[go: up one dir, main page]

JPS62133049A - Manufacture of superconducting wire of compound - Google Patents

Manufacture of superconducting wire of compound

Info

Publication number
JPS62133049A
JPS62133049A JP60271918A JP27191885A JPS62133049A JP S62133049 A JPS62133049 A JP S62133049A JP 60271918 A JP60271918 A JP 60271918A JP 27191885 A JP27191885 A JP 27191885A JP S62133049 A JPS62133049 A JP S62133049A
Authority
JP
Japan
Prior art keywords
heat treatment
composite material
superconducting wire
compound
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60271918A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamada
清 山田
Kenjiro Konishi
小西 健二郎
Yasuzo Tanaka
田中 靖三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60271918A priority Critical patent/JPS62133049A/en
Publication of JPS62133049A publication Critical patent/JPS62133049A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To develop a superconducting wire having excellent critical current density by plating a composite material of Cu-V, Cu-Nb, etc., with Ga, Sn, etc., and by subjecting the above material to intermediate heat treatment at specific temp. and further to successive high temperature heat treatment. CONSTITUTION:A Cu-V composite material 1 consisting of 80atom% V and Cu is plated with Ga by hot dipping, electroplating, and sputtering methods to form a Ga-plated layer 2. Then the Ga coating 2 on the Cu-V composite material 1 is subjected to intermediate heat treatment in an inert-gas atmosphere or in vacuum at 240-254 deg.C for 0.5-10 days. The intermetallic compound 3 such as CuGa2, etc., formed on the above composite material 1 by above- mentioned heat treatment is further subjected to high temperature heat treatment at 500-700 deg.C, so that superconducting layer 4 of compound such as V3Ga, etc., is formed on the composite material 1 by solid diffusion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はIn−3itu法、又は粉末法により化合物超
電導線材を製造する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a method for manufacturing compound superconducting wires by an In-3 itu method or a powder method.

(従来の技術) 従来In−3itu法によりV 3 Ga化合物超電導
線材又はNb3 Sn化合物超電導線材を製造する方法
としては、V 3 Ga化化合物超電導月刊場合にはま
ずCu−Vm合線材を製造した後、この表面にGa溶融
メッキを行い、然る後450〜600℃において3〜6
日間高温熱処理を行いGaを拡散せしめてえているもの
である。又Nb3 Sn化合物超電導線材の場合にはC
u −N b 111合線材を製造した後、この表面に
Sn溶融メッキを行い然る後500〜700℃において
3〜6日間高温熱処理を行いSnを拡散せしめてえてい
るものである。
(Prior art) As a conventional method for manufacturing a V 3 Ga compound superconducting wire or a Nb 3 Sn compound superconducting wire by the In-3 itu method, in the case of V 3 Ga compound superconducting wire, first a Cu-Vm composite wire is manufactured, and then , Ga hot-dip plating is performed on this surface, and then 3-6
It is obtained by performing high-temperature heat treatment for several days to diffuse Ga. In addition, in the case of Nb3 Sn compound superconducting wire, C
After manufacturing the u-N b 111 composite wire, the surface is hot-dip plated with Sn and then subjected to high-temperature heat treatment at 500 to 700° C. for 3 to 6 days to diffuse Sn.

このように高温拡散熱処理のみでGa 、 Snを拡散
反応せしめているものであるが、前記の如<Ga又はS
nをメッキを施す工程において、Ga、Sn又は中間化
合物等が溶融拡散して融点の合金又は化合物に変化する
際に揮発物が溶融した線材の表面に露出しボイド或は亀
裂を生じてGa、 Snの偏在化をまねくと共に拡散後
の線材が脆くなり、Jc(臨界電流密度)の高いものを
うろことが出来ないという欠点があった。
In this way, Ga and Sn are caused to undergo a diffusion reaction only by high-temperature diffusion heat treatment.
In the process of plating n, when Ga, Sn, or intermediate compounds, etc. melt and diffuse and change to an alloy or compound with a melting point, volatiles are exposed on the surface of the molten wire, creating voids or cracks, and forming Ga, Sn, or intermediate compounds. This leads to uneven distribution of Sn, and the wire after diffusion becomes brittle, which has the disadvantage that it cannot pass through a wire with a high Jc (critical current density).

