JPS6213493B2 - - Google Patents
Info
- Publication number
- JPS6213493B2 JPS6213493B2 JP11541782A JP11541782A JPS6213493B2 JP S6213493 B2 JPS6213493 B2 JP S6213493B2 JP 11541782 A JP11541782 A JP 11541782A JP 11541782 A JP11541782 A JP 11541782A JP S6213493 B2 JPS6213493 B2 JP S6213493B2
- Authority
- JP
- Japan
- Prior art keywords
- medium
- condenser
- conduit
- evaporator
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
【発明の詳細な説明】
本発明は、冷熱発電設備に係り、特にランキン
サイクルを有する冷熱発電設備(以下、冷発と
略)に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cold power generation equipment, and more particularly to cold power generation equipment having a Rankine cycle (hereinafter abbreviated as cold power generation).
従来の冷発例を第1図により説明する。 A conventional cold eruption example will be explained with reference to FIG.
第1図で、凝縮器10とランキン媒体ポンプ
(以下、媒体ポンプと略)11、媒体ポンプ11
と蒸発器12、蒸発器12と膨張タービン(以
下、タービンと略)13、タービン13と凝縮器
10とは、閉回路をなすようにそれぞれ導管30
〜33で連結され、タービン13には、発電機1
4が連接されている。凝縮器10には、伝熱管2
0aが内設され、その一端には、低温液化ガス送
液ポンプ(以下、送液ポンプと略)15に連結さ
れた導管34が連結されている。送液ポンプ15
と低温液化ガス貯蔵タンク(以下、タンクと略)
16とは、導管35で連結されている。伝熱管2
0aの他端は、導管36で加温器17に連結され
ている。加温器17には、別途使用先(図示省
略)に連結された導管37が連結されている。加
温器17には、伝熱管20bが内設され、その一
端には、導管38が、他端には導管39がそれぞ
れ連結されている。蒸発器12には、伝熱管20
cが内設され、その一端には、導管39が、他端
には、熱媒排出路(以下、排出路と略)50aに
開放した導管40がそれぞれ連結されている。な
お、ランキン媒体(以下、媒体と略)には、フロ
ン、プロパン等が使用されている。 In FIG. 1, a condenser 10, a Rankine medium pump (hereinafter abbreviated as a medium pump) 11, a medium pump 11
and evaporator 12, evaporator 12 and expansion turbine (hereinafter abbreviated as turbine) 13, and turbine 13 and condenser 10, each connected to a conduit 30 so as to form a closed circuit.
~ 33, and the turbine 13 is connected to the generator 1
4 are connected. The condenser 10 includes heat transfer tubes 2
A conduit 34 connected to a low temperature liquefied gas liquid feeding pump (hereinafter abbreviated as liquid feeding pump) 15 is connected to one end thereof. Liquid pump 15
and low-temperature liquefied gas storage tank (hereinafter abbreviated as tank)
16 through a conduit 35. Heat exchanger tube 2
The other end of Oa is connected to the warmer 17 via a conduit 36. The warmer 17 is connected to a conduit 37 that is connected to a separate user (not shown). A heat transfer tube 20b is installed inside the warmer 17, and a conduit 38 and a conduit 39 are connected to one end and the other end, respectively. The evaporator 12 includes a heat transfer tube 20
A conduit 39 is connected to one end thereof, and a conduit 40 open to a heat medium discharge path (hereinafter referred to as a discharge path) 50a is connected to the other end. Note that Freon, propane, etc. are used as the Rankine medium (hereinafter abbreviated as medium).
