ; Sn-doped n-type InP layer on top (carrier concentration I x 1016 cm '5 μm thick collector second layer); 2. Sn-doped n-type rnP layer (carrier concentration I x 1018 cm-', 0.05 μm thick collector first layer); 3. Zn-doped P-type 1nGaAsP layer (1,3
μm composition, carrier concentration lx l Q18cm-' 0
.. 2 p m thickness, emitter); 4.5 n) - n-type In
P layer (carrier concentration 5XIO"Cm-' 10.5μm
Thickness, emitter layer); 5 is grown by liquid phase growth method. See Figure 1.

この成長基板上にSiO□膜を1600Aスパツタ法に
より膜付し、通常のフォトリソグラフィ技術により、レ
ジストエツチングマスクを形成しり学アクティブイオン
エツチング法<RTE法)によりSiO2をエツチング
し、レジストを除去する。
A SiO□ film is deposited on this growth substrate by a 1600A sputtering method, a resist etching mask is formed by ordinary photolithography, and the SiO2 is etched by a photolithographic active ion etching method (RTE method) to remove the resist.

次にZn3P230mgと基板を直径10mm(7)石
英管の中に入れ、真空に引いた後、石英管の長さ約10
0mmの真空アンプルを作製する。アンプルを450℃
の電気炉中に約1時間放置し、Znの拡散を行なう。こ
れによりグラフトベース構造を形成する、第2図参照。
Next, 230 mg of Zn3P and the substrate were placed in a quartz tube with a diameter of 10 mm (7), and the quartz tube was evacuated to a length of about 10 mm.
Prepare a 0 mm vacuum ampoule. Ampoule at 450℃
The sample was left in an electric furnace for about 1 hour to diffuse Zn. This forms a graft base structure, see Figure 2.

なおZn拡散によるグラフトベース構造ではなくエツチ
ングによりベース面を露出しそこにベース電極を形成し
てもよい。
Note that instead of using the graft base structure by Zn diffusion, the base surface may be exposed by etching and the base electrode may be formed there.

フッ酸により5in2膜除去後再びS j 02膜をス
パッタ法により膜付し、フォトリソグラフィ技術により
マスクを形成後RIE法によりS r 02をエツチン
グし、レジスト除去後、SiO2をマスクにBrの1%
メチルアルコール溶液でエミップラズマCVD法により
全面にSiN膜を膜付し、フォトリングラフィ技術によ
りエミッタ電極形成用スルーホールマスクを形成しRI
E法によりSiN膜をエツチング後、AuGaNiを蒸
着しリフトオフ法によりエミッタ電極を形成する。ベー
ス電極もエミッタ電極形成と同じようにしてフォトリソ
グラフィ、RIE法によりスルーホールをあけ、AuZ
nNi蒸着後リフトオフ法により形成する。コレクタ電
極は、裏面を10%Brメチルアルコールにより基板厚
が100μm位になるまで研磨し、AuGaN1g着に
より形成する。最後に水素雰囲気中425℃20See
の熱処理を行ないオーミックコンタクトをとる、第4図
参照。
After removing the 5in2 film with hydrofluoric acid, a S j 02 film was applied again by sputtering, a mask was formed using photolithography, and then S r 02 was etched by RIE, and after the resist was removed, 1% Br was added using SiO2 as a mask.
A SiN film is deposited on the entire surface using a methyl alcohol solution using the emitter plasma CVD method, a through-hole mask for forming an emitter electrode is formed using photolithography technology, and RI is performed.
After etching the SiN film using the E method, AuGaNi is deposited and an emitter electrode is formed using the lift-off method. In the same way as the emitter electrode was formed, a through hole was made for the base electrode using photolithography and RIE, and the AuZ
It is formed by a lift-off method after nNi vapor deposition. The collector electrode is formed by polishing the back surface with 10% Br methyl alcohol until the substrate thickness becomes about 100 μm, and then depositing 1 g of AuGaN. Finally, in a hydrogen atmosphere at 425℃20See
Heat treatment is performed to establish ohmic contact, see Figure 4.

