JPS62136750A - Hermetically sealed lead storage battery - Google Patents
Hermetically sealed lead storage batteryInfo
- Publication number
- JPS62136750A JPS62136750A JP60275132A JP27513285A JPS62136750A JP S62136750 A JPS62136750 A JP S62136750A JP 60275132 A JP60275132 A JP 60275132A JP 27513285 A JP27513285 A JP 27513285A JP S62136750 A JPS62136750 A JP S62136750A
- Authority
- JP
- Japan
- Prior art keywords
- glass mat
- electrolytic liquid
- battery
- sealed lead
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 claims abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 6
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 6
- 239000003365 glass fiber Substances 0.000 claims abstract description 4
- 239000002253 acid Substances 0.000 claims description 18
- 239000008151 electrolyte solution Substances 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 28
- 239000007788 liquid Substances 0.000 abstract description 14
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000013517 stratification Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/08—Selection of materials as electrolytes
- H01M10/10—Immobilising of electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
- H01M50/437—Glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/342—Gastight lead accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
- H01M2300/0005—Acid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
不発明は、完全密閉構造で電池内部で発生する酸素ガス
を吸収する能力を持つ密閉鉛蓄電池の電解液の調製及び
保持に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The invention relates to the preparation and retention of electrolyte in a sealed lead acid battery having a completely sealed structure and the ability to absorb oxygen gas generated inside the battery.
電池を充電した時に発生する酸素ガスを電池内部で吸収
することに工っで完全密閉構造を可能とし次密閉鉛蓄電
池は、酸素ガスの吸収を効率良く進めるために特殊な方
法で保持させた電解液を使用している。A completely sealed structure is made possible by absorbing the oxygen gas generated when the battery is charged inside the battery. Sealed lead-acid batteries are made using electrolytic technology that is retained using a special method to efficiently absorb oxygen gas. liquid is used.
すなわち、従来の鉛蓄電池では硫酸水溶液の電解液中に
極板群を没して電池を構成しているが、酸素ガスを吸収
させるためV−は、(り硫酸水溶液で表面が薄く覆われ
酸素の吸収反応に活性を示す負極面が多く存在し、(2
)正極で発生した酸素が容易に負極に到達できるように
する必要がめる。In other words, in conventional lead-acid batteries, the battery is constructed by immersing the electrode plate group in an electrolyte of sulfuric acid aqueous solution, but in order to absorb oxygen gas, V- is There are many negative electrode surfaces that are active in the absorption reaction of (2
) It is necessary to allow oxygen generated at the positive electrode to easily reach the negative electrode.
このような状態を作り出すため、現在の密閉鉛蓄電池で
は、′電解液の使用量を減少させ、かつt解gを正・負
極板間に配置したカラスマットに含浸させた状態として
いる。In order to create such a state, in current sealed lead-acid batteries, the amount of electrolyte used is reduced, and the solution is impregnated into a glass mat placed between the positive and negative electrode plates.
しかし、この方法では、水溶液状態の硫酸がガラスマッ
ト円の細孔に毛管5A尿に工って保持されているもので
あるため、カラスマットの高さが増すと所定濃度で所定
量の@酸を均一に保持することが極めて困難となり、ガ
ラスマットの下部l−ユど高嬢度の硫酸が存在する「成
層化現象」が生じる。この現象が生じると充分な磯度量
の硫酸と接触しない極板上8は放電に関与しなくなり、
その結果数′RL量が小さくなるといり欠点がある。そ
の上、成層化が発生すると、電池下部は#LrIR嬢度
が高くなるため、この液に接する正極板下部の腐食が進
行し電池寿命にも影響が及ぶ。しかも、この成層化は一
度発生すると、その解消が極めて困難であることから、
密閉鉛蓄電池の設計においては成層化の防止は1像な課
題である。However, in this method, sulfuric acid in an aqueous solution state is held in the pores of the glass mat circle by capillary 5A urine, so as the height of the glass mat increases, a predetermined amount of @acid at a predetermined concentration increases. It becomes extremely difficult to maintain the glass mat uniformly, and a "stratification phenomenon" occurs in which a high concentration of sulfuric acid is present in the lower part of the glass mat. When this phenomenon occurs, the electrode plate 8 that does not come into contact with a sufficient amount of sulfuric acid no longer participates in the discharge.
