[go: up one dir, main page]

JPS62128544A - Gate array type semiconductor integrated circuit device - Google Patents

Gate array type semiconductor integrated circuit device

Info

Publication number
JPS62128544A
JPS62128544A JP60270344A JP27034485A JPS62128544A JP S62128544 A JPS62128544 A JP S62128544A JP 60270344 A JP60270344 A JP 60270344A JP 27034485 A JP27034485 A JP 27034485A JP S62128544 A JPS62128544 A JP S62128544A
Authority
JP
Japan
Prior art keywords
gate array
output buffer
integrated circuit
circuit device
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60270344A
Other languages
Japanese (ja)
Inventor
Masahiro Ouchi
大内 雅弘
Michihiko Uemura
植村 吾彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60270344A priority Critical patent/JPS62128544A/en
Publication of JPS62128544A publication Critical patent/JPS62128544A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/90Masterslice integrated circuits
    • H10D84/998Input and output buffer/driver structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 不発BAは、ECLゲートアレイ型半尋体集積回路装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of sedentary use] The unexploited BA relates to an ECL gate array type semicircular integrated circuit device.

〔従来の技術〕[Conventional technology]

従来ECL系のゲートアレイは、第4幽に示す様に必要
とする論理回路を#ll成する為の内部セル群16.外
部回路とECLゲートアレイのレベルの変換素行なう、
入カバッ7ア群」7.出力バッファ群18それにゲート
アレイ円部に各種の電源を供給する為の電源発生回路1
9から構成されていた0ま之、各部の消費電力をいかに
効率良く配分するかがゲートアレイ設計の大きなボイ/
トでもある。使用しているプロセスにエバスピード・パ
ワー檀が飽和してくる点があり、必要以上に消費電力を
増しても効果があ凍り期待できなくなる。。特にECL
系のゲートアレイは、外部に50〜70Ωの崖い負荷が
付くことが多い為に、出カパッ7アはかなシ低イ/ピー
ダ/スに設計する必要があり、この結果消費′電力が壇
刀口するのが一般的である。−例として、第5凶に示す
カレントスイッチの′磁流と、出力の立上り、立下り時
間のシミュレーション結果を第6図に示す。この例でも
カレントスイッチの電流が4mA程度までに、立上り、
立Fり時間短縮の効果はかなり期待できるが、4mA以
上になると、効果はあまりなく、むしろ消費電力の点で
不利になる。従来の設計では、人、出力バッファはすべ
て同一形状にし、規則的に配置δnていた為に上記の例
では、第6図の結果から4FFIAのカレントスイッチ
電流を用い立上り、立下り時間は、220psで設計す
るのが常であった0゛よた、特定の出力バッファ?特に
、#I運にしたいという要求に対しては、亜流切換方式
と称して、配^hパターンr辺加して1例えば、カレン
トスイッチ電流が2培になる様に設計されたゲートアレ
イもあるが、この様に回路に融遮性全持たせると通常は
ほとんど使用しlい素子が工■カロして不経済な事も多
い。又、従来の電流切換型では、せいぜい2倍の′電流
を流す程度であったが、特定のピンが、システム全体の
クロックの様に特に高速性が要求される場合には、さら
に電流全増して、累子の性能限界まで使用したい事かめ
る。この株な用途には、従来のECL型ゲ型ゲージアレ
イ、不向きであった。
A conventional ECL gate array has an internal cell group 16. for forming the necessary logic circuit, as shown in the fourth column. Performs level conversion between external circuit and ECL gate array.
Irukaba 7a Group” 7. A power generation circuit 1 for supplying various kinds of power to the output buffer group 18 and the circular portion of the gate array.
The main issue in gate array design is how to efficiently allocate the power consumption of each part.
It is also There is a point in the process being used where the Evaspeed power supply becomes saturated, and even if the power consumption is increased more than necessary, the effect freezes and expectations are lost. . Especially ECL
Since the gate array of the system often has a steep external load of 50 to 70 Ω, it is necessary to design the output capacitor to have a very low resistance. It is common to use swords. - As an example, Fig. 6 shows simulation results of the magnetic current of the current switch shown in No. 5, and the rise and fall times of the output. In this example, the current of the current switch rises to about 4mA,
The effect of shortening the rise time can be expected to be considerable, but if it exceeds 4 mA, the effect will not be so great, and it will be disadvantageous in terms of power consumption. In the conventional design, the output buffers were all of the same shape and regularly arranged δn, so in the above example, the rise and fall times were 220 ps using a current switch current of 4FFIA from the results shown in Figure 6. Is it normal to design a specific output buffer? In particular, in response to the request for #I luck, there is also a gate array called the subcurrent switching method, which is designed so that the current switch current is 2 times the current switch current. However, if the circuit is made to have all the fusibility in this way, it is often uneconomical because elements that are rarely used usually require a lot of effort. In addition, with conventional current switching type, at most twice as much current flows, but if a particular pin requires particularly high speed, such as the clock of the entire system, the current can be increased further. I want to use Yuko to the limit of her performance. Conventional ECL type gauge type gauge arrays were not suitable for this type of use.