気化した媒体(以下、気化媒体と略)は、凝縮
器10で、タンク16から送液ポンプ15を介し
導管35,34を経て伝熱管20aに供給され、
伝熱管20aを流通する低温液化ガス、例えば、
LNGの冷熱を利用して凝縮、液化される。液化
された媒体(以下、液化媒体と略)は、凝縮器1
0から媒体ポンプ11を介し導管30,31を経
て蒸発器12に供給される。この液化媒体の一部
は蒸発器12で、導管38、伝熱管20b、導管
39を経て伝熱管20cに供給され、伝熱管20
cを流通した後、導管40より排出路50aに排
出される加熱源、例えば、海水により加熱、気化
される。この気化媒体は、蒸発器12から導管3
2を経てタービン13に供給され、ここで膨張す
ることでタービン13、発電機14を駆動する。
タービン13で膨張した気化媒体は、タービン1
3から導管33を経て凝縮器10に循環供給さ
れ、ここで再び凝縮、液化される。一方、伝熱管
20aを流通する間に、気化媒体を凝縮、液化す
ることで気化したLNGは、導管36を経て加温
器17に供給され、ここで、導管38より伝熱管
20bに供給され、伝熱管20bを流通した後
に、導管39より伝熱管20cに送給される海水
により加温された後に、加温器17から導管37
を経て別途使用先に送給される。 The vaporized medium (hereinafter abbreviated as vaporized medium) is supplied from the tank 16 to the heat transfer tube 20a via the liquid feed pump 15 and the conduits 35 and 34 in the condenser 10,
The low temperature liquefied gas flowing through the heat exchanger tube 20a, for example,
It is condensed and liquefied using the cold energy of LNG. The liquefied medium (hereinafter abbreviated as liquefied medium) is transferred to the condenser 1
0 via a medium pump 11 and via conduits 30, 31 to an evaporator 12. A part of this liquefied medium is supplied to the heat exchanger tube 20c in the evaporator 12 through the conduit 38, the heat exchanger tube 20b, and the conduit 39.
After flowing through c, it is heated and vaporized by a heating source, for example, seawater, which is discharged from the conduit 40 to the discharge path 50a. This vaporized medium is transferred from the evaporator 12 to the conduit 3
The gas is supplied to the turbine 13 via 2, and expands there to drive the turbine 13 and the generator 14.
The vaporized medium expanded in the turbine 13 is transferred to the turbine 1
3 through a conduit 33 to the condenser 10, where it is again condensed and liquefied. On the other hand, LNG vaporized by condensing and liquefying the vaporization medium while flowing through the heat exchanger tube 20a is supplied to the warmer 17 via the conduit 36, and here, is supplied to the heat exchanger tube 20b from the conduit 38, After flowing through the heat exchanger tubes 20b, the seawater is heated by the seawater supplied from the conduit 39 to the heat exchanger tubes 20c, and then the seawater is transferred from the warmer 17 to the conduit 37.
After that, it is separately sent to the user.
このような冷発では、油、例えば、タービンで
気化媒体が膨張する際、タービンで使用されてい
る潤滑油が気化媒体に混入し、したがつて、蒸発
器での液化媒体の潤滑油濃度が高まるため、蒸発
器で激しい発泡現象が生じ、その結果、ミストを
多量に同伴した気化媒体がタービンに供給される
ようになるため、タービンが損傷して運転が不可
能となり冷発を連続して運転できなくなるといつ
た欠点があつた。 In such cold blowouts, oil, e.g. the lubricating oil used in the turbine, mixes with the vaporized medium when it expands in the turbine, thus reducing the lubricating oil concentration of the liquefied medium in the evaporator. As a result, a severe foaming phenomenon occurs in the evaporator, and as a result, a vaporized medium containing a large amount of mist is supplied to the turbine, which damages the turbine and makes it impossible to operate, resulting in continuous cold generation. The problem was that I was no longer able to drive.
本発明の目的は、上記した欠点を除去すること
で、連続して運転できる冷発を提供することにあ
る。 The object of the present invention is to provide a refrigerated generator that can be operated continuously by eliminating the above-mentioned drawbacks.
本発明の特徴は、凝縮器から蒸発器に送給され
る途中若しくは凝縮器より一部抜出された液化媒
体から、該液化媒体に混入している油を分離する
油分離器を設けると共に、該油分離器で油を分離
された気化媒体を凝縮器に戻す導管を油分離器と
凝縮器とに連結したことで、蒸発器での液化媒体
の油濃度を低下させて激しい発泡現象を抑制する
ようにしたことにある。 A feature of the present invention is that an oil separator is provided to separate oil mixed in the liquefied medium from the liquefied medium that is being fed from the condenser to the evaporator or partially extracted from the condenser. By connecting the oil separator and condenser with a conduit that returns the vaporized medium from which oil has been separated in the oil separator to the condenser, the oil concentration of the liquefied medium in the evaporator is reduced and severe foaming phenomenon is suppressed. It's what I chose to do.
