JPS62116145A - Synthetic-resin hollow body - Google Patents
Synthetic-resin hollow bodyInfo
- Publication number
- JPS62116145A JPS62116145A JP25624785A JP25624785A JPS62116145A JP S62116145 A JPS62116145 A JP S62116145A JP 25624785 A JP25624785 A JP 25624785A JP 25624785 A JP25624785 A JP 25624785A JP S62116145 A JPS62116145 A JP S62116145A
- Authority
- JP
- Japan
- Prior art keywords
- synthetic resin
- hollow body
- resin hollow
- film
- sealed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920003002 synthetic resin Polymers 0.000 title claims description 49
- 239000000057 synthetic resin Substances 0.000 title claims description 49
- 239000007789 gas Substances 0.000 claims description 30
- 230000035699 permeability Effects 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 238000004026 adhesive bonding Methods 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- -1 polyethylene Polymers 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 229920001684 low density polyethylene Polymers 0.000 description 8
- 239000004702 low-density polyethylene Substances 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 7
- 230000037303 wrinkles Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- 229910018503 SF6 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
及」五亘カ 5.
本発明は、合成樹脂フィルムを成形して多数の密閉され
た中空体をシート上に連ねた製品の改良に関する。The present invention relates to an improvement in a product in which a large number of sealed hollow bodies are arranged on a sheet by molding a synthetic resin film.
一般に「気泡緩衝材」とよばれ、「エアキャップ」、「
セルマット」、「エアバッグ」あるいは「エアマット」
などの商品名を付されている上記のような合成樹脂中空
体が、緩衝材や断熱材として広く使用されており、時に
は玩具として、または美粧効果を狙った包装材などとし
て利用されている。
この種の合成樹脂中空体の製造技術は種々提案されてい
るが、それらの中では、特公昭38−330号、特公昭
46−40795号、特公昭52−44357号などの
製造方法が代表的である。
原理は、いずれも合成樹脂フィルムを真空成形などの手
段で成形して多数の凹みを設けたちの(「キャップフィ
ルム」とよぶ)と、平坦なフィルム(「パックフィルム
」とよぶ)または同様な凹みを設けたもう一枚のフィル
ムとを貼り合わせ、多数の密閉室を形成することにある
。 第1図AおよびBは、このようにして製造した合成
樹脂中空体の代表的な例を示す。
ところで、在来の技術によるときは、この密閉室内に封
入されるのは、近傍にあった空気である。
しかもこの空気は、可塑化温度まで加熱された合成樹脂
フィルムに接しているから、100℃またはその近辺の
温度にあり、中空体製品が常温まで冷却されると、体積
が収縮する。 たとえば100℃の空気が20℃まで冷
却されたとすると、その体積は、ボイルーシャルルの法
則に従って(273+20> /(273+100)=
0.79 (倍)となる。
実際の製品についてみると、上記のキャップフィルムの
成形に使用する金型の凹みの深さに対し、製品の密閉室
の高さは、およそ415である。
密閉室内の空気の体積収縮は、密閉室の高さを減少させ
て合成樹脂材料の完全な利用を妨げるばかりでなく、密
閉室の頂面にシワが寄った、外観の好ましくない製品を
与えることになる。 従って、現実の製品は、第1図B
に示したような理想型ではなく、第2図にみるような、
頂部2aがシワになった断面形状をもったものである。
この点の改善策として、合成樹脂中空体の製造を高圧の
チャンバー内で行なうことが考案された(実公昭43−
32232>が、その実施には困難があり、製造コスト
も高くなるので、実用に至っていない。
一方、本発明者は、密閉室内に空気以外の気体、液体、
ざらには固体を含む媒体を封入することを意図して研究
し、インフレーション法フィルム成形をとり入れ、イン
フレーションチューブ内に所望の媒体を吹き込むことに
よってこの目的を達成した方法を完成して、すでに開示
した(特開昭60−99631M>。Generally called "bubble cushioning material", "air cap", "
``cell mat'', ``air bag'' or ``air mat''
Synthetic resin hollow bodies such as those mentioned above, which are given product names such as , are widely used as cushioning materials and heat insulating materials, and are sometimes used as toys or as packaging materials for cosmetic effects. Various manufacturing techniques for this type of synthetic resin hollow body have been proposed, among which the manufacturing methods such as those disclosed in Japanese Patent Publication No. 38-330, Japanese Patent Publication No. 40795-1972, and Japanese Patent Publication No. 44357-1972 are representative. It is. The principle is that a synthetic resin film is molded using vacuum forming or other means with many dents (called a "cap film"), and a flat film (called a "pack film") or a film with similar dents. The purpose of this method is to bond a film with another film provided with a film to form a large number of sealed chambers. FIGS. 1A and 1B show typical examples of synthetic resin hollow bodies produced in this manner. By the way, when using conventional technology, what is sealed in this sealed chamber is the air that was nearby. Moreover, since this air is in contact with the synthetic resin film that has been heated to the plasticizing temperature, the temperature is at or around 100° C., and when the hollow product is cooled to room temperature, the volume contracts. For example, if air at 100°C is cooled to 20°C, its volume will be (273+20> / (273+100) =
It becomes 0.79 (times). Regarding an actual product, the height of the sealed chamber of the product is approximately 415 mm compared to the depth of the recess of the mold used for molding the cap film. The volumetric contraction of the air in the closed chamber not only reduces the height of the closed chamber and prevents the full utilization of synthetic resin materials, but also gives the product an unfavorable appearance with wrinkles on the top surface of the closed chamber. become. Therefore, the actual product is
It is not the ideal type shown in Figure 2, but the type shown in Figure 2.