〔発明が解決し=うとする問題点〕 上述した従来のECL型ゲ型ゲージアレイ出力バッファ
が累子の性能限界まで″RL流′に流す様な設計になっ
ていない為に特にシステム全体全制御する様な高速クロ
ックをゲートアレイ内部で使用しかつ外部に取り出す様
な時は、出力バッファのスピード不足が問題になること
があった0〔問題点km決するための手段〕 本発明のECLゲートアレイ型半導体果槓回路装r1j
tに、外部へ1g号を出力する為のt¥f足の出カッ(
ッ7アの消費電力が+tqの出力バヴ7アエクも大きく
、かつ、′wL源パッドの直近に配置さ扛ることを%徴
とする。
[Problems to be solved by the invention] Since the conventional ECL type gauge array output buffer mentioned above is not designed to allow the flow to flow in the "RL flow" up to the performance limit of the receiver, it is especially difficult to control the entire system. When such a high-speed clock is used inside the gate array and taken out to the outside, the insufficient speed of the output buffer sometimes becomes a problem [Means for solving the problem] ECL gate array of the present invention type semiconductor circuit device r1j
At t, the output of t¥f to output 1g to the outside (
The output power consumption of +tq is also large, and it is a characteristic that it is placed in the immediate vicinity of the 'wL source pad.

〔実施例〕〔Example〕

次に、本発明について、図面を参照して説明する。第1
図に1本発明の一実施例でめる%実施例のECLゲート
アレイぽ、その中で任意の論理回路を構成する内部セル
−1,比較的消費(力の少ない入力又は出力バッファ2
お工び各櫨′亀諒発生回路−3そして素子性能を十分に
引き出すまで電流上流した消費電力の大きな出力バヅ7
ア4で構成されている。このECLゲートアレイを使用
する場合は、システムを制御する様な高速の他号は。
Next, the present invention will be explained with reference to the drawings. 1st
Figure 1 shows an example of an ECL gate array according to an embodiment of the present invention, in which internal cells constituting an arbitrary logic circuit 1, relatively consuming (low power input or output buffer 2)
Each of the various oscilloscope generator circuits 3 and the large output power consumption circuit 7 in which the current is upstreamed until the element performance is fully brought out.
It consists of A4. When using this ECL gate array, you can control other high speed systems.

消費電力の大きな出力バッファを使用する。この出力バ
ッファは、重い負荷に対しても出力インピーダンスは十
分に低い為に駆動能力が不足する事はない。また1通常
、特別に高速な信号処理全必要とする信号ピンは1〜2
本と考えられるので本実施例ではチップの中心に対して
点対称の位置に2つの駆動能力の大きな出力バッファを
配置している。
Use output buffers with high power consumption. This output buffer has a sufficiently low output impedance even for heavy loads, so there is no shortage of driving capability. 1 Usually, the number of signal pins that require special high-speed signal processing is 1 to 2.
Since it can be considered as a book, in this embodiment, two output buffers with large driving capacity are arranged at points symmetrical with respect to the center of the chip.

次に本発明の第2の実施例上第2図を参照して説明する
。第2図で汀、各種電源発生回路は省略しである。同図
において、5は内部セル、6は比較的消費電力の少ない
出力バッ7ア、7セ消費″畦力の大きい駆動能力の大き
な出力バッファ、8はWCL回路のGND(OV)パッ
ドである。本実施例では、消費゛電力の大きい出力バッ
ファがGNDパッドの直近に配置さnている。さらに、
842図に示したECLゲートアVイは、第3図に示し
次パッケージに実装され、使用さnる。同図において、
9flECLゲートアレイ10は、セラミック等の誘電
体、11はマイクロストリップライン用のGNDプレー
ン、12はマイクロストリップラインの信号線路、又第
2図で示した8なるGNDパッドは13なるスルーホー
ルヲ介して11なるGNDプレーンに接続されている導
体14に介して外部回路のGNDK接続される。したが
って。
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 2, various power generation circuits are omitted. In the figure, 5 is an internal cell, 6 is an output buffer 7 with relatively low power consumption, 7 is an output buffer with a large drive capacity and high voltage consumption, and 8 is a GND (OV) pad of the WCL circuit. In this embodiment, an output buffer with high power consumption is placed in the immediate vicinity of the GND pad.Furthermore,
The ECL gate eye shown in FIG. 842 is mounted in the next package shown in FIG. 3 and used. In the same figure,
The 9flECL gate array 10 is made of a dielectric material such as ceramic, 11 is a GND plane for the microstrip line, 12 is a signal line for the microstrip line, and the GND pad 8 shown in FIG. 2 is connected through a through hole 13. It is connected to GNDK of an external circuit via a conductor 14 connected to a GND plane 11. therefore.

