JPS62122288A - superconducting weak coupling device - Google Patents
superconducting weak coupling deviceInfo
- Publication number
- JPS62122288A JPS62122288A JP60261067A JP26106785A JPS62122288A JP S62122288 A JPS62122288 A JP S62122288A JP 60261067 A JP60261067 A JP 60261067A JP 26106785 A JP26106785 A JP 26106785A JP S62122288 A JPS62122288 A JP S62122288A
- Authority
- JP
- Japan
- Prior art keywords
- film
- superconducting
- weak coupling
- insulating film
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010168 coupling process Methods 0.000 title abstract description 19
- 238000005859 coupling reaction Methods 0.000 title abstract description 19
- 230000008878 coupling Effects 0.000 title abstract description 18
- 239000002887 superconductor Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 238000001020 plasma etching Methods 0.000 description 8
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
- H10N60/12—Josephson-effect devices
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は液体ヘリウム温度近傍の極低温で動作させる超
電導スイッチング回路に係り、とくに高速のスイッチン
グ動作に好適な超電導弱結合素子の構造と製造方法に関
する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a superconducting switching circuit that operates at an extremely low temperature near the temperature of liquid helium, and particularly relates to the structure and manufacturing method of a superconducting weakly coupled element suitable for high-speed switching operation. .
従来の超電導弱結合素子は超電導膜の一部分に細いくび
れを生じさせ、くびれ部分における超電導臨界電流を制
限することにより、くびれ部分両側の超電導体間で位相
差を生じさせ、超電導トンネル特性を生じさせる方法が
用いられた。このような超電導弱結合素子すなわちマイ
クロブリッジ素子はくびれ部分の幅と長さ、および膜厚
によって超電導臨界電流が決定づけられる。しかしなが
ら、平面型マイクロブリッジ素子においては形状的な点
から、くびれ部分の長さと幅を正確に再現するのは困難
である。Conventional superconducting weak coupling elements create a thin constriction in a part of the superconducting film, and by limiting the superconducting critical current at the constriction, a phase difference is created between the superconductors on both sides of the constriction, producing superconducting tunneling characteristics. method was used. In such a superconducting weakly coupled device, ie, a microbridge device, the superconducting critical current is determined by the width and length of the constricted portion and the film thickness. However, in a planar microbridge element, it is difficult to accurately reproduce the length and width of the constricted portion due to its shape.
一方、超電導電極膜と絶縁膜との層状構造を形成し、絶
縁膜の一部に微細な開口を形成して、開口を通じて超電
導弱結合素子を形成するいわゆるたて型マイクロブリッ
ジが「安定なジョセフソン接合素子の製作とその論理回
路への応用」難波進。On the other hand, a so-called vertical microbridge, which forms a layered structure of a superconducting electrode film and an insulating film, and forms a fine opening in a part of the insulating film to form a superconducting weakly coupled element through the opening, is a ``stable Joseph'' microbridge. "Manufacture of Son junction devices and their application to logic circuits" by Susumu Namba.
超電導量子エレクトロニクス、369頁等において提案
されている。たて型マイクロブリッジにおいても、従来
のような円柱状穴を絶縁膜に形成し、超電導体の弱結合
部を構成する方法においては、弱結合部の断面積に再現
性を求めるのが困難であった。It is proposed in Superconducting Quantum Electronics, page 369, etc. Even in vertical microbridges, with the conventional method of forming a cylindrical hole in an insulating film to form a weak coupling part of a superconductor, it is difficult to obtain reproducibility in the cross-sectional area of the weak coupling part. there were.
そこで本発明の目的は、超電導弱結合素子において、弱
結合部における断面積、および長さ等を高い再現性をも
って得られる素子の製造方法および構造を与えることに
ある。これにより、再現性と均一性を持った超電導臨界
電流を有する超電導弱結合素子を得る。SUMMARY OF THE INVENTION An object of the present invention is to provide a method and structure for manufacturing a superconducting weakly coupled device that can obtain the cross-sectional area, length, etc. of a weakly coupled portion with high reproducibility in a superconducting weakly coupled device. As a result, a superconducting weakly coupled device having a superconducting critical current with reproducibility and uniformity is obtained.