第4図の様にコレクタ層が高キャリア濃度の薄膜コレク
タ第一層と低キヤリア濃度のコレクタ第二層より成り高
キャリア濃度のコレクタ第一層の存在により伝導帯のエ
ネルギーステップ幅が第8図の従来の−1コレクタ構造
のものに比べ第5図の様にキャリア濃度の高くなった分
すなわち、(1XIO/1’X10  )    =O
,1倍狭くなりベースからの電子はこれをトンネル効果
により通過できる様になる。これにより、従来の構造の
トランジスタにおいて観測された低バイアス時の電流利
得の低下がなくなった。
As shown in Figure 4, the collector layer consists of a first collector layer with a high carrier concentration and a second collector layer with a low carrier concentration, and due to the presence of the first collector layer with a high carrier concentration, the energy step width of the conduction band increases as shown in Figure 8. Compared to the conventional -1 collector structure, the carrier concentration is higher as shown in Figure 5, that is, (1XIO/1'X10) = O
, becomes narrower by one time, and electrons from the base can pass through this due to the tunnel effect. This eliminates the decrease in current gain at low bias that was observed in transistors with conventional structures.

〔実施例2〕 製作手順は、結晶成長時、コレクタ第一層にSnドープ
n形1nGaAsP層(1,5,crm組成、キャリア
濃度lXl0  cm  、 0.058℃厚)を成長
することを除き例1と同様に行なう。この様にコレクタ
第二層よりエネルギーギャップの小さいコレクタ第一層
の存在により第6図に示す様に伝導帯のエネルギーステ
ップが電子の通過を防げなくなり、従来構造のものにお
いて観測された低バイアス時の電流増幅率の低下がなく
なった。
[Example 2] The manufacturing procedure is the same as that of the example except that during crystal growth, an Sn-doped n-type 1nGaAsP layer (1,5, crm composition, carrier concentration lXl0 cm, 0.058°C thickness) is grown as the collector first layer. Do the same as step 1. As shown in Figure 6, due to the existence of the first collector layer with a smaller energy gap than the second collector layer, the energy step of the conduction band cannot prevent the passage of electrons, and at the low bias observed in the conventional structure, The current amplification factor no longer decreases.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにコレクタ層が高キャリア濃度の薄膜
コレクタ第一層と低キヤリア濃度のコレクタ第二層より
成るダブルへテロ接合バイポーラトランジスタにおいて
、高キャリア濃度のコレクタ第一層の存在により、ベー
スコレクタ間のへテロ接合に基づ(伝導帯のエネルギー
ステップ幅が非常に狭くなり、ベースからのキャリアが
エネルギーステップをトイネル効果で通過できるように
なるから、従来の低キヤリア濃度の一層構造コレクタよ
り成るダブルへテロ接合バイポーラトランジスタのトラ
ンジスタ特性において存在していた伝導帯エネルギース
テップにより生じていた低バイアス時の電流利得の低下
が解消されるという利点がある。
As explained above, in a double heterojunction bipolar transistor in which the collector layer is composed of a thin film collector first layer with a high carrier concentration and a collector second layer with a low carrier concentration, the presence of the collector first layer with a high carrier concentration allows the base collector to Based on the heterojunction between (because the energy step width of the conduction band becomes very narrow and the carriers from the base can pass through the energy step with the Teunel effect, it consists of a conventional low carrier concentration single-layer collector) This has the advantage that the reduction in current gain at low bias caused by the conduction band energy step that existed in the transistor characteristics of the double heterojunction bipolar transistor is eliminated.