(発明が解決しようとする問題点) 本発明はかかる現状に鑑み鋭意研究を行った結果、超電
導線材の表面にボイドや亀裂を生ぜしめることなく、優
れた臨界電流密度を宵する超電導線材をえんとするもの
である。
(Problems to be Solved by the Invention) As a result of intensive research in view of the current situation, the present invention has been developed to provide a superconducting wire that has an excellent critical current density without producing voids or cracks on the surface of the superconducting wire. That is.

(問題点を解決するための手段) 本発明方法はCuとX金属からなるCu−X?U合材を
ベースとするXmYn化合物超電導線の製造方法におい
て、Cu−X複合材にX金属をメッキにて被着した後、
該メッキ工程にて形成されたCu−Y低融点化合物を固
体状態にて拡散しうる中間熱処理を行った後、次いで高
温熱処理を行うことを特徴とするものである。
(Means for Solving the Problems) The method of the present invention is based on the Cu-X? In the method for manufacturing an XmYn compound superconducting wire based on a U composite material, after plating the X metal onto the Cu-X composite material,
The method is characterized in that after performing an intermediate heat treatment that allows the Cu-Y low melting point compound formed in the plating process to be diffused in a solid state, a high temperature heat treatment is then performed.

本発明方法にてX金属としてはV、Nbを指すものであ
り、又メッキを施すためのX金属としてはGa。
In the method of the present invention, the X metal refers to V and Nb, and the X metal used for plating is Ga.

Soを指すものである。It refers to So.

なおX金属をメッキする方法としては溶融メッキ、電気
メッキ、スパッタメッキの方法にて行うものである。
Note that the method for plating the X metal is hot-dip plating, electroplating, or sputter plating.

又本発明方法にて中間熱処理温度としてはGaの場合に
はCu−1O〜80AT%■を29〜254℃において
0.5〜10日間行うものであり、Nbの場合にはCu
−1O−90AT%Nbを225〜414℃において0
.5〜10口間行うものである。
In addition, in the method of the present invention, the intermediate heat treatment temperature is Cu-1O~80AT%■ in the case of Ga at 29~254°C for 0.5~10 days, and in the case of Nb, Cu
-1O-90AT%Nb at 225-414℃
.. This should be done for 5 to 10 mouths.

なお熱処理雰囲気は流気不活性、密閉不活性中、連続真
空排気、密閉真空中にて行うものである。
The heat treatment atmosphere is one in which the heat treatment is carried out in a flowing air inert state, a closed inert state, a continuous vacuum evacuation state, and a closed vacuum state.

又本発明方法において高温熱処理温度としては500〜
700℃にて行うものである。
In addition, in the method of the present invention, the high temperature heat treatment temperature is 500~
This is carried out at 700°C.

(作用) 本発明方法は上述の如< Cu−V或はCu−Nbの複
合祠にGa、 Snをメッキを行った後、上記の如き温
度にて中間熱処理を行うことにより、このメッキ工程に
て生成されるCu−Ga 、 Cu−8nの低融点化合
物例えばCu−Ga 2 、 Cu6−3n5等を溶融
せしめることなく固体拡散して消滅せしめることにより
脆化することのない機械的特性に優れた超電導線材をう
ることが出来るものである。即ち第1図(A)に示す如
<Cu−V段合材料1にGaの溶融メッキ2を施した場
合、これをそのまま高温熱処理を行うと第1図(B)に
示す如<Gaや中間化合物(CuGa2)3が偏在化し
超電導線材を著しく脆くすることが認められた。
(Function) The method of the present invention is performed by plating Ga and Sn on the Cu-V or Cu-Nb composite as described above, and then performing an intermediate heat treatment at the above-mentioned temperature. It has excellent mechanical properties that do not cause embrittlement by dispersing low melting point compounds such as Cu-Ga and Cu-8n, such as Cu-Ga2 and Cu6-3n5, which are produced by solid-state diffusion and disappearing without melting. It can produce superconducting wire. That is, when hot-dip Ga plating 2 is applied to Cu-V step material 1 as shown in FIG. 1(A), if this is directly subjected to high-temperature heat treatment, as shown in FIG. 1(B), Ga and intermediate It was observed that the compound (CuGa2) 3 was unevenly distributed and made the superconducting wire extremely brittle.

