[go: up one dir, main page]

JPS621274B2 - - Google Patents

Info

Publication number
JPS621274B2
JPS621274B2 JP9059780A JP9059780A JPS621274B2 JP S621274 B2 JPS621274 B2 JP S621274B2 JP 9059780 A JP9059780 A JP 9059780A JP 9059780 A JP9059780 A JP 9059780A JP S621274 B2 JPS621274 B2 JP S621274B2
Authority
JP
Japan
Prior art keywords
base
support
cryogenic
support member
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9059780A
Other languages
Japanese (ja)
Other versions
JPS5735385A (en
Inventor
Susumu Shimamoto
Eisuke Tada
Koji Hagiwara
Hiroya Imura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9059780A priority Critical patent/JPS5735385A/en
Publication of JPS5735385A publication Critical patent/JPS5735385A/en
Publication of JPS621274B2 publication Critical patent/JPS621274B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/086Mounting arrangements for vessels for Dewar vessels or cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 本発明は極低温装置に係り、特に超電導機器を
収納している極低温容器の支持を改良した極低温
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cryogenic apparatus, and more particularly to a cryogenic apparatus having improved support for a cryogenic vessel containing superconducting equipment.

一般に極低温装置は、外部からの熱侵入を防ぐ
ために真空容器内に超電導機器が収納される極低
温容器、及び必要機器を配置している。
In general, a cryogenic apparatus includes a cryogenic container in which superconducting equipment is housed in a vacuum container and necessary equipment in order to prevent heat from entering from the outside.

このような構成の超電導機器の概略を第1図に
示す。超電導機器(図示せず)が収納される極低
温容器2はサポート4を介してベース3上に支持
され、このベース3は支持部材5により架台7上
に支持されている。そして、これら極低温容器
2、サポート4、ベース3、及び支持部材5は所
定の空間をもつて分割可能な真空容器1で覆わ
れ、この真空容器1は架台7に密封固定されてい
る。
FIG. 1 shows an outline of a superconducting device having such a configuration. A cryogenic container 2 in which superconducting equipment (not shown) is housed is supported on a base 3 via a support 4, and this base 3 is supported on a pedestal 7 by a support member 5. The cryogenic container 2, the support 4, the base 3, and the supporting member 5 are covered with a vacuum container 1 that can be separated with a predetermined space, and the vacuum container 1 is hermetically fixed to a pedestal 7.

ところで、極低温装置においては機器相互間の
熱収縮差をいかに吸収するかということが重要な
課題となる。つまり、極低温装置の温度勾配は、
第1図により説明すると真空容器1の外壁(ハ
印)より常温約20℃→液体窒素温度−196℃(ロ
印)→液体ヘリウム温度−269℃(イ印)という
順序で冷却され定常化される。
By the way, in cryogenic equipment, an important issue is how to absorb the difference in thermal contraction between devices. In other words, the temperature gradient of the cryogenic device is
Referring to Figure 1, the temperature is cooled and stabilized from the outer wall of the vacuum vessel 1 (marked by C) in the order of room temperature of about 20°C → liquid nitrogen temperature of -196°C (marked by R) → liquid helium temperature of -269°C (marked by A). Ru.

従つて真空容器1の外壁(温度常温20℃)とベ
ース(温度、液体窒素温度−196℃)3の間には
約215degという大きな温度差が生じ、当然両者
の間には熱収縮差が生ずる。
Therefore, there is a large temperature difference of about 215 degrees between the outer wall of the vacuum container 1 (temperature: 20°C) and the base (temperature: liquid nitrogen temperature - 196°C) 3, and naturally there is a difference in thermal contraction between the two. .

この熱収縮差を吸収する構造として、通常は2
種のサポート4を設け、更にはベース3を支持部
材5により固定支持、及び複数の摺動支持するよ
うにしている。
The structure that absorbs this difference in heat shrinkage is usually 2
A seed support 4 is provided, and furthermore, the base 3 is fixedly supported by a support member 5 and a plurality of sliding supports are provided.

第2図に従来のベース3の固定支持、及び摺動
支持状態を示し説明する。第2図は6点支持を例
にしているが、6個の支持点のうち適当な1箇所
(A点)を固定点とし、他の5点(B〜F点)を
摺動支持点とし、この摺動支持部で熱収縮を吸収
するようにしていた。
FIG. 2 shows the conventional fixed support and sliding support states of the base 3 and will be described. Figure 2 uses 6-point support as an example, but one of the 6 support points (Point A) is the fixed point, and the other 5 points (B to F) are the sliding support points. This sliding support part was designed to absorb heat shrinkage.