第3図に示したパッケージは、全体としてマイクロスト
リップライン構造になっている。しかし。
The package shown in FIG. 3 has a microstrip line structure as a whole. but.

GNDプレーンは、第3図(a) 、 (b)の15な
るリードで示す様に、パッケージの末端で外部の回路の
GNDと接続される為にGNDプレーンとしては、不完
全になりやすい、しかし、14なる導体は、スルーホー
ルでGNυプレーンに接続さnている為に14の導体の
近傍のGNDプレーンに、パッケージ中で最も強化さn
ている。し九がって、14に最も近いマイクロストリッ
プ線路も最も理想的になっている。9なるECLゲート
アレイからに消費電力の大きな出力バッファを介して%
最も高速な信号が12なる導体を介して外部へ取り出さ
nる。又、先に示した様に12なる導体は、パッケージ
中、最も理想的なマイクロストリップラインになってい
る為、この最も高速な信号は、理想的に外部へ取り出す
ことができる。
The GND plane tends to be incomplete as a GND plane because it is connected to the GND of the external circuit at the end of the package, as shown by lead 15 in Figure 3 (a) and (b). , 14 is connected to the GNυ plane by a through hole, so the GND plane near the conductor 14 is the most reinforced in the package.
ing. Therefore, the microstrip line closest to 14 is also the most ideal. 9% from the ECL gate array through a power-hungry output buffer.
The fastest signal is taken out to the outside via 12 conductors. Furthermore, as shown above, the conductor numbered 12 is the most ideal microstrip line in the package, so the highest speed signal can ideally be taken out to the outside.

〔発明の効果〕〔Effect of the invention〕

以上説明し7(工うに本発明はECLゲートアレイにお
いて、特定の出力バッファの消費電力を他の出力バッフ
ァよりも大きくして駆動能力を大きくすることにより、
効率良く鳩速の16号処理ができ、又、上記出力バッフ
ァ’kGNDパッドの直近に自己型することにより、マ
イクロストリップライン構造のパッケージに実装した時
に、制速の16号を理想に近い状態で外部に取り出せる
という効果がある。
As explained above, the present invention provides an ECL gate array in which the power consumption of a specific output buffer is made larger than that of other output buffers to increase the drive capability.
The pigeon speed No. 16 can be processed efficiently, and by self-molding in the vicinity of the above output buffer 'kGND pad, when mounted on a package with a microstrip line structure, the speed control No. 16 can be processed in a nearly ideal state. It has the effect of being able to be taken out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1の実施例のECLゲートアレイ
集積の回路を示す図、第2図は、本発明の第2の実施例
のECLゲートアレイ集積集積回路全図、第3図(a)
 、 (b)は1本発明の第2の実施例のECLゲ−1
アレイ集積回路を実装する為のマイクロストリップライ
ン構造のパッケージを示す断面図お工び平面図、第4図
は、従来のECLゲートアレイ来積回路を示す図%第5
図はカレントスイッチを用いた出力バッファを示す図、
第6凶は、第5図の出力バッファの立ち上V、下り時間
のシミュレーション結果を示す図である。 同図において、 1・・・・・・内部セル、2・・・・・・消費電力の比
較的少ない入力又は出力バッファ、3・・・・・・電源
発生回路。 4・・・・・・消費電力の大きな出力バッファ、5・・
・・・・内部セル、6・・・・・・消費電力の比較的少
ない入力又は出力バッファ、7・・・・・・消費電力の
大きな出力バッ7ア、8・・・・・・GNDバッド、9
・・・・・・ECLゲート71/イ、10・・・・・・
誘電体、11・・・・・・GNDブレーン、12・・・
・・・マイクロストリップライン線路、13・・・・・
・スルーホール、14・・・・・・導体、15・・・・
・・リード、16・〜・・・・内部セル、17・・・・
・・入力バッファ、18・・・・・・出力バッファ、1
9・・・・・・電源発生回路、である。 (bン (I〕 第 3図 第4図 第!; 図
FIG. 1 is a diagram showing the ECL gate array integrated circuit according to the first embodiment of the present invention, FIG. 2 is a diagram showing the entire ECL gate array integrated circuit according to the second embodiment of the present invention, and FIG. (a)
, (b) is the ECL game 1 of the second embodiment of the present invention.
Figure 4 is a cross-sectional view showing a package with a microstrip line structure for mounting an array integrated circuit, and Figure 4 is a diagram showing a conventional ECL gate array integrated circuit.
The figure shows an output buffer using a current switch.
The sixth figure is a diagram showing simulation results of the rise time V and fall time of the output buffer in FIG. 5. In the figure, 1...internal cell, 2...input or output buffer with relatively low power consumption, 3...power generation circuit. 4... Output buffer with large power consumption, 5...
...Internal cell, 6...Input or output buffer with relatively low power consumption, 7...Output buffer with large power consumption, 8...GND pad ,9
...ECL gate 71/I, 10...
Dielectric, 11...GND brain, 12...
...Microstrip line track, 13...
・Through hole, 14...Conductor, 15...
...Read, 16...Internal cell, 17...
...Input buffer, 18...Output buffer, 1
9...Power generation circuit. (bn(I) Figure 3 Figure 4!; Figure

