[go: up one dir, main page]

JPS62123965A - How to limit the output current of voltage source PWM inverter - Google Patents

How to limit the output current of voltage source PWM inverter

Info

Publication number
JPS62123965A
JPS62123965A JP60258777A JP25877785A JPS62123965A JP S62123965 A JPS62123965 A JP S62123965A JP 60258777 A JP60258777 A JP 60258777A JP 25877785 A JP25877785 A JP 25877785A JP S62123965 A JPS62123965 A JP S62123965A
Authority
JP
Japan
Prior art keywords
current
voltage command
output
value
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60258777A
Other languages
Japanese (ja)
Other versions
JPH0755055B2 (en
Inventor
Takao Yanase
柳瀬 孝雄
Koetsu Fujita
光悦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60258777A priority Critical patent/JPH0755055B2/en
Publication of JPS62123965A publication Critical patent/JPS62123965A/en
Publication of JPH0755055B2 publication Critical patent/JPH0755055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To make it possible to implement the sequential control by detecting the deviation exceeding the predetermined current limit value of the inverter output current with its polarity and in accordance with this by correcting the output voltage command value. CONSTITUTION:An induction motor 2 is driven at variable speed with a voltage type PWM inverter 1 composed of transistors Tr. This variable speed drive is performed by carrying on the on-off control of the upper and bottom arm transistors Tr by means of a frequency setting device 10, an arithmetic circuit 11 operating the output voltage command value V*u-V*w, PWM pattern generation circuits 20-40 and a carrier signal generator 12. In this case, coefficient multipliers 25, 35 and 45 are provided as well as an adder 24 with which each output of the multipliers above-mentioned is added to the voltage command V*u-V*w from the voltage command arithmetic circuit 11. Thus if the positive current flows in the U-phase and its value comes up to more than the current limiting value, for example, then the coefficient multiplier 25 gives a positive signal to the adder 24 in proportion to the deviation exceeding this current limiting value from the zero output condition, and corrects the voltage command value to suppress the output current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電圧形PWM(パルス幅変調)インバータ
における電流制限方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current limiting method in a voltage source PWM (Pulse Width Modulation) inverter.

〔従来の技術〕[Conventional technology]

従来技術として、こ\では電圧形PWMインバータ金使
用して誘導電動機を可変速駆動する場合について説明す
る。第4図はか\る制御方式を示す構成図である。
As a conventional technique, a case will be described in which a voltage type PWM inverter is used to drive an induction motor at variable speed. FIG. 4 is a block diagram showing such a control system.

その主回路は同図(イ)の如く6個のスイッチング素子
(こ\では、トランジスタ’I’rt〜T’r6の例が
示されているが、これに限らない。)および無効分を処
理するための6個のダイオードD1〜D6からなる通常
の電圧形3相インバータ1と、負荷となる例えば3相誘
導電動機2とから構成されている。また、このようなシ
ステムでは特に電流制御は行なわれないが、装置保護の
ために電流検出器3を備えているのが普通である。
The main circuit consists of six switching elements (here, transistors 'I'rt to T'r6 are shown as an example, but they are not limited to this) as shown in the same figure (a), and processes reactive components. It is comprised of a normal voltage-type three-phase inverter 1 consisting of six diodes D1 to D6 for the purpose of controlling the power supply, and a three-phase induction motor 2 serving as a load, for example. Further, although current control is not particularly performed in such a system, a current detector 3 is usually provided to protect the device.

ところで、このようなシステムで誘導電動機を可変速駆
動する一般的な例として、V/F (電圧/周波数)一
定制御方式が知られている。この方式は既に良く知られ
ているのでこ\では詳細は省略するが、基本的な動作を
第4図(ロ)t−参照して説明する。
Incidentally, a constant V/F (voltage/frequency) control method is known as a general example of variable speed driving of an induction motor in such a system. Since this method is already well known, the details will be omitted here, but the basic operation will be explained with reference to FIG. 4(b).