本発明においては、超電導膜、絶縁膜および超電導膜の
三層構造を形成し、絶縁膜の寸法llzm以内の微小な
開口部を両側超電導体の接合部分、すなわち弱結合部と
する、縦型マイクロブリッジ構造の超電導弱結合素子を
構成する。絶縁膜開口部を形成するに当って、所望する
弱結合部の幅を有し、直線状でかつ下地超電導膜まで達
しない溝を二本互に交差するように形成し、交差部分に
おいて溝部分が超電導膜部分に達するようにする。In the present invention, a vertical microstructure is formed in which a three-layer structure of a superconducting film, an insulating film, and a superconducting film is formed, and a minute opening within the dimension of the insulating film is used as a joining part of superconductors on both sides, that is, a weak coupling part. A bridge-structured superconducting weak coupling element is constructed. In forming the opening in the insulating film, two straight grooves having the desired weak coupling width and not reaching the underlying superconducting film are formed so as to intersect with each other, and the groove portion is formed at the intersection. so that it reaches the superconducting film part.
すなわち直線状溝の交差する部分が弱結合部分となるよ
うにする。これが第一の弱結合部形成方法である。第2
の弱結合部形成方法は以下の通りである。すなわち、下
地超電導膜に対し、形成されるべき弱結合部幅を有する
線状部分を残して、所定の深さにエツチングを行う。エ
ツチングを行った部分は絶縁膜によって埋戻しを行う。In other words, the portion where the linear grooves intersect becomes a weakly coupled portion. This is the first weak bond forming method. Second
The method for forming a weak bond is as follows. That is, the underlying superconducting film is etched to a predetermined depth, leaving a linear portion having the width of the weak bond to be formed. The etched portion is backfilled with an insulating film.
−回目に形成した超電導膜線状部分に対して交差する位
置に、両側に絶縁膜を含んだ形で、形成されるべき弱結
合部幅を有する線状部分を残して、所定の深さにエツチ
ングを行う6−回目と同様にエツチングを行った部分は
絶縁膜によって埋戻しを行う。- At a predetermined depth, leaving a linear portion having the width of the weak bond to be formed, including an insulating film on both sides, at a position intersecting the superconducting film linear portion formed in the second step. Similarly to the sixth etching, the etched portion is backfilled with an insulating film.
この上に上層超電導膜を形成して所望の超電導弱結合素
子を得る。An upper layer superconducting film is formed on this to obtain a desired superconducting weakly coupled element.
本発明を実施例にもとづいて説明する。 The present invention will be explained based on examples.
(1) 実施例1
熱酸化を施したSiウェハ上にNb膜層を直流スパッタ
法により形成した。Nb膜の厚さは1100nとした。(1) Example 1 A Nb film layer was formed on a thermally oxidized Si wafer by DC sputtering. The thickness of the Nb film was 1100 nm.
Nb膜形成後、電極膜用のレジストパターンを形成し、
CF 4 ガスを用いた反応性イオンエツチング法によ
りNb膜のパターン形成を行った。眉間絶縁膜用のレジ
ストパターンを光学的露光法によって形成した。膜厚1
100nのSiO層間絶縁膜2を抵抗加熱による真空蒸
着法によって形成後、リフトオフ法によってSiO膜2
パターンの形成を行った。なおこのSiO膜2パターン
形成工程において、ジョセフソン接合弱結合部のパター
ンは除外した。次に電子ビーム露光装置を用いて、ジョ
セフソン接合弱結合部ツバターン形成を行った。具体的
にはポジ型のレジスト嘆を塗布後、電子ビーム露光によ
って1弱結合部を含んだ第一の直線状領域の露光を行っ
た。線幅は0.15nmとした。CHF s ガスを用
いた反応性イオンエツチング法により深さ60nmのS
iO#Itf!:形成した。やはり、電子ビーム露光に
より弱結合部を含んだ第二の直線状領域の露光を行った
。第二の直線状領域は第一の直線状領域と直交し、線幅
1.5μmとした。CHF、ガスを用いた反応性イオン
エツチング法により、栗さ60nmのSiO溝を形成し
た。第一のSiO溝と第二のSiO溝との交差する領域
において、SiO膜は底部までエツチングされ、下地N
b膜層が露出するようにした。この領域を超電導弱結合
部とした。After forming the Nb film, a resist pattern for the electrode film is formed,
The Nb film was patterned by reactive ion etching using CF 4 gas. A resist pattern for the glabellar insulating film was formed using an optical exposure method. Film thickness 1
After forming a 100n SiO interlayer insulating film 2 by a vacuum evaporation method using resistance heating, a SiO film 2 is formed by a lift-off method.