この原因を究明するために上記のGaをメッキした1試
料について示差走査熱量計(DSCという)により50
〜500℃の温度範囲で測定した処250〜265°C
にて吸熱反応が表われていることを確認した。
In order to investigate the cause of this, one sample plated with Ga was analyzed using a differential scanning calorimeter (DSC).
250-265°C measured in a temperature range of ~500°C
It was confirmed that an endothermic reaction was occurring.

そこでCuGaz化合物が形成されているGa溶融メッ
キを施した試料について240〜254℃にて1〜20
予備拡散熱処理を行った後、再度DSCにて50〜50
0°Cの温度範囲で測定した処理1図(C)に示すIJ
、o < CuGa2化合物は全く消失しV3 Gaが
形成されていることが確認された。
Therefore, for samples subjected to Ga hot-dip plating in which CuGaz compounds are formed, 1 to 20
After pre-diffusion heat treatment, DSC was performed again at 50-50
Treatment 1 IJ shown in Figure (C) measured in a temperature range of 0 °C
, o < It was confirmed that the CuGa2 compound completely disappeared and V3 Ga was formed.

(実施例) 厚さ100〜150μ、幅5 mmのCuV m合線祠
の表面にGaの溶融メッキを施した後、250℃にて1
日間中間熱処理を行い、次いで500℃にて4日間熱処
理を行って本発明超電導線材をえた。
(Example) After applying Ga hot-dip plating to the surface of a CuV m composite wire shrine with a thickness of 100 to 150 μm and a width of 5 mm, it was plated at 250°C for 1
Intermediate heat treatment was performed for one day, and then heat treatment was performed at 500° C. for 4 days to obtain a superconducting wire of the present invention.

斯くして得た本発明超電導線材についてその性能を試み
るために破断時歪み率及びJcを測定した。
In order to test the performance of the thus obtained superconducting wire of the present invention, the strain rate at break and Jc were measured.

その結果は第1表に示す通りである。The results are shown in Table 1.

なお本発明超電導線材と比較するために中間熱処理を行
うことなく、メッキ線材を高温拡散熱処理を行って?1
すた超電導線材についても同様破断時歪み率及びJcを
測定してその結果を第1表に併記した。
In addition, in order to compare with the superconducting wire of the present invention, the plated wire was subjected to high-temperature diffusion heat treatment without performing intermediate heat treatment. 1
The strain rate at break and Jc of the superconducting wire were similarly measured, and the results are also listed in Table 1.

(効果) 以」二詳述した如く本発明方法によれば次の如き効果を
有する。
(Effects) As described in detail below, the method of the present invention has the following effects.

(1)超電導線材(テープ)の表面に亀裂、ボイドを生
することなく超電導特性に優れたものをうることか出来
る。
(1) A superconducting wire (tape) with excellent superconducting properties can be obtained without producing cracks or voids on the surface.

(2)  破断n:;歪み率が優れているため、マグネ
ン!・に蓚く際に、曲率半径を小さくして巻くことか川
明るため高磁場かえられ易い。
(2) Fracture n: ; Because of its excellent strain rate, Magnen!・When winding, it is easy to change the high magnetic field because the radius of curvature is small and the winding is light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(Δ)は超電導線材において複合材料にメッキを
施した状態の断面図、第1図(B)は第1図(Δ)のメ
ッキ線に高温熱処理を施した状態の断面図、第1図(C
)は本発明方法の如く第1図(A)線に中間熱処理を施
した状態の断面図である。 1・・・複合材料、2・・・メッキ、3・・・CuGa
2の中間化合物、4・・・V3 Ga層。 出願人代理人 弁理士 鈴江武彦 第10(A) 第1図(B)
Figure 1 (Δ) is a cross-sectional view of the composite material plated in the superconducting wire, Figure 1 (B) is a cross-sectional view of the plated wire in Figure 1 (Δ) that has been subjected to high-temperature heat treatment, Figure 1 (C
) is a cross-sectional view of a state in which intermediate heat treatment has been applied to the line (A) in FIG. 1 as in the method of the present invention. 1... Composite material, 2... Plating, 3... CuGa
2 intermediate compound, 4...V3 Ga layer. Applicant's agent Patent attorney Takehiko Suzue No. 10 (A) Figure 1 (B)