As a result, the number 'RL amount becomes small, which has a drawback. Moreover, when stratification occurs, the #LrIR resistance increases in the lower part of the battery, and corrosion progresses in the lower part of the positive electrode plate in contact with this liquid, which also affects the battery life. Moreover, once this stratification occurs, it is extremely difficult to eliminate it.
Prevention of stratification is a major issue in the design of sealed lead-acid batteries.
本発明の目的は、極板間のセパレータ内に電解液を均−
内裏で保持させることが困難であった従来の密閉鉛蓄電
池の欠点を改良し、極板が大形化された場合にも液砲度
、液量の均一性を確保した密閉鉛蓄電池を提供すること
にある。The purpose of the present invention is to uniformly distribute the electrolyte within the separator between the electrode plates.
To provide a sealed lead-acid battery that improves the drawbacks of conventional sealed lead-acid batteries in which it is difficult to hold the battery inside and out, and ensures uniformity of liquid density and liquid volume even when the electrode plates are enlarged. There is a particular thing.
本発明を概説すれば、不発8Aは密閉鉛蓄電池に関する
発明でろって、カラス繊維を主体として形成されるシー
ト状カラスマットのP’3ffiSにケイ素化合物の微
粉末を均一に分布させたカラスマットを介して、正極板
と負極板を父互に配置して極板群が組立てられており、
該極板群を電池容器に収容した後に電解液を圧入するこ
とにエフ該微粉宋にLつて該電解液がゲル化されている
ことを特徴とする。To summarize the present invention, misfire 8A is an invention related to a sealed lead-acid battery, and is a sheet-like crow mat P'3ffiS formed mainly of crow fibers, in which fine powder of a silicon compound is uniformly distributed. The electrode plate group is assembled by arranging the positive electrode plate and the negative electrode plate mutually,
It is characterized in that the electrolytic solution is press-fitted after the electrode plate group is housed in a battery container, so that the electrolytic solution is gelled.
本発明を実施し九密閉鉛蓄電池′Cは、あらかじめケイ
素化合物を内部に含んだガラスマットを使用して極板群
を組立て、慌rR電解液を圧入した後電池のセパレータ
内で液をゲル化させることを特徴としている。A nine-sealed lead-acid battery 'C according to the present invention is constructed by assembling a group of electrode plates using a glass mat containing a silicon compound in advance, and then press-fitting a rapid rR electrolyte and then gelling the liquid within the battery separator. It is characterized by allowing
鉛蓄電池の容量低下の原因はガラスマット内に含まれて
いる硫酸が、充1!おるいは放電中に下部に移動するこ
とにある。すなわち、尚初極板に均一濃度でtL酸が保
持されていても、試験を繰返すうちに次第に上部の硫酸
は下部に流下し始める。この工うな状態になると、やが
て極板の上部部分は十分な硫酸と接触せず、電池反応に
関与しなくなり、最終的に硫酸と接触している極板の下
部のみが放電することになり全体の容量は低下する。と
ころが、本発明では充放電サイクルを行っても容量の低
下はなく、従来の方法で作表した密閉鉛蓄電池で見られ
たエラな液の流下は起らなかった。これは、本発明を施
した電池では硫酸がカラス繊維とケイ素化合物微粒子に
よって充分捕捉され、固定された状態にあるためと推定
される。The cause of the decrease in the capacity of lead-acid batteries is the sulfuric acid contained in the glass mat. The reason for this is that it moves to the bottom during discharge. That is, even if tL acid is initially held at a uniform concentration on the electrode plate, as the test is repeated, the sulfuric acid in the upper part gradually begins to flow down to the lower part. If this happens, the upper part of the electrode plate will not come into contact with enough sulfuric acid and will no longer participate in the battery reaction, and eventually only the lower part of the electrode plate that is in contact with the sulfuric acid will be discharged, causing the entire battery to discharge. capacity decreases. However, in the present invention, there was no decrease in capacity even after charging and discharging cycles, and the abnormal flow of liquid that was observed in sealed lead-acid batteries tabulated using the conventional method did not occur. This is presumed to be because in the battery according to the present invention, sulfuric acid is sufficiently captured and fixed by the glass fibers and silicon compound fine particles.