本発明の一実施例を第2図により説明する。な
お、第2図で、第1図と同一装置等は同一符号で
示し説明を省略する。 An embodiment of the present invention will be explained with reference to FIG. Note that in FIG. 2, the same devices as in FIG.
第2図で、油分離器18には、導管30より分
岐し、弁50、逆止弁51が設けられた導管41
が連結されている。油分離器18の頂部には、導
管42が連結され、導管42は凝縮器10の頂部
に連結されている。油分離器18の底部には、排
油タンク19に連結され弁52が設けられた導管
43が連結されている。油分離器18には、伝熱
管20dが内設され、その一端には、導管38よ
り分岐し弁53が設けられた導管44が、他端に
は、排出路50bに開放した導管45がそれぞれ
連結されている。 In FIG. 2, the oil separator 18 has a conduit 41 branched from the conduit 30 and provided with a valve 50 and a check valve 51.
are connected. A conduit 42 is connected to the top of the oil separator 18 and conduit 42 is connected to the top of the condenser 10 . A conduit 43 connected to the drain oil tank 19 and provided with a valve 52 is connected to the bottom of the oil separator 18 . The oil separator 18 is provided with a heat transfer tube 20d, at one end of which is a conduit 44 branched from the conduit 38 and provided with a valve 53, and at the other end is a conduit 45 open to a discharge path 50b. connected.
蒸発器12から導管32を経てタービン13に
供給された気化媒体は、ここで膨張し、その際、
タービン13で使用されている潤滑油が気化媒体
に混入する。潤滑油が混入した気化媒体はタービ
ン13から導管33を経て凝縮器10に循環供給
され、ここで、タンク16から送液ポンプ15を
介し導管35,34を経て伝熱管20aに供給さ
れ伝熱管20aを流通するLNGの冷熱を利用し
て凝縮、液化する。この潤滑油が混入した液化媒
体は、凝縮器10から媒体ポンプ11を介し導管
30,31を経て蒸発器12に供給される訳であ
るが、しかし、この状態を持続すれば、蒸発器1
2での液化媒体の潤滑油濃度が高まり、激しい発
泡現象が生じるようになる。そこで、導管30を
媒体ポンプ11に向つて流通する潤滑油が混入し
た液化媒体を、一部、例えば、弁50の開度を調
節することで蒸発器12での液化媒体の潤滑油濃
度が激しい発泡現象を抑制可能な濃度以下となる
量(以下、所定量と略)抜出し、弁50、逆止弁
51を介し導管41を経て油分離器18に供給す
る。潤滑油が混入した液化媒体は、ここで、弁5
3を開放することで導管38,44を経て伝熱管
20dに供給され伝熱管20dを流通した後に、
導管45より排出される海水により加熱される。
この加熱により、液化媒体は蒸発気化し潤滑油と
分離される。気化媒体は油分離器18から導管4
2を経て凝縮器10に戻され、ここで、再び凝
縮、液化される。一方、潤滑油は油分離器18で
次第に濃縮された後に、定期的に弁52を開放す
ることで油分離器18から弁52を介し導管43
を経て排油タンク19に抜出され処理される。 The vaporized medium supplied from the evaporator 12 via the conduit 32 to the turbine 13 is expanded here, with the
The lubricating oil used in the turbine 13 is mixed into the vaporizing medium. The vaporized medium mixed with lubricating oil is circulated and supplied from the turbine 13 to the condenser 10 via the conduit 33, and then supplied from the tank 16 via the liquid feed pump 15 to the conduits 35 and 34 to the heat exchanger tube 20a. is condensed and liquefied using the cold heat of circulating LNG. The liquefied medium mixed with the lubricating oil is supplied from the condenser 10 to the evaporator 12 via the medium pump 11 and the conduits 30 and 31. However, if this state continues, the evaporator 12
The lubricating oil concentration of the liquefied medium at step 2 increases, and a severe foaming phenomenon begins to occur. Therefore, by adjusting a portion of the liquefied medium mixed with lubricating oil flowing through the conduit 30 toward the medium pump 11, for example, by adjusting the opening degree of the valve 50, the lubricating oil concentration of the liquefied medium in the evaporator 12 can be increased. An amount (hereinafter abbreviated as a predetermined amount) whose concentration is below that which can suppress the foaming phenomenon is extracted and supplied to the oil separator 18 via a conduit 41 via a valve 50 and a check valve 51. The liquefied medium mixed with lubricating oil is now passed through valve 5.