Claims (1)

【特許請求の範囲】[Claims] CuとX金属からなるCu−X複合材をベースとするX
mYn化合物超電導線の製造方法において、Cu−X複
合材にY金属をメッキにて被着した後、該メッキ工程に
て形成されるCu−Y低融点化合物を固体状態にて拡散
しうる中間熱処理を行った後、次いで高温熱処理を行う
ことを特徴とする化合物超電導線材の製造方法。
X based on Cu-X composite material consisting of Cu and X metal
In the method for producing an mYn compound superconducting wire, after plating a Y metal onto a Cu-X composite material, an intermediate heat treatment that can diffuse the Cu-Y low melting point compound formed in the plating process in a solid state. 1. A method for manufacturing a compound superconducting wire, which comprises performing a high-temperature heat treatment.
JP60271918A 1985-12-03 1985-12-03 Manufacture of superconducting wire of compound Pending JPS62133049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271918A JPS62133049A (en) 1985-12-03 1985-12-03 Manufacture of superconducting wire of compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271918A JPS62133049A (en) 1985-12-03 1985-12-03 Manufacture of superconducting wire of compound

Publications (1)

Publication Number Publication Date
JPS62133049A true JPS62133049A (en) 1987-06-16

Family

ID=17506683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271918A Pending JPS62133049A (en) 1985-12-03 1985-12-03 Manufacture of superconducting wire of compound

Country Status (1)

Country Link
JP (1) JPS62133049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0304061A2 (en) * 1987-08-20 1989-02-22 Sumitomo Electric Industries Limited Superconducting ceramics elongated body and method of manufacturing the same
US6794970B2 (en) * 2000-09-27 2004-09-21 Igc-Super Power, Llc Low alternating current (AC) loss superconducting coils

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0304061A2 (en) * 1987-08-20 1989-02-22 Sumitomo Electric Industries Limited Superconducting ceramics elongated body and method of manufacturing the same
US6794970B2 (en) * 2000-09-27 2004-09-21 Igc-Super Power, Llc Low alternating current (AC) loss superconducting coils

Similar Documents

Publication Publication Date Title
JPS5983757A (en) Formation of protective diffusion layer
JP2866265B2 (en) Method for producing high critical temperature superconducting flexible conductor
US4435228A (en) Process for producing NB3 SN superconducting wires
JP2829221B2 (en) Method of forming oxide film on metal substrate by thermal plasma evaporation method
JP3837749B2 (en) Oxide superconducting conductor and manufacturing method thereof
JPS62133049A (en) Manufacture of superconducting wire of compound
US4341572A (en) Method for producing Nb3 Sn superconductors
US3346467A (en) Method of making long length superconductors
Gershinskii et al. Investigation of reactive diffusion in the thin‐film system Cu Ti
US3868768A (en) Method of producing a composite superconductor
EP0033358B1 (en) Process for fabricating thin metal superconducting films of improved thermal cyclability and device
US6845254B2 (en) Nb3Ga multifilamentary superconducting wire and process for preparing the same
US3293076A (en) Process of forming a superconductor
JPH0297421A (en) Production of high temperature superconducting thin film
JPH0524806A (en) Oxide superconductor
Wada et al. A study on niobium carbide dispersed superconducting tapes
EP0749637B1 (en) Method for the preparation of a mixed oxide type superconducting material
JPS61284556A (en) Production of compound superconductive wire
Adam et al. Research and development efforts relative to superconducting materials. Final report.[Nb/sub 3/Sn tapes]
JPS6147705B2 (en)
JP2555089B2 (en) Method for manufacturing superconducting conductor
JPH06275152A (en) Manufacture of nb3sn superconducting wire
JPH01183176A (en) Manufacture of thin superconducting film
JPS60101814A (en) Method of producing nb3sn superconductive wire material
JPH048887B2 (en)