A pattern was formed. Note that in this SiO film 2 pattern forming step, the pattern of the weak Josephson junction was excluded. Next, an electron beam exposure device was used to form a Josephson junction weak-coupling portion. Specifically, after applying a positive type resist layer, the first linear region including the 1-weak bond portion was exposed by electron beam exposure. The line width was 0.15 nm. S is etched to a depth of 60 nm by reactive ion etching using CHF s gas.
iO#Itf! : Formed. Again, the second linear region including the weak coupling portion was exposed by electron beam exposure. The second linear region was perpendicular to the first linear region and had a line width of 1.5 μm. A SiO groove with a thickness of 60 nm was formed by a reactive ion etching method using CHF gas. In the area where the first SiO trench and the second SiO trench intersect, the SiO film is etched to the bottom, and the underlying N
b The film layer was exposed. This region was defined as a superconducting weak coupling region.
つぎに、SiO膜およびNb膜表面層をArガス中での
高周波放電により清浄化した後、Nb膜層を直流スパッ
タ法により形成した。Nb膜層の厚さは200nmとし
、このNb1m1を弱結合上部電極とした。上部を極用
レジストパターン形成後、CF 4 ガスを用いた反応
性イオンエツチング法によりNb膜lのパターン形成を
行った。以上の工程により縦型マイクロブリッジの作製
を完了した。Next, the SiO film and the Nb film surface layer were cleaned by high frequency discharge in Ar gas, and then the Nb film layer was formed by DC sputtering. The thickness of the Nb film layer was 200 nm, and this Nb1ml was used as a weakly coupled upper electrode. After forming a resist pattern on the upper part, a pattern of the Nb film 1 was formed by reactive ion etching using CF 4 gas. Through the above steps, the fabrication of the vertical microbridge was completed.
以上の方法により作製した縦型マイクロブリッジは直流
電圧−電流特性および超電導電流の磁場依存性において
典型的な超電導弱結合素子特性を示した。さらに、同一
チップ上に10個の同一寸法を有する縦型マイクロブリ
ッジを作製したが、これ等縦型マイクロブリッジの超電
導ti値は±20%の範囲内にあった。The vertical microbridge fabricated by the above method exhibited typical superconducting weakly coupled device characteristics in terms of DC voltage-current characteristics and magnetic field dependence of superconducting current. Furthermore, ten vertical microbridges having the same dimensions were fabricated on the same chip, and the superconducting ti values of these vertical microbridges were within the range of ±20%.
(2)実施例2
熱酸化を施したSiウェハ上にNb膜層を直流スパッタ
法により形成した。i’J b膜層の厚さは200 n
mとした。Nb膜膜形形成後電極膜用のレジストパター
ンを形成し、cF、ガスを用いた反応性イオンエツチン
グ法により、Nb膜1のパターン形成を行った。次にネ
ガ型レジスト膜を用いて、弱結合部を含んだ第一の直線
状領域の露光を電子ビームにより行った。線幅は0.1
5nmとした。CF4 ガスを用いた反応性イオンエツ
チングにより、直線状領域を除いた部分のエツチングを
行った。エツチング深さはlQQnmとした。(2) Example 2 A Nb film layer was formed on a thermally oxidized Si wafer by DC sputtering. The thickness of the i'J b film layer is 200 n
It was set as m. After forming the Nb film shape, a resist pattern for an electrode film was formed, and a pattern of the Nb film 1 was formed by reactive ion etching using cF and gas. Next, using a negative resist film, the first linear region including the weak bonding portion was exposed to light using an electron beam. Line width is 0.1
It was set to 5 nm. The portions excluding the linear regions were etched by reactive ion etching using CF4 gas. The etching depth was lQQnm.