同図(ロ)において、まず周波数設定器1oにより周波
数指令が設定されると、それに応じてインバータ1の出
力すべき3相の電圧の大きさと周波数を与える出力電圧
指令値vU、vv、vwが演算回路11により演算され
、U、V、W相のPWMパターン発生回路20,30.
40にそれぞれ人力される。PWMパターン発生回路2
0゜30、.40はそれぞれ加算器21、コンパレータ
22および反転器23等より構成され、電圧指令値演算
回路11より与えられる電圧指令値MU 。
In the same figure (b), first, when a frequency command is set by the frequency setter 1o, output voltage command values vU, vv, vw that give the magnitude and frequency of the three-phase voltage to be output from the inverter 1 are set accordingly. The calculation is performed by the calculation circuit 11, and the U, V, W phase PWM pattern generation circuits 20, 30 .
40 each will be powered by humans. PWM pattern generation circuit 2
0°30,. Reference numeral 40 is a voltage command value MU given from the voltage command value calculation circuit 11, which is composed of an adder 21, a comparator 22, an inverter 23, etc., respectively.

vv、vwをキャリア信号発生器12からのキャリア信
号と比較し、その結果によって対応する相の上、下アー
ムトランジスタをオン、オフ制御すべく、その出力信号
を図示されない各トランジスタ対応のペース駆動回路へ
与える。
vv, vw are compared with the carrier signal from the carrier signal generator 12, and the output signal is sent to a pace drive circuit corresponding to each transistor (not shown) in order to control on/off the upper and lower arm transistors of the corresponding phase according to the result. give to

こ\で、PWMインバータの出力電流が成る制限値を越
える、いわゆる過電流が発生する原因について説明する
Now, the cause of so-called overcurrent, in which the output current of the PWM inverter exceeds the limit value, will be explained.

@4図の如きシステムで過電流が発生するのは、大別し
て次の2通りの場合がある。その1つは出力の短絡の如
き故障電流が流れる場合であり、この場合は直ちにトラ
ンジスタをオフにしてインバータの運転を停止し、電流
を減少させることが必要である。もう1つは電動機の負
荷が急変する場合のように、制御上で過電流が発生する
場合である。この場合は電流を減少させたりインバータ
を停止させたりすることなく、過電流レベル以上となら
ないように制御することが望ましい。その制御方法とし
て、設定値の急変に対しては、例えば過電流の発生と\
もに演算回路11の内部で速度設定値を一度急変前の値
に戻し、過電流が解消されると\もに徐々にこの設定値
を変えて行く方法が考えられる。また、負荷の急変に対
しては、同じく演算回路11の内部で誘導機2のすべり
Sを小さくすべく、S〉0のときは一度速度設定値を下
げ、その後過電流が解消されるにつれてこれを徐々に上
げて行く一方、すべりSがSくoのときはその反対の制
御を行なう方法が考えられる。
@4 Overcurrent can occur in a system like the one shown in Figure 4, broadly speaking, in the following two ways. One of them is when a fault current flows due to a short circuit in the output, and in this case, it is necessary to immediately turn off the transistor, stop the operation of the inverter, and reduce the current. The other case is when an overcurrent occurs during control, such as when the load on the motor suddenly changes. In this case, it is desirable to control the current so that it does not exceed the overcurrent level without reducing the current or stopping the inverter. As a control method, for example, when sudden changes in the set value occur,
One possible method is to once return the speed setting value to the value before the sudden change inside the calculation circuit 11, and then gradually change this setting value once the overcurrent is resolved. In addition, in response to a sudden change in load, in order to reduce the slip S of the induction machine 2 within the calculation circuit 11, the speed setting value is lowered once when S>0, and then the speed setting value is lowered as the overcurrent is resolved. A conceivable method is to gradually increase the value of S, while performing the opposite control when the slip S is So.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記の如き方法はいずれも電流の変化に充分
に見合った速度で実行されることが要求されるが、演算
回路11が例えばマイクロプロセッサ等で構成されてい
る場合はか\る制御のために可成りの時間を必要とし、
実際には過電流を抑制することができない場合も多いの
で、従来はこのような場合でも故障の場合と同様に全ト
ランジスタをパルスオフして電流上しゃ断するようにし
ているのが普通である。つまり、制御上や負荷変化によ
って過電流が生じる場合でもインバータを停止させるよ
うにしているので、モータの電流は直ちに零となり、イ
ンバータの運転開始により再び電流が立ち上がるという
電流断続が繰り返されることになる。したがって、この
ような電流断続が生じることまたはこれが頻繁に繰り返
されることを好まないシステムでは、大容量のインバー
タに取り換えなければならないと云う問題点を有してい
る。
By the way, all of the above methods are required to be executed at a speed sufficiently commensurate with the change in current, but if the arithmetic circuit 11 is composed of, for example, a microprocessor, the control It takes a considerable amount of time to
In reality, there are many cases where overcurrent cannot be suppressed, so conventionally, even in such cases, it is common to pulse off all transistors to cut off the current, just as in the case of a failure. In other words, even if an overcurrent occurs due to control or load changes, the inverter is stopped, so the motor current immediately drops to zero, and when the inverter starts operating, the current rises again, resulting in repeated current interruptions. . Therefore, systems that do not like the occurrence or frequent repetition of such current interruptions have the problem of having to replace the inverter with a large capacity inverter.