ところが、この方式においては、固定支持点A
より、各々の摺動支持点までの距離が異なるため
AB(AF)、AC(AE)、AD間の熱収縮量(変
位)もそれぞれ異なつてしまう。固定支持点より
複数の摺動支持間の距離lが各々異なると(1)式よ
り判る様に熱収縮量も各々異なる。
However, in this method, the fixed support point A
Therefore, the distance to each sliding support point is different.
The amount of thermal contraction (displacement) between AB (AF), AC (AE), and AD also differs. If the distance l between the fixed support point and the plurality of sliding supports differs, the amount of heat shrinkage will also differ, as can be seen from equation (1).

Δl=αl(T2−T1) ……(1) ここで、 Δl=収縮量(mm) α=熱収縮係数(mm/℃) l=支持点間距離(mm) T1=冷却前温度(℃) T2=冷却後温度(℃) たとえば、AB(AF)間にてΔlの熱収縮が発
生したと仮定するとBC(AE)間の長さは三平方
の定理により、AB間の√3倍であるから、収縮
量は√3Δlである。また、AD間長さはAB間長
さの2倍であるから収縮量は2Δlである。
Δl=αl(T 2 −T 1 )...(1) Here, Δl=Amount of shrinkage (mm) α=Thermal contraction coefficient (mm/℃) 1=Distance between supporting points (mm) T1 =Temperature before cooling (℃) T 2 = Temperature after cooling (℃) For example, assuming that a thermal contraction of Δl occurs between AB (AF), the length between BC (AE) is determined by the Pythagorean theorem, √ between AB Since it is three times as large, the amount of contraction is √3Δl. Furthermore, since the length between AD is twice the length between AB and AB, the amount of contraction is 2Δl.

このように、ベース上に配置された機器を支持
するようにしたものでは、各支持点により変位が
異なるため、機器相互間の変位の把握が困難にな
ると共に、変位の不均衡により機器相互間に大き
な応力が発生してしまう。
In this way, when devices placed on a base are supported, the displacement differs depending on each support point, making it difficult to grasp the displacement between devices. A large stress will be generated.

本発明は上述の点に鑑み成されたもので、その
目的とするところは、熱収縮を吸収するようにし
たものであつても、各支持点の変位が異なること
なく機器相互間に応力が加わることのないように
した極低温装置を提供するにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to prevent stress between devices without varying the displacement of each support point, even if thermal contraction is absorbed. The purpose of the present invention is to provide a cryogenic device that does not require exposure to heat.

本発明は超電導機器が収納される極低温容器を
サポートを介して支持するベースを架台上に少な
くとも1ケ所固定支持し、他は摺動支持している
支持部材のその固定支持部を前記ベースのほぼ中
央部に配置すると共に、摺動支持部を固定支持部
から等距離な位置に配置することにより所期の目
的を達成するようになしたものである。
In the present invention, a base that supports a cryogenic container in which a superconducting device is housed is fixedly supported at at least one place on a pedestal via a support, and the fixed support part of the support member that is slidably supported at other places is fixedly supported on the base. The intended purpose is achieved by arranging the sliding support part approximately at the center and at a position equidistant from the fixed support part.

以下図面の実施例に基づいて本発明を詳細に説
明する。尚、符号は従来と同一のものは同符号を
使用する。
The present invention will be described in detail below based on embodiments shown in the drawings. Incidentally, the same reference numerals are used for the same parts as in the past.

第3図は本発明の一実施例を示す極低温装置
で、その概略構成は従来のものとほとんど同一で
あるため、ここでの詳細説明は省略する。
FIG. 3 shows a cryogenic apparatus showing an embodiment of the present invention, and since its schematic structure is almost the same as that of a conventional apparatus, detailed explanation will be omitted here.

本実施例も6点支持について説明する。 This embodiment also describes six-point support.

該図に示す本実施例でもベース3は固定、及び
摺動支持されているが、本実施例ではこの固定支
持部材5aをベース3のほぼ中央に配置し、他の
摺動支持部材5bを固定支持部材5aから等距離
の位置に配置してベース3を支持するようにして
いる。
In this embodiment shown in the figure, the base 3 is also fixed and slidably supported, but in this embodiment, this fixed support member 5a is arranged approximately in the center of the base 3, and the other sliding support member 5b is fixed. The base 3 is supported by being arranged at a position equidistant from the support member 5a.

第4図を用いて本実施例を更に詳細に説明す
る。本実施例は6点支持の中心G点に固定支持部
材5bを設けたものであるが、これにより、中央
の固定支持部材5bと6点の摺動支持部材5aと
の距離GH、GI、GJ、GK、GL、GMは全部等し
くなる。
This embodiment will be explained in more detail using FIG. 4. In this embodiment, a fixed support member 5b is provided at the center point G of the six-point support, and as a result, the distances GH, GI, and GJ between the central fixed support member 5b and the six sliding support members 5a are , GK, GL, and GM are all equal.