更に、前述の様に、コレクタ第二層よりエネルギーギャ
ップの小さいコレクタ第一層の存在によりベースを通過
して来たキャリアは第一層でのエネルギー傾斜によりそ
れに続くコレクタ第二層境界にあるエネルギーステップ
を越えるのに十分なエネルギーを有する様になるため、
低バイアス時の電流利得の低下が解消されるという利点
がある。
Furthermore, as mentioned above, due to the presence of the collector first layer which has a smaller energy gap than the collector second layer, the carriers passing through the base lose energy at the boundary of the subsequent collector second layer due to the energy gradient in the first layer. to have enough energy to cross the step,
This has the advantage that the decrease in current gain at low bias is eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は、本発明の製造工程を示す。 第5図は、本発明の構造におけるベース・コレクタ間の
エネルギーバンド図を示し、第6図は、本発明の別の構
造におけるベース・コレクタ間のエネルギーバンド図を
示す。 第7図はへテロ接合バイポーラトランジスタの構造図を
示す。 第8図はベース・コレクタ間ヘテロ接合のエネルギーバ
ンド図を示す。 第9図は従来構造のダブルへテロ接合バイポーラトラン
ジスタにおけるエミッタ接地トランジスタ特性を示す。 1101mはエミッタ・ベース、ベース・コレクタ間に
薄膜の多層膜を挿入し、特性改善を図った構造を示す。 第11図はP−1nGaAsベ一ス層とn−InPコレ
クタ層の間に薄いnlnGaAsP層を挿入し特性改善
を図った構造を示す。 特許出願人   日本電信電話株式会社代理人 弁理士
 玉 蟲 久 五 部 (外2名) 第 2 図 第 3 図 第4図 1n 第 8 図 第9図
1 to 4 show the manufacturing process of the present invention. FIG. 5 shows an energy band diagram between the base and collector in the structure of the present invention, and FIG. 6 shows an energy band diagram between the base and collector in another structure of the present invention. FIG. 7 shows a structural diagram of a heterojunction bipolar transistor. FIG. 8 shows an energy band diagram of a base-collector heterojunction. FIG. 9 shows the common emitter transistor characteristics of a double heterojunction bipolar transistor with a conventional structure. 1101m shows a structure in which a thin multilayer film is inserted between the emitter and base and between the base and collector to improve characteristics. FIG. 11 shows a structure in which a thin nlnGaAsP layer is inserted between the P-1nGaAs base layer and the n-InP collector layer to improve the characteristics. Patent Applicant Nippon Telegraph and Telephone Corporation Agent Patent Attorney Hisa Gobe Tamamushi (2 others) Figure 2 Figure 3 Figure 4 Figure 1n Figure 8 Figure 9

Claims (3)

【特許請求の範囲】[Claims] (1)第一導電形エミッタ層、エミッタよりも少なくと
もエネルギーギャップの小さい組成より成る第二導電形
ベース層、ベース層よりも少なくとも大きなエネルギー
ギャップを有する第一導電形コレクタ層よりなるダブル
ヘテロ接合バイポーラトランジスタにおいてベース層に
隣接するコレクタ層のキャリア濃度をこの部分に続くコ
レクタ領域のキャリア濃度より高くしたダブルヘテロ接
合バイポーラトランジスタ。
(1) Double heterojunction bipolar consisting of a first conductivity type emitter layer, a second conductivity type base layer having a composition with at least a smaller energy gap than the emitter, and a first conductivity type collector layer having at least a larger energy gap than the base layer. A double heterojunction bipolar transistor in which the carrier concentration in the collector layer adjacent to the base layer is higher than the carrier concentration in the collector region following this part.
(2)第一導電形エミッタ層、エミッタ層よりも少なく
ともエネルギーギャップの小さい組成よりなる第二導電
形ベース層、ベース層よりも少なくとも大きなエネルギ
ーギャップを有する第一導電形コレクタ層よりなるダブ
ルヘテロ接合バイポーラトランジスタにおいて、ベース
層に隣接するコレクタ部分に、この部分に続くコレクタ
領域よりも小さいエネルギーギャップを有する組成を持
つ第一導電形半導体層を付けたダブルヘテロ接合バイポ
ーラトランジスタ。
(2) A double heterojunction consisting of a first conductivity type emitter layer, a second conductivity type base layer having a composition with at least a smaller energy gap than the emitter layer, and a first conductivity type collector layer having at least a larger energy gap than the base layer. A double heterojunction bipolar transistor in which a first conductivity type semiconductor layer having a composition having a smaller energy gap than a collector region following this portion is attached to a collector portion adjacent to a base layer.
(3)n^+−InP基板上にn−InPコレクタ第二
層、n−InPもしくはn−InGaAsPコレクタ第
一層、P−InGaAsPベース層及びn−InPエミ
ッタ層を順々に成長させ、前記第一層を前記第二層より
高キャリア濃度とする工程、 窒化シリコン膜または酸化シリコン膜のマスクを用いて
Znをベース層まで熱拡散を行ない、グラフトベース構
造を形成する工程、 エミッタ及びベース層を酸化シリコン膜マスクとしてベ
ース層の下までエッチングしてメサを形成し、全面にプ
ラズマCVD窒化シリコン膜を絶縁膜として形成する工
程、 エミッタ電極、ベース電極を表面に形成し、裏面にコレ
クタ電極を形成し、熱処理を行なつてオーミック接触と
する工程、 を具えるダブルヘテロ接合バイポーラトランジスタの製
法。
(3) Sequentially grow an n-InP second collector layer, an n-InP or n-InGaAsP first collector layer, a P-InGaAsP base layer, and an n-InP emitter layer on the n^+-InP substrate, and A step of making the first layer have a higher carrier concentration than the second layer, A step of thermally diffusing Zn to the base layer using a silicon nitride film or a silicon oxide film mask to form a graft base structure, An emitter and a base layer Using the silicon oxide film as a mask, etching to the bottom of the base layer forms a mesa, and forming a plasma CVD silicon nitride film on the entire surface as an insulating film.The emitter electrode and base electrode are formed on the front surface, and the collector electrode is formed on the back surface. A method for manufacturing a double heterojunction bipolar transistor, comprising the steps of: forming and heat-treating to form an ohmic contact.
JP28026885A 1985-12-13 1985-12-13 Double heterojunction bipolar transistor and manufacture thereof Pending JPS62139354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28026885A JPS62139354A (en) 1985-12-13 1985-12-13 Double heterojunction bipolar transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28026885A JPS62139354A (en) 1985-12-13 1985-12-13 Double heterojunction bipolar transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62139354A true JPS62139354A (en) 1987-06-23