したがって、この発明は設定値の急変、負荷急変等の制
御上で発生する過電流に対して制限を加えて過電流レベ
ル以上にならないように抑制することにより、少なくと
も制御上の過電流に対しては電光を断続させず、連続し
た制御を行なうことが可能な制御方式を提供することを
目的とする。
Therefore, the present invention suppresses overcurrents that occur during control, such as sudden changes in set values or sudden changes in load, by suppressing them so that they do not exceed the overcurrent level. The purpose of this invention is to provide a control method that allows continuous control without intermittent lightning.

〔問題点を解決するための手段〕[Means for solving problems]

インバータ出力電流の所定電流制限値を越える偏差分を
その極性と\もに検出する検出手段と、この偏差分とそ
の極性に応じて出力電圧指令値を補正する補正手段とを
設ける。
A detection means for detecting the deviation of the inverter output current exceeding a predetermined current limit value along with its polarity, and a correction means for correcting the output voltage command value according to the deviation and its polarity are provided.

〔作用〕[Effect]

これは、電圧形PWMインバータではキャリア信号と比
較される出力電圧指令値を変化させると、略キャリア周
波数にて決まる速さで電流勾配を変え得る点に着目して
なされたもので、過電流が発生したときは、過電流とな
らない電圧指令値が演算される迄の間、出力電圧指令値
にそのときの電流制限値に対する電流偏差分とその極性
に応じたオフセット分を加えることにより、過電流の増
加を抑制するものである。
This was done by focusing on the fact that in a voltage source PWM inverter, by changing the output voltage command value that is compared with the carrier signal, the current slope can be changed at a speed determined approximately by the carrier frequency, and overcurrent can be changed. When an overcurrent occurs, the overcurrent is suppressed by adding the current deviation from the current limit value and the offset according to its polarity to the output voltage command value until a voltage command value that does not cause an overcurrent is calculated. This is to suppress the increase in

〔実施例〕〔Example〕

第1図はこの発明の実施eAJを示す構成図である。 FIG. 1 is a block diagram showing an implementation eAJ of the present invention.

同図からも明らかなように、この実施例は係数器25.
35.45と、その各々の出力を電圧指令演算回路11
からの電圧指令V♂l vV” I vW”に対して図
示の如き極性にて加算する加算器24とを設けた点が特
徴であり、その他は第4図と同様である。なお、PWM
パターン発生回路はU相だけが具体的に示されているが
(符号20参照)、■、W相についても同様に構成され
ることは云う迄もない。
As is clear from the figure, this embodiment has a coefficient unit 25.
35.45 and their respective outputs to the voltage command calculation circuit 11.
The present invention is characterized in that it is provided with an adder 24 that adds the voltage command V♂l vV''I vW'' from the voltage command V♂lvV''IvW'' with the polarity as shown in the figure, and other aspects are the same as in FIG. In addition, PWM
Although only the U phase is specifically shown in the pattern generation circuit (see reference numeral 20), it goes without saying that the pattern generation circuit is similarly constructed for the 2 and W phases.