レジスト膜を残した状態でSiO膜2を真空蒸着法によ
り1001mの厚さに形成した。す7トオフ法により、
直線状領域部上におけるレジストおよびSiO膜を除去
した。つぎに、弱結合部を含んだ第二の直線状領域を第
一の直線状領域に直交する位置に形成した。すなわちネ
ガ型レジストを塗布後、電子ビーム露光を行うことによ
り、直線状レジストパターンを形成した。直線パターン
の線幅は0.15nmとした。CF4 ガスを用いた反
応性イオンエツチングにより、直線状領域を除いた部分
のエツチングを行った。エツチング深さは1QQnmと
した。レジストを残した状態でSiO膜2を真空蒸着法
により1100nの厚さに形成した。リフトオフ法によ
り、直線状領域部上におけるレジストおよびSiO膜2
を除去した。With the resist film remaining, a SiO film 2 was formed to a thickness of 1001 m by vacuum evaporation. By the seven-off method,
The resist and SiO film on the linear region were removed. Next, a second linear region including a weak coupling portion was formed at a position orthogonal to the first linear region. That is, after applying a negative resist, a linear resist pattern was formed by performing electron beam exposure. The line width of the straight line pattern was 0.15 nm. The portions excluding the linear regions were etched by reactive ion etching using CF4 gas. The etching depth was 1QQnm. With the resist remaining, a SiO film 2 was formed to a thickness of 1100 nm by vacuum evaporation. The resist and SiO film 2 on the linear region are removed by the lift-off method.
was removed.
つぎに、5iOPIXおよびNb膜表面層を/yrガス
中での高周波放電により清浄化した後、Nb膜1を直流
スパッタ裏により形成した。Nb膜lの厚さは200n
mとし、このNb膜1を弱結合上部電極とした。上部電
極用レジストパターン形成後、CFaガスを用いた反応
性イオンエツチング法によりNb膜1のパターン形成を
行った。以上の工種により、断面が0.15μm角、長
さ0.1μmの縦型マイクロブリッジの作製を完了した
。Next, after cleaning the 5iOPIX and Nb film surface layers by high frequency discharge in /yr gas, the Nb film 1 was formed by direct current sputtering. The thickness of the Nb film is 200n.
m, and this Nb film 1 was used as a weakly coupled upper electrode. After forming the resist pattern for the upper electrode, the Nb film 1 was patterned by reactive ion etching using CFa gas. Through the above steps, a vertical microbridge with a cross section of 0.15 μm square and a length of 0.1 μm was completed.
以上の方法により作製した縦型マイクロブリッジは実施
例1において述べたマイクロブリッジと同じく、直流電
圧−電流特性および超電導電流の磁場依存性において典
型的な超電導弱結合素子特性を示した。同一チップ上に
10個の同一寸法を有する縦型マイクロブリッジを作製
したが、これ等縦型マイクロブリッジの超電導電流の分
布は、実施例1の場合と同じく±20%の範囲内にあっ
た。同一条件で5回の試料作製を行ったとき、素子の臨
界電流平均値の分布は±30チ以内であった。Like the microbridge described in Example 1, the vertical microbridge produced by the above method exhibited typical superconducting weakly coupled device characteristics in terms of DC voltage-current characteristics and magnetic field dependence of superconducting current. Ten vertical microbridges having the same dimensions were fabricated on the same chip, and the superconducting current distribution of these vertical microbridges was within the range of ±20% as in Example 1. When samples were prepared five times under the same conditions, the distribution of the average critical current value of the device was within ±30 inches.
実施列において述べたごとく、本発明における超電導弱
結合素子の構造および製造方法に:れば、以下の効果を
有した。As described in the implementation column, the structure and manufacturing method of the superconducting weakly coupled device according to the present invention had the following effects.
(1)超電導弱結合部の1Ifr面積および長さを均一
になし得る。したがって、超電導臨界電流に対して再現
性と均一性を与え得る。たとえば回路内における臨界t
tlL分布幅は±20%になし得た。(1) The 1Ifr area and length of the superconducting weak coupling portion can be made uniform. Therefore, it is possible to provide reproducibility and uniformity to the superconducting critical current. For example, the criticality t in the circuit
The tIL distribution width could be set to ±20%.
(2) 本超電導弱結合素子はスイッチング速度性能
に影響を与える容量が従来より用いられているサンドイ
ンチ型ジョセフソン接合の容量と比較して大幅に小さい
。たとえば、25μm角のサンドインチ型ジョセフソン
接合の容量と比較して、本超電導弱結合素子の容量は約
1150である。(2) The capacitance of the present superconducting weakly coupled device, which affects switching speed performance, is significantly smaller than that of the conventionally used sandwich-type Josephson junction. For example, compared to the capacitance of a 25 μm square Sand Inch Josephson junction, the capacitance of the present superconducting weakly coupled element is about 1150.
以上、2点の効果を有する本発明にかかる超電導弱結合
素子は集積化された論理回路等への応用に好適である。As described above, the superconducting weakly coupled device according to the present invention having the two effects is suitable for application to integrated logic circuits and the like.