従つてGH間にΔlの熱収縮が生じた場合で
も、他の固定支持部材5aと摺動支持部材5b間
の変位が同一であるため熱収縮もΔlとなり、各
機器相互間には各支持点の熱収縮量の違いによる
応力が加わるようなことはなくなる。また、ベー
ス3上に配置される各機器相互間の変位の把握も
各支持点同一変位であるため容易となる。更に摺
動支持部材5bは複数個共同じ構造にしようとす
れば、最も大きな熱収縮量吸収構造の物に合せな
ければならないし、一方、各々熱収縮量に適合し
た摺動支持とするならば多種類の物を製作する必
要があつたが、本実施例では摺動支持部材5bは
すべて同一熱収縮量のものでよいため、摺動支持
構造の統一が図れるという効果もある。
Therefore, even if a thermal contraction of Δl occurs between GH, since the displacement between the other fixed support member 5a and the sliding support member 5b is the same, the thermal contraction will also be Δl, and there are There is no longer any stress caused by differences in the amount of thermal contraction. Furthermore, it is easy to grasp the displacement between the devices arranged on the base 3 because each support point has the same displacement. Furthermore, if a plurality of sliding support members 5b are to have the same structure, they must be matched to the structure that absorbs the largest amount of heat shrinkage.On the other hand, if each sliding support member 5b is to have the same structure, Although it was necessary to manufacture many different types of members, in this embodiment, the sliding support members 5b may all have the same amount of heat shrinkage, so there is an effect that the sliding support structure can be unified.

次に第5図を用いて本実施例の固定支持、及び
摺動支持構造を説明する。
Next, the fixed support and sliding support structure of this embodiment will be explained using FIG.

中心G点に設けた固定支持部材5aはベース3
と真空容器架台7を締結部品10にて固定し、相
互の位置ずれが生じないようにインローにて嵌合
している。一方、G点から等距離に設けた、複数
の摺動支持部は摺動支持部材5b、摩擦軽減材
8、締結部品10、さらに締結部品10による過
剰締付を防止するためのスペーサー9より構成さ
れ、ベース3が固定支持部材5aの方向へ収縮す
ると、摺動面aにてスライドする構造となつてい
る。gはベース3の収縮量に合せ、あらかじめ設
けて置くギヤツプである。
The fixed support member 5a provided at the center point G is the base 3
and the vacuum container stand 7 are fixed with fastening parts 10, and are fitted with a spigot to prevent mutual positional displacement. On the other hand, the plurality of sliding support parts provided at equal distances from point G are composed of a sliding support member 5b, a friction reducing material 8, a fastening part 10, and a spacer 9 for preventing excessive tightening of the fastening part 10. When the base 3 contracts in the direction of the fixed support member 5a, it slides on the sliding surface a. g is a gap provided in advance according to the amount of contraction of the base 3.

このような摺動構造により、熱収縮が生じても
それを吸収するようにし、しかも、機器相互間に
応力が加わらないものである。尚、上述した実施
例は熱収縮について述べたが、熱膨張が発生する
ものでも同様の効果があることは言うまでもな
い。
Such a sliding structure allows thermal contraction to be absorbed even if it occurs, and no stress is applied between the devices. Incidentally, although the above-mentioned embodiments have been described with respect to thermal contraction, it goes without saying that the same effect can be obtained even if thermal expansion occurs.