係数器25,35.45は電流ルU限値に相当する不感
帯を有する増幅器、またはこれと同等の機能を有するも
のからなり、その各々はインバータの各相出力電流を検
出する電流検出器3に接続されている。したがって、係
数器25,35.45はインバータ出力電流の上記電流
制限値を越える偏差分をその極性と\もに検出し、その
出力を各相のPWMパターン発生回路20.30.40
内の加算器24へ図示の如き極性にて印加する。なお、
各係数器にて検出される電流の極性を出力電圧信号の極
性と一致させるものとし、こ\では、例えばモータに流
れる方向の電流ヲ正とする。
The coefficient multipliers 25, 35, and 45 are composed of amplifiers having a dead band corresponding to the current limit value, or those having an equivalent function, and each of them is connected to the current detector 3 that detects the output current of each phase of the inverter. It is connected. Therefore, the coefficient multipliers 25, 35, 45 detect the deviation of the inverter output current exceeding the above current limit value along with its polarity, and send the output to the PWM pattern generating circuit 20, 30, 40 of each phase.
It is applied to the adder 24 in the figure with the polarity shown. In addition,
The polarity of the current detected by each coefficient multiplier is made to match the polarity of the output voltage signal, and in this case, for example, it is assumed that the current flowing in the motor is positive.

このようにすると、例えばU相において正の電流が流れ
てその値が電流制限値以上になると、係数器25はそれ
迄の出力零の状態からこの電流制限値を越える偏差分に
比例した正の信号を出力する。この出力は、電圧指令値
YUそれ自身の極性とは無関係に、負のオフセット分と
して加算器24に与えられる。一方、負の方向の電流が
その制限値を越えたときは、電圧指令値VUに対して正
のオフセット分として与えられる。なお、これはV。
In this way, for example, when a positive current flows in the U phase and its value exceeds the current limit value, the coefficient multiplier 25 generates a positive current proportional to the deviation exceeding the current limit value from the previous state of zero output. Output a signal. This output is given to the adder 24 as a negative offset, regardless of the polarity of the voltage command value YU itself. On the other hand, when the current in the negative direction exceeds the limit value, it is given as a positive offset to the voltage command value VU. Furthermore, this is V.

W相についても同様である。こうして、電圧指令値が電
流偏差とその極性に応じて補正され、これによって従来
と同様の電圧制御を行なうことにより、出力電流を抑制
する。
The same applies to the W phase. In this way, the voltage command value is corrected according to the current deviation and its polarity, and the output current is thereby suppressed by performing voltage control similar to the conventional method.

こ−で、以上の如き制御により過電流が抑制できる根拠
について説明する。
The reason why overcurrent can be suppressed by the above-described control will now be explained.

一般に、PWMインバータ主回路は定常状態ではそのl
相分で考えることができ、その等価回路は第2図(イ)
の如く、交流電圧源vU(−vU)とりアクドルLと逆
起電圧eUで表わされる誘導電動機のモデルと考えるこ
とができる。また、この等価回路ではVllとeUとの
差電圧によって電流が流れるので、同図(イ)の等価回
路は、さらに同図(ロ)の如く差電圧源V Ue Uと
リアクトルLからなる回路に変換することができる。な
お、1jt流の極性は第1図と同じくモータに流れる方
向を正とするので、第2図の矢印の向きが正となる。
Generally, the main circuit of a PWM inverter is
It can be considered in terms of phase components, and its equivalent circuit is shown in Figure 2 (a).
It can be considered as a model of an induction motor represented by an AC voltage source vU (-vU), an axle L, and a back electromotive force eU. In addition, in this equivalent circuit, a current flows due to the voltage difference between Vll and eU, so the equivalent circuit in the same figure (a) can be further transformed into a circuit consisting of a differential voltage source V Ue U and a reactor L as shown in the same figure (b). can be converted. Note that the polarity of the 1jt flow is positive in the direction in which it flows to the motor, as in FIG. 1, so the direction of the arrow in FIG. 2 is positive.