Family

ID=17622625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28026885A Pending JPS62139354A (en) 1985-12-13 1985-12-13 Double heterojunction bipolar transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62139354A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023239A (en) * 1988-06-20 1990-01-08 Nippon Telegr & Teleph Corp <Ntt> Bipolar transistor
JPH02280338A (en) * 1989-04-21 1990-11-16 Nec Corp Heterojunction bipolar transistor
JPH031542A (en) * 1989-05-29 1991-01-08 Matsushita Electric Ind Co Ltd Manufacture of bipolar transistor
US5345097A (en) * 1992-03-02 1994-09-06 Matsushita Electric Industrial, Co., Ltd. Heterojunction bipolar transistor including collector region of InP and method of fabricating the same
US8530933B2 (en) 2008-10-10 2013-09-10 National Institute Of Advanced Industrial Science And Technology Photo transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023239A (en) * 1988-06-20 1990-01-08 Nippon Telegr & Teleph Corp <Ntt> Bipolar transistor
JPH02280338A (en) * 1989-04-21 1990-11-16 Nec Corp Heterojunction bipolar transistor
JPH031542A (en) * 1989-05-29 1991-01-08 Matsushita Electric Ind Co Ltd Manufacture of bipolar transistor
US5345097A (en) * 1992-03-02 1994-09-06 Matsushita Electric Industrial, Co., Ltd. Heterojunction bipolar transistor including collector region of InP and method of fabricating the same
US8530933B2 (en) 2008-10-10 2013-09-10 National Institute Of Advanced Industrial Science And Technology Photo transistor

Similar Documents

Publication Publication Date Title
EP0184016A1 (en) Heterojunction bipolar transistor
JPH0797589B2 (en) Method for manufacturing heterojunction bipolar transistor
JPH0525389B2 (en)
WO2004093199A1 (en) Ballistic semiconductor device
JP3294461B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
KR900000585B1 (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS62139354A (en) Double heterojunction bipolar transistor and manufacture thereof
JP3164078B2 (en) Field effect transistor and method of manufacturing the same
JP3368449B2 (en) Semiconductor device and manufacturing method thereof
JP3358901B2 (en) Method for manufacturing compound semiconductor device
JPS63200567A (en) Hetero junction bipolar transistor and manufacture thereof
JP3069106B2 (en) Semiconductor device
JPS62152165A (en) Manufacture of bipolar transistor
JP2611474B2 (en) Method for manufacturing compound semiconductor device
JPS63287058A (en) Manufacturing method of heterojunction bipolar transistor
JPS6216569A (en) Hetero-junction transistor and its manufacture
JPH11274475A (en) Manufacture of heterojunction field effect transistor and manufacture of semiconductor device
JP2000133654A (en) Manufacture of bipolar transistor
JP2940021B2 (en) Etching method
JPS62224073A (en) Method of manufacturing a heterojunction bipolar transistor
JPS6218762A (en) Hetero junction transistor and manufacture thereof
JPH0395824A (en) Semiconductor electron emitting element
JPH0453108B2 (en)
JPH01214163A (en) Manufacture of lateral bipolar transistor
JPH0618207B2 (en) Method for manufacturing heterojunction bipolar transistor