Claims (2)

【特許請求の範囲】[Claims] (1)外部へ信号を出力する出力バッファを備えたEC
Lゲートアレイにおいて、特定の出力バッファの消費電
力が他の出力バッファよりも大きいことを特徴とするE
CLゲートアレイ型半導体集積回路装置。
(1) EC equipped with an output buffer that outputs signals to the outside
In an L gate array, the power consumption of a particular output buffer is larger than that of other output buffers.
CL gate array type semiconductor integrated circuit device.
(2)前記消費電力が他の出力バッファよりも大きい出
力バッファが、ECLゲート内の電源パッドの直近に配
置されることを特徴とする特許請求の範囲第(1)項に
記載のゲートアレイ型半導体集積回路装置。
(2) The gate array type according to claim (1), wherein the output buffer whose power consumption is larger than that of other output buffers is arranged in the immediate vicinity of a power supply pad in an ECL gate. Semiconductor integrated circuit device.
JP60270344A 1985-11-29 1985-11-29 Gate array type semiconductor integrated circuit device Pending JPS62128544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270344A JPS62128544A (en) 1985-11-29 1985-11-29 Gate array type semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270344A JPS62128544A (en) 1985-11-29 1985-11-29 Gate array type semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS62128544A true JPS62128544A (en) 1987-06-10

Family

ID=17484950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270344A Pending JPS62128544A (en) 1985-11-29 1985-11-29 Gate array type semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS62128544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347150A (en) * 1992-03-31 1994-09-13 Kabushiki Kaisha Toshiba Semiconductor input/output circuits operating at different power supply voltages
US5917206A (en) * 1996-05-30 1999-06-29 Nec Corporation Gate array system in which functional blocks are connected by fixed wiring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833852A (en) * 1981-08-21 1983-02-28 Mitsubishi Electric Corp Large scale semiconductor integrated circuit device
JPS60234341A (en) * 1984-05-07 1985-11-21 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833852A (en) * 1981-08-21 1983-02-28 Mitsubishi Electric Corp Large scale semiconductor integrated circuit device
JPS60234341A (en) * 1984-05-07 1985-11-21 Hitachi Ltd Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347150A (en) * 1992-03-31 1994-09-13 Kabushiki Kaisha Toshiba Semiconductor input/output circuits operating at different power supply voltages
US5917206A (en) * 1996-05-30 1999-06-29 Nec Corporation Gate array system in which functional blocks are connected by fixed wiring

Similar Documents

Publication Publication Date Title
US6310400B1 (en) Apparatus for capacitively coupling electronic devices
JPS63205720A (en) Large-scale semiconductor logic circuit
US6204786B1 (en) Circuit for the acquisition of binary analog signals
US5422441A (en) Master slice integrated circuit having a reduced chip size and a reduced power supply noise
JPH06140578A (en) Semiconductor integrated device
JPS61283092A (en) Semiconductor integrated circuit having memory circuit with resetting or setting
JPS5819794A (en) Semiconductor memory
US5034634A (en) Multiple level programmable logic integrated circuit
JPS62128544A (en) Gate array type semiconductor integrated circuit device
JPH022416A (en) Distribution precharge wire or bus
US6909307B2 (en) Bidirectional bus driver and bidirectional bus circuit
US6393575B1 (en) Semiconductor device having input buffers
US5173875A (en) Semiconductor memory device
TW559669B (en) Semiconductor circuit and semiconductor device
US5401988A (en) Standard cell layout arrangement for an LSI circuit
JPH0132531B2 (en)
US6633179B1 (en) Bidirectional signal control circuit
US20050228912A1 (en) Memory address bus termination control
US20230162764A1 (en) Device with synchronous output
US6683336B1 (en) Semiconductor integrated circuit, supply method for supplying multiple supply voltages in semiconductor integrated circuit, and record medium for storing program of supply method for supplying multiple supply voltages in semiconductor integrated circuit
JP3054252B2 (en) Memory circuit
JPS62176140A (en) Pad shape in semiconductor integrated circuits
US6208566B1 (en) Semiconductor integrated circuit
JPS6091432A (en) Semiconductor integrated circuit device
JPH0520514A (en) Ic card