こ\で、正方向の電流がその制限値を越えた場合につい
て考える。この場合は上述の如く、係数器25を介して
負のオフセット分が電圧指令値vU4)に重畳され、こ
れにより略キャリア周波数の速さで出力電圧を制御でき
るので、この場合、第2図(ロ)の等価回路は@3図(
イ)のようになるものと考えて良い。つまり、第3図(
イ)の如く、負のオフセット電圧ΔVは正の電流に対し
て′7℃流を減少させる方向(−)に働くので、M、流
の増加を抑制できることになる。同様に、負方向の電流
が制限値を越えた場合は正のオフセット分ΔVが電圧指
令値vUK重畳されるので、その等価回路は第3図(ロ
)の如くなる。この場合も、正のオフセラ)7jj圧Δ
Vが負の電流を減少させる方向に働くことKなるので、
これをもって電mt−制限することができる。
Now, consider the case where the positive current exceeds its limit value. In this case, as described above, the negative offset is superimposed on the voltage command value vU4) via the coefficient multiplier 25, and as a result, the output voltage can be controlled at approximately the speed of the carrier frequency. The equivalent circuit of (b) is shown in Figure 3 (
You can think of it as (a). In other words, Figure 3 (
As shown in (a), the negative offset voltage ΔV acts in the direction (-) of decreasing the current by 7°C with respect to the positive current, so it is possible to suppress the increase in the current. Similarly, when the current in the negative direction exceeds the limit value, a positive offset amount ΔV is superimposed on the voltage command value vUK, so the equivalent circuit becomes as shown in FIG. 3(b). In this case as well, the positive off-cella)7jj pressure Δ
Since V works in the direction of decreasing the negative current,
With this, it is possible to limit the current mt.

こうして、差電圧vU−eUの大きさ、極性とは無関係
に、出力電流の極性だけで電流を制限できることがわか
る。そして、差電圧に無関係であると云うことはインバ
ータの出力電圧vU1負荷の逆起電力eUの大きさ1位
相にも無関係であると云うことであり、第1図の如き電
動機負荷では駆動や制動にか\わらず電流制限ができる
と云うことを意味している。
In this way, it can be seen that the current can be limited only by the polarity of the output current, regardless of the magnitude and polarity of the differential voltage vU-eU. The fact that it is unrelated to the differential voltage also means that it is unrelated to the inverter's output voltage vU1 and the magnitude of the back electromotive force eU of the load (1 phase). This means that current can be limited regardless of the current.

〔発明の効果〕〔Effect of the invention〕

一以上のように、この発明によれば、出力電流がその制
限値を越えると略瞬時にそれ以上の電流増加を抑制し、
その間に演算回路が制限値を越えないような電流値とな
る電圧指令値を演算することになるので、電流を断続さ
せることなく通常の制御に戻すことができる利点がもた
らされるものである。なお、上記の演算を行なう場合、
誘導電動機ではすベリSの極性を判別する必要があるが
、これは電圧指令値の演算と同じ速さで行なえば良く、
充分に実現可能であることは云う迄もない。
As described above, according to the present invention, when the output current exceeds the limit value, further increase in current is almost instantaneously suppressed,
During this time, the arithmetic circuit calculates a voltage command value that provides a current value that does not exceed the limit value, which provides the advantage that normal control can be returned to without interrupting the current. Furthermore, when performing the above calculation,
In an induction motor, it is necessary to determine the polarity of the S, but this can be done at the same speed as the calculation of the voltage command value.
It goes without saying that this is completely possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す構成図、第2図は定常
状態におけるインバータ1相分の等価回路を示す回路図
、#!3図は電流制限時におけるインバータ1相分の等
価回路を示す回路図、@4図は電圧形PWMインバータ
制御方式の従来例を示す構成図である。 符号説明 1:・・−@工形PWMインバータ、2・・・・・・誘
導電動機、3・・・・・・電沌検出器、10・・・・・
・周波数設定器、11・・・中電圧指令値演算回路、1
2・川・・キャリア信号発生器、20,30,40・・
・・・・PWMパターン発生回路、21,24・・・・
・・加算器、22・・−・・フンパレータ、23・・・
・・・反転器、25,35,45・・・・・・係数器。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清 第 15!I1 WE2図 (ロノ 第 3 図 (ロ)
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a circuit diagram showing an equivalent circuit for one phase of an inverter in a steady state. Figure 3 is a circuit diagram showing an equivalent circuit for one phase of the inverter when current is limited, and Figure 4 is a configuration diagram showing a conventional example of a voltage-type PWM inverter control system. Code explanation 1:...-@Kugata PWM inverter, 2...Induction motor, 3...Electronic Chaos detector, 10...
・Frequency setter, 11...Medium voltage command value calculation circuit, 1
2. River... carrier signal generator, 20, 30, 40...
...PWM pattern generation circuit, 21, 24...
... Adder, 22 ... Humparator, 23 ...
...Inverter, 25, 35, 45...Coefficient unit. Agent Patent Attorney Akio Namiki Agent Patent Attorney Kiyota Matsuzaki 15! I1 WE2 figure (Rono figure 3 (b)