第1図(a)は実施例1に示した超電導弱結合素子の上
面図、同図(b)は(a)におけるb−b/線断面図、
同図(C)は(a)におけるc cZ線断面図である
。
第2図(a)は実施例2に示した超電導弱結合素子の上
面図、同図(b)は(a)のb−b’線断面図である。FIG. 1(a) is a top view of the superconducting weak coupling element shown in Example 1, and FIG. 1(b) is a sectional view taken along line bb/ in FIG. 1(a).
FIG. 3(C) is a sectional view taken along the ccZ line in FIG. 1(a). FIG. 2(a) is a top view of the superconducting weak coupling element shown in Example 2, and FIG. 2(b) is a cross-sectional view taken along the line bb' in FIG. 2(a).
Claims (1)
いて、両側超電導膜間に電流の流れ得る開口が絶縁膜の
一部に形成され、かつ、該絶縁膜開口が、絶縁膜に形成
された直線状溝部の交点に位置し、かつ両側超電導膜が
該絶縁膜開口部において互に直接繋がつていることを特
徴とする超電導弱結合素子。1. In a three-layer film structure of a superconducting film, an insulating film, and a superconducting film, an opening through which a current can flow between the superconducting films on both sides is formed in a part of the insulating film, and the insulating film opening is formed in the insulating film. 1. A weakly coupled superconducting element, characterized in that the superconducting films are located at the intersections of the linear grooves, and the superconducting films on both sides are directly connected to each other at the insulating film openings.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60261067A JPS62122288A (en) | 1985-11-22 | 1985-11-22 | superconducting weak coupling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60261067A JPS62122288A (en) | 1985-11-22 | 1985-11-22 | superconducting weak coupling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62122288A true JPS62122288A (en) | 1987-06-03 |
Family
ID=17356616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60261067A Pending JPS62122288A (en) | 1985-11-22 | 1985-11-22 | superconducting weak coupling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62122288A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821556A (en) * | 1994-03-25 | 1998-10-13 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Superconductive junction |
CN1111314C (en) * | 1996-10-31 | 2003-06-11 | 南开大学 | High temperature super conductive film substrate step intrinsic Josephson junction array and its preparing method |
-
1985
- 1985-11-22 JP JP60261067A patent/JPS62122288A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821556A (en) * | 1994-03-25 | 1998-10-13 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Superconductive junction |
CN1111314C (en) * | 1996-10-31 | 2003-06-11 | 南开大学 | High temperature super conductive film substrate step intrinsic Josephson junction array and its preparing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shoji et al. | New fabrication process for Josephson tunnel junctions with (niobium nitride, niobium) double‐layered electrodes | |
KR102241971B1 (en) | Selective capping to reduce quantum bit dephasing | |
JPS62122288A (en) | superconducting weak coupling device | |
US5286336A (en) | Submicron Josephson junction and method for its fabrication | |
EP0394742B1 (en) | Superconducting three terminal device and process of fabrication thereof | |
Kosaka et al. | Fabrication of NbN/Pb Josephson tunnel junctions with a novel integration method | |
US5304817A (en) | Superconductive circuit with film-layered josephson junction and process of fabrication thereof | |
JP2594934B2 (en) | Weakly coupled Josephson device | |
JPS6215869A (en) | Manufacture of josephson device | |
JPH05102547A (en) | Manufacture of josephson integrated circuit device | |
US4178602A (en) | Thin film cryotron | |
JP4768218B2 (en) | High temperature superconducting equipment | |
JPS6257263A (en) | Manufacture of josephson integrated circuit | |
JPS60147179A (en) | Superconducting multi-terminal element | |
JPS5979585A (en) | Manufacture of josephson junction element | |
JPS61263179A (en) | Manufacture of josephson junction element | |
JPS61268083A (en) | Manufacture of josephson junction device | |
JPS59124781A (en) | Manufacturing method of Josephson junction integrated circuit | |
Jillie et al. | JAWS-SNAP refractory logic circuits | |
CN114497344A (en) | Deep submicron Josephson tunnel junction and method of making the same | |
JPH04137682A (en) | Manufacture of superconducting device | |
JP3267353B2 (en) | Manufacturing method of weak junction type Josephson device using edge junction of submicron area | |
JP3042011B2 (en) | Method for manufacturing transistor by vacuum microelectronics | |
JPS602791B2 (en) | Planar Josephson junction device and its manufacturing method | |
JPS61144084A (en) | Forming method of josephson junction element |