3 is opened, it is supplied to the heat exchanger tube 20d via the conduits 38 and 44, and after flowing through the heat exchanger tube 20d,
It is heated by the seawater discharged from the conduit 45.
Due to this heating, the liquefied medium is evaporated and separated from the lubricating oil. The vaporized medium flows from the oil separator 18 to the conduit 4.
2 and returned to the condenser 10, where it is again condensed and liquefied. On the other hand, after the lubricating oil is gradually concentrated in the oil separator 18, by periodically opening the valve 52, the lubricating oil is passed from the oil separator 18 to the conduit 43 via the valve 52.
The oil is then extracted to the waste oil tank 19 and processed.
本実施例のような冷発では、凝縮器から蒸発器
に送給される途中の潤滑油が混入した液化媒体を
所定量抜出して油分離器に供給し、ここで、媒体
と潤滑油とを分離しているので、蒸発器での液化
媒体の潤滑油濃度が高まることがなく、蒸発器で
の激しい発泡現象を抑制でき、したがつて、ミス
トを多量に同伴することなく気化媒体がタービン
に供給されるため、タービンの損傷を防止でき冷
発を連続して運転することができる。 In cold generation as in this embodiment, a predetermined amount of the liquefied medium mixed with lubricating oil that is being fed from the condenser to the evaporator is extracted and supplied to the oil separator, where the medium and lubricating oil are separated. Because they are separated, the lubricating oil concentration of the liquefied medium in the evaporator does not increase, suppressing the severe foaming phenomenon in the evaporator, and therefore allowing the vaporized medium to reach the turbine without entraining a large amount of mist. This prevents damage to the turbine and enables continuous cold generation operation.
なお、本実施例では、潤滑油が混入した液化媒
体を凝縮器から蒸発器へ送給される途中で抜出し
て油分離器に供給しているが、その他に、潤滑油
が混入した液化媒体を凝縮器より直接抜出して油
分離器に供給するようにしても良い。 In this example, the liquefied medium mixed with lubricating oil is extracted on the way from the condenser to the evaporator and supplied to the oil separator. The oil may be directly extracted from the condenser and supplied to the oil separator.
本発明は、以上説明したように、凝縮器から蒸
発器に送給される途中若しくは凝縮器より一部抜
出された液化媒体から、該媒体に混入している油
を分離する油分離器を設けると共に、該油分離器
で油分を分離された気化媒体を凝縮器に戻す導管
を油分離器と凝縮器とに連結したことで、蒸発器
での激しい発泡現象を抑制できミストを多量に同
伴することなく気化媒体をタービンに供給できる
ので、タービンの損傷を防止でき冷発を連続して
運転できる効果がある。 As explained above, the present invention provides an oil separator that separates oil mixed in the liquefied medium while it is being fed from the condenser to the evaporator or partially extracted from the condenser. In addition, by connecting the oil separator and condenser with a conduit that returns the vaporized medium from which oil has been separated in the oil separator to the condenser, it is possible to suppress the severe foaming phenomenon in the evaporator and entrain a large amount of mist. Since the vaporized medium can be supplied to the turbine without any damage to the turbine, damage to the turbine can be prevented and cold generation can be operated continuously.