Claims (1)

【特許請求の範囲】[Claims]  出力電圧指令信号と変調周波数を決めるキヤリア信号
とを比較して得られるパルス幅変調(PWM)信号にも
とづいて電圧制御を行なう電圧形PWMインバータにお
いて、その出力電流の所定電流制限値を越える偏差分を
その極性とともに検出する検出手段と、該偏差分とその
極性に応じて前記出力電圧指令値を補正する補正手段と
を設け、該補正された出力電圧指令値にもとづき電圧制
御を行なうことにより、出力電流を所定値に制限するこ
とを特徴とする電圧形PWMインバータにおける出力電
流制限方式。
In a voltage-type PWM inverter that performs voltage control based on a pulse width modulation (PWM) signal obtained by comparing an output voltage command signal and a carrier signal that determines the modulation frequency, the deviation of the output current that exceeds a predetermined current limit value By providing a detection means for detecting the deviation and its polarity, and a correction means for correcting the output voltage command value according to the deviation and its polarity, and performing voltage control based on the corrected output voltage command value, An output current limiting method for a voltage source PWM inverter, which is characterized by limiting the output current to a predetermined value.
JP60258777A 1985-11-20 1985-11-20 Output current limiting method for voltage source PWM inverter Expired - Lifetime JPH0755055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60258777A JPH0755055B2 (en) 1985-11-20 1985-11-20 Output current limiting method for voltage source PWM inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60258777A JPH0755055B2 (en) 1985-11-20 1985-11-20 Output current limiting method for voltage source PWM inverter

Publications (2)

Publication Number Publication Date
JPS62123965A true JPS62123965A (en) 1987-06-05
JPH0755055B2 JPH0755055B2 (en) 1995-06-07

Family

ID=17324933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60258777A Expired - Lifetime JPH0755055B2 (en) 1985-11-20 1985-11-20 Output current limiting method for voltage source PWM inverter

Country Status (1)

Country Link
JP (1) JPH0755055B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374175A (en) * 1988-08-30 1991-03-28 Fuji Electric Co Ltd Current limiting method of voltage source inverter
JP2010035311A (en) * 2008-07-28 2010-02-12 Daikin Ind Ltd Power supply apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567493U (en) * 1979-06-28 1981-01-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567493U (en) * 1979-06-28 1981-01-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374175A (en) * 1988-08-30 1991-03-28 Fuji Electric Co Ltd Current limiting method of voltage source inverter
JP2010035311A (en) * 2008-07-28 2010-02-12 Daikin Ind Ltd Power supply apparatus

Also Published As

Publication number Publication date
JPH0755055B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
TWI243532B (en) Inverter device and current limiting method therefor
US4767976A (en) Control system for PWM inverter
JP3291390B2 (en) Inverter failure detection method
US6876169B2 (en) Method and controller for field weakening operation of AC machines
US20170310265A1 (en) Synchronous machine controller
JP3684793B2 (en) Inverter device
US4683412A (en) Current source inverter motor drive adapted for full current regenerative mode operation
JP2002238163A (en) Power converter
JP3415129B2 (en) Inverter failure detection method
JPH06175741A (en) Static reactive power generating device
JPS62123965A (en) How to limit the output current of voltage source PWM inverter
JP3381465B2 (en) Control method of power converter
JPH11220884A (en) Protection device for self-excited converter, control device for variable speed generator motor system, and control device for self-extinguishing converter
JPS6043084A (en) Controlling method of induction motor
JP3462347B2 (en) Control device for variable speed generator motor
JP2784490B2 (en) Current limiting method for voltage source pulse width modulation control inverter
JP3248301B2 (en) Control circuit of PWM control inverter
JP3302854B2 (en) Induction motor control device
JP2003102177A (en) Control method of power converter
JP3751827B2 (en) Power converter
JPH06245565A (en) Regenerative controller for voltage-type inverter
JPH05252751A (en) Self-excited power converter controlling device
JP2763170B2 (en) Control device for winding induction machine
JPH0217892A (en) Cancellation of offset current
JP2002152914A (en) Control device for electric vehicle equipped with linear induction motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term