以上説明した本発明の極低温装置によれば、超
電導機器が収納される極低温容器をサポートを介
して支持するベースを架台上に少なくとも1ケ所
固定支持し、他は摺動支持している支持部材のそ
の固定支持部を前記ベースのほぼ中央部に配置す
ると共に、摺動支持部を固定支持部から等距離な
位置に配置したものであるから、熱収縮が生じて
も固定支持点から各摺動支持点の距離が等距離で
あるため変位が同一となり、各機器相互間の応力
が発生することはなく比種極低温装置には非常に
有効である。
According to the cryogenic device of the present invention described above, the base that supports the cryogenic container in which the superconducting equipment is housed via the support is fixedly supported at at least one place on the frame, and the other supports are slidably supported. Since the fixed support part of the member is arranged approximately at the center of the base, and the sliding support part is arranged at a position equidistant from the fixed support part, even if heat shrinkage occurs, each part can be easily removed from the fixed support point. Since the sliding support points are equidistant, the displacement is the same, and stress does not occur between each device, making it very effective for specific cryogenic equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の極低温装置を示し、真空容器の
みを断面して示す正面図、第2図は従来における
ベースの支持を説明する図、第3図は本発明の極
低温装置の一実施例を示し、真空容器のみを断面
して示す図、第4図は本発明におけるベースの支
持を説明する図、第5図は第3図二部の拡大断面
図である。 1……真空容器、2……極低温容器、3……ベ
ース、4……サポート、5……支持部材、5a…
…固定支持部材、5b……摺動支持部材。
Fig. 1 shows a conventional cryogenic device, a front view showing only the vacuum vessel in section, Fig. 2 is a diagram illustrating the support of the base in the conventional case, and Fig. 3 shows an implementation of the cryogenic device of the present invention. FIG. 4 is a diagram illustrating the support of the base in the present invention, and FIG. 5 is an enlarged sectional view of the second part of FIG. 3. DESCRIPTION OF SYMBOLS 1...Vacuum container, 2...Cryogenic container, 3...Base, 4...Support, 5...Support member, 5a...
...Fixed support member, 5b...Sliding support member.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導機器が収納される極低温容器と、該極
低温容器をサポートを介して支持するベースと、
該ベースを架台上に支持する複数の支持部材と、
前記極低温容器、ベース、及び支持部材を所定空
間をもつて覆う真空容器とを備え、前記支持部材
はベースを少なくとも1ケ所で固定支持し、他は
摺動支持している極低温装置において、前記支持
部材の固定支持部を前記ベースのほぼ中央部に配
置すると共に、摺動支持部をこの固定支持部から
等距離な位置に配置したことを特徴とする極低温
装置。
1. A cryogenic container in which superconducting equipment is housed, a base that supports the cryogenic container via a support,
a plurality of support members that support the base on a pedestal;
A cryogenic apparatus comprising the cryogenic container, a base, and a vacuum container that covers the support member with a predetermined space, the support member fixedly supporting the base at at least one place and slidingly supporting the base at the other places, A cryogenic apparatus characterized in that a fixed support portion of the support member is disposed approximately at the center of the base, and a sliding support portion is disposed at a position equidistant from the fixed support portion.
JP9059780A 1980-07-04 1980-07-04 Supercryogenic device Granted JPS5735385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9059780A JPS5735385A (en) 1980-07-04 1980-07-04 Supercryogenic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9059780A JPS5735385A (en) 1980-07-04 1980-07-04 Supercryogenic device

Publications (2)

Publication Number Publication Date
JPS5735385A JPS5735385A (en) 1982-02-25
JPS621274B2 true JPS621274B2 (en) 1987-01-12

Family

ID=14002871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9059780A Granted JPS5735385A (en) 1980-07-04 1980-07-04 Supercryogenic device

Country Status (1)

Country Link
JP (1) JPS5735385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200128739A (en) * 2018-03-30 2020-11-16 바오샨 아이론 앤 스틸 유한공사 Water-based eco-friendly self-adhesive insulating coating for silicon steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336503A (en) * 1986-07-30 1988-02-17 Toshiba Corp cryogenic equipment
JP2619581B2 (en) * 1992-02-07 1997-06-11 株式会社日立製作所 Superconducting magnet structure for magnetic levitation train
JP5198358B2 (en) * 2009-05-21 2013-05-15 住友重機械工業株式会社 Superconducting magnet device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200128739A (en) * 2018-03-30 2020-11-16 바오샨 아이론 앤 스틸 유한공사 Water-based eco-friendly self-adhesive insulating coating for silicon steel

Also Published As

Publication number Publication date
JPS5735385A (en) 1982-02-25

Similar Documents

Publication Publication Date Title
Kumar et al. Equilibrium critical phenomena in binary liquid mixtures
US4666005A (en) Electronic balance
US3512581A (en) Cryogenic devices
US4157802A (en) Rigid thermally stable structure for supporting precision devices
CA2199085C (en) Distillation apparatus
NO854824L (en) THERMAL ISOLATED CONTAINER.
JPS621274B2 (en)
KR950701056A (en) PROCESS FOR EVACUATING A THERMALLY INSULATING JACKET, IN PARTICULAR THE JACKET OF A DEWAR OR OF ANOTHER CRYOGENIC DEVICE
JP3587844B1 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JPH1164204A (en) Thermal deformation measuring apparatus
JPH1194198A (en) Vertical heat insulating low temperature tank
Petridou et al. Thermal studies on a mechanical prototype of a BIS MDT chamber
Sugimoto et al. Thermal link for cartridge-type cryostat
JP2673012B2 (en) Cold box
CN212228250U (en) A portable bimetal thermometer
JPH05315129A (en) Cryostat
JPH03132500A (en) Machine body mounting device for metal tps for space shuttle
JPH044696B2 (en)
JPS6130217U (en) Support equipment for low-temperature cooling pipes, etc.
JP2643639B2 (en) Cryogenic equipment
JPS60113482A (en) Cryostat
JPH05126297A (en) Cryostat
US4155809A (en) Variable stiffness lattice support system for a condenser type nuclear reactor containment
JPH02214407A (en) Gas-insulated machinery and apparatus
JPS6227758Y2 (en)