本発明で使用するガラスマット自体は通常のもので工い
が、ガラス繊維は平均直径10μm以下のものが特に好
適である。Although the glass mat itself used in the present invention can be any ordinary one, glass fibers having an average diameter of 10 μm or less are particularly suitable.
ま次、この中に分布させるケイ素化合物の例としては5
102が挙けられ、100μm以下の粒度のものが好適
である。そしてその添加量は、硫酸に対して1〜7重量
−が適当である。7M槍チ超では硫酸と81とが反応し
、硫酸が固まってし1い実用上問題がめる。他方、1N
量チ未満では効果が実用土ない。Next, examples of silicon compounds distributed in this are 5
102, and those with a particle size of 100 μm or less are suitable. The appropriate amount of addition is 1 to 7% by weight based on sulfuric acid. When the temperature exceeds 7M, the sulfuric acid and 81 react with each other, causing the sulfuric acid to solidify, which poses a practical problem. On the other hand, 1N
If the amount is less than 1, the effect will not be practical.
以下、本発明全実施例に工って*に具体的に説明するが
、本発明はこれに限定されない。Hereinafter, all embodiments of the present invention will be explained in detail in *, but the present invention is not limited thereto.
実施例1
ここでは、総高さ700mの電池で、本発明に従って作
製したもの、及び従来の方法で作製したものの2種類に
エフ充放電サイクル試験を行った。充放電サイクル試験
の条件は次の通りである。Example 1 Here, an F charge/discharge cycle test was conducted on two types of batteries with a total height of 700 m, one manufactured according to the present invention and one manufactured by a conventional method. The conditions for the charge/discharge cycle test are as follows.
放電:α10(187)
充電:2.5V、48時間
この試験の結果を第1図に示す。すなわち第1図は充放
電サイクル試験結果を放電回数(横軸]と放電il(%
、縦軸りとの関係で示すグラフである。図中、Δ印は本
発明の実施例、O印は従来例を示す。充放電サイクル試
験時の放電持続時間は、従来の液保持法では放電回数と
共に大きく低下してくるが、本発明実施例ではほとんど
放電時間に変化は生じなかった。Discharge: α10 (187) Charge: 2.5V, 48 hours The results of this test are shown in FIG. In other words, Figure 1 shows the charge/discharge cycle test results in terms of the number of discharges (horizontal axis) and discharge IL (%).
, is a graph shown in relation to the vertical axis. In the figure, the symbol Δ indicates the embodiment of the present invention, and the symbol O indicates the conventional example. In the conventional liquid retention method, the discharge duration during the charge/discharge cycle test greatly decreases with the number of discharges, but in the examples of the present invention, there was almost no change in the discharge time.
これらの結果から明らかな工うに、本発明を実施すると
従来の技術で作製していfc電池で生じていた液の分布
を防止することが可能でるる。It is clear from these results that by carrying out the present invention, it is possible to prevent the liquid distribution that occurs in FC batteries manufactured using conventional techniques.
以上説明した工すに、本発明に工ればガラスマット内の
f!L酸電解液の量、両度の不均一を防止することがで
き、充放電を繰返す状態で使用しても安定した性能を示
す密閉鉛蓄電池を実現することができる。If the method described above is used according to the present invention, f! It is possible to prevent non-uniformity in the amount and degree of L acid electrolyte, and it is possible to realize a sealed lead-acid battery that exhibits stable performance even when used under repeated charging and discharging conditions.