第1図は、従来のランキンサイクルを有する冷
発の系統図、第2図は、本発明によるランキンサ
イクルを有する冷発の一実施例を示す系統図であ
る。
10……凝縮器、12……蒸発器、13……タ
ービン、14……発電機、18……油分離器。
FIG. 1 is a system diagram of a conventional cold power plant having a Rankine cycle, and FIG. 2 is a system diagram showing an embodiment of a cold power plant having a Rankine cycle according to the present invention. 10... Condenser, 12... Evaporator, 13... Turbine, 14... Generator, 18... Oil separator.
Claims (1)
機とで構成されランキンサイクルを有する冷熱発
電設備において、前記凝縮器で凝縮、液化され前
記蒸発器に送給される途中若しくは凝縮器より一
部抜出されたランキン媒体から、該媒体に混入し
ている油を分離する油分離器を設けると共に、該
分離器で油を分離され蒸発、気化したランキン媒
体を凝縮器に戻す導管を油分離器と凝縮器とに連
結したことを特徴とする冷熱発電設備。1 In a cold-thermal power generation facility having a Rankine cycle and consisting of a condenser, an evaporator, an expansion turbine, and a power generator, the condenser is condensed and liquefied in the condenser and is sent to the evaporator or is removed from the condenser. An oil separator is installed to separate the oil mixed in the medium from the extracted Rankine medium, and a conduit is installed to separate the oil in the separator and return the vaporized Rankine medium to the condenser. A cold power generation facility characterized by being connected to a container and a condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11541782A JPS597713A (en) | 1982-07-05 | 1982-07-05 | Cold power generation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11541782A JPS597713A (en) | 1982-07-05 | 1982-07-05 | Cold power generation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS597713A JPS597713A (en) | 1984-01-14 |
JPS6213493B2 true JPS6213493B2 (en) | 1987-03-26 |
Family
ID=14662050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11541782A Granted JPS597713A (en) | 1982-07-05 | 1982-07-05 | Cold power generation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS597713A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59119003A (en) * | 1982-12-24 | 1984-07-10 | Hitachi Ltd | Operation of cryogenic power plant |
-
1982
- 1982-07-05 JP JP11541782A patent/JPS597713A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS597713A (en) | 1984-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6311504B1 (en) | Absorption heat pump and method for controlling the same | |
EP0122017B1 (en) | Low temperature engine system | |
US5421157A (en) | Elevated temperature recuperator | |
US5555731A (en) | Preheated injection turbine system | |
KR880002380B1 (en) | Recovery of power from vaporization of liquefied natural gas | |
RU2188367C2 (en) | Refrigerating plant with closed cycle circulation | |
US4520634A (en) | Multi-stage absorption refrigeration system | |
US5584193A (en) | Absorption-type refrigeration systems and methods | |
WO1996034236A1 (en) | Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller | |
JP2008298406A (en) | Multiple heat pump-type steam-hot water generation device | |
DK1110039T3 (en) | Absorption refrigerator | |
US4210461A (en) | Method for recovering heat in a vapor degreasing apparatus | |
JPS59107160A (en) | Method of operating two mode type heat pump and two mode type heat pump for operating said method | |
JPS6213493B2 (en) | ||
US4403480A (en) | Method of and apparatus for recovering heat energy contained in vapors of multi-stage evaporators installed for thermal material-separating processes | |
AU9766698A (en) | Method for supplying make-up water from a source to the receptacle tank of an evaporative condenser and/or a cooling tower | |
JPH03111606A (en) | Water generation binary power generator | |
JPH02188605A (en) | Compound fluid turbine plant | |
JPS5816137A (en) | Chilled water cooling equipment for air conditioning | |
JP2002257385A (en) | Ice slurry and low temperature ice and artificial snow taking out system of steam compression freezer utilizing sodium chloride | |
JPS59119003A (en) | Operation of cryogenic power plant | |
JPS5829819Y2 (en) | Absorption heat pump | |
JPH0972203A (en) | Method and device for recovering lng low temperature heat | |
JP2000199655A (en) | Ammonia absorption refrigerator and control method of the evaporator | |
JPS59185112A (en) | Power cable waste heat recovery device |