また、実施例で示す工うに、大形の極板を使用した密閉
鉛蓄電池においても本発明は有効であり、大形の密閉鉛
蓄電池を製造する上でも、大きな効果がある。Further, as shown in the examples, the present invention is also effective in sealed lead-acid batteries using large-sized electrode plates, and has great effects in manufacturing large-sized sealed lead-acid batteries.
第1図は、本発明の1実施例と、従来の技術で作製した
密閉鉛蓄電池の充放電サイクル試験結果を示すグラフで
ある。FIG. 1 is a graph showing the results of a charge/discharge cycle test of a sealed lead-acid battery manufactured using an embodiment of the present invention and a conventional technique.
Claims (1)
マットの内部にケイ素化合物の微粉末を均一に分布させ
たガラスマットを介して、正極板と負極板を交互に配置
して極板群が組立てられており、該極板群を電池容器に
収容した後に電解液を注入することにより該微粉末によ
つて該電解液がゲル化されていることを特徴とする密閉
鉛蓄電池。1. An electrode plate group is assembled by alternately arranging positive and negative electrode plates through a glass mat in which fine powder of a silicon compound is evenly distributed inside a sheet-like glass mat made of glass fiber as a living body. 1. A sealed lead-acid battery, characterized in that the electrolytic solution is injected after the electrode plate group is housed in a battery container, so that the electrolytic solution is gelled by the fine powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60275132A JPS62136750A (en) | 1985-12-09 | 1985-12-09 | Hermetically sealed lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60275132A JPS62136750A (en) | 1985-12-09 | 1985-12-09 | Hermetically sealed lead storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62136750A true JPS62136750A (en) | 1987-06-19 |
Family
ID=17551141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60275132A Pending JPS62136750A (en) | 1985-12-09 | 1985-12-09 | Hermetically sealed lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62136750A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1525632A2 (en) * | 2001-12-29 | 2005-04-27 | Hawker Batteries Limited | Improvements in or relating to energy storage devices |
-
1985
- 1985-12-09 JP JP60275132A patent/JPS62136750A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1525632A2 (en) * | 2001-12-29 | 2005-04-27 | Hawker Batteries Limited | Improvements in or relating to energy storage devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62136750A (en) | Hermetically sealed lead storage battery | |
JPH042060A (en) | Sealed type lead acid battery | |
JPS6237882A (en) | Closed type lead storage battery | |
JPH06260208A (en) | Sealed lead-acid battery | |
JPS6174266A (en) | Enclosed lead storage battery | |
JP2559610B2 (en) | Method for manufacturing sealed lead acid battery | |
JPH0628169B2 (en) | Sealed lead acid battery | |
JP3261417B2 (en) | Sealed lead-acid battery | |
JP2002110125A (en) | Lead-acid battery and its manufacturing method | |
JP2958791B2 (en) | Sealed lead-acid battery | |
JP3099527B2 (en) | Manufacturing method of sealed lead-acid battery | |
JPS59151772A (en) | Manufacture of sealed lead-acid battery | |
JP2591975B2 (en) | Sealed clad type lead battery | |
JPH06314572A (en) | Sealed lead-acid battery | |
JP2952374B2 (en) | Sealed lead-acid battery | |
JP2995780B2 (en) | Sealed lead-acid battery | |
JPS6211466B2 (en) | ||
JP3324631B2 (en) | Sealed lead-acid battery | |
JPS63221564A (en) | Sealed lead-acid battery | |
JPH05151988A (en) | Sealed type lead acid battery | |
JPH0787095B2 (en) | Sealed clad lead acid battery | |
JPH05307971A (en) | Sealed lead-acid battery | |
JPH0492376A (en) | Sealed type lead storage battery | |
JPH05326011A (en) | Sealed lead-acid battery | |
JPS61250968A (en) | Sealed lead-acid battery |