The top portion 2a has a wrinkled cross-sectional shape. As a solution to this problem, it was devised to manufacture synthetic resin hollow bodies in a high-pressure chamber (1983-
32232>, but it is difficult to implement and the manufacturing cost is high, so it has not been put into practical use. On the other hand, the present inventor has discovered that gases other than air, liquids, etc.
The authors have researched the purpose of enclosing a medium containing solids in the colander, adopted the inflation method of film forming, and completed a method that achieved this purpose by blowing the desired medium into an inflation tube, which has already been disclosed. (Unexamined Japanese Patent Publication No. 60-99631M>.
【発明が解決しようとする問題点]
本発明の目的は、上述した問題を解決し、密閉室が充実
して金型の深さを下回らない高さを有し、従って高度の
緩衝力と断熱性とを有し、かつシワが寄らず外観のすぐ
れた商品価値の高い合成樹脂中空体を提供することにあ
る。
及班の量見
(問題点を解決するための手段]
図面を参照して説明すれば、本発明の合成樹脂中空体は
、第1図AおよびBに示すように、多数の四部を形成し
た合成樹脂フィルム2と平坦なフィルム3とをはり合わ
せて多数の密閉室を形成してなる合成樹脂中空体1にお
いて、密閉室4内に上記合成樹脂フィルムに対する透過
率が空気の透過率よりも低いガスを封入したことを特徴
とする。
フィルムを形成する合成樹脂としては、種々の熱可塑性
樹脂が使用できるが、低密度ポリエチレン(LDPE)
が代表的であり、LDPEおよび高密度ポリエチレン(
HDPE>のブレンドも使用される。 L−LDPEも
また、有用な材料である。
密閉室内に封入すべきガスは、使用する合成樹脂フィル
ムに対する透過率が空気より低いという条件をみたし、
無害である限り任意のものを使用できる。 N2が、入
手しやすく、安価かつ安全である点で、実用上級も有利
である。
所望であれば、透過率の異なるガスを複数混合して封入
することにより、中空体の膨張の度合を任意にコントロ
ールすることができる。
特定のガスを封入した密閉室を有する合成樹脂中空体の
製造には、前記した特開昭60−99631号に記載の
方法が利用できる。 そのほかの方法によることも任意
であって、たとえば既存の設僅を利用して、装置全体を
N2ガス雰囲気下におくといった手段が採用できる。
これは常圧下の操業でよいから、高圧チャンバーを使用
するより容易であることはいうまでもない。
【作 用]
本発明の合成樹脂中空体は、製造直後に充実していた密
閉室が封入ガスの冷却に伴う体積収縮のため変形し、高
さが低くなるとともに表面にシワが寄ることは従来品と
同じであるが、放置しておくと密閉室が膨張し、再び充
実した状態となって、それが持続する。
その機構を説明すれば、第3図Aに示すように、製造直
後に収縮した密閉室内にはガスGが封入されており、周
囲には空気、すなわち02+N2が存在する。 密閉室
を形成するフィルムを透過して、ガスGは室外へ出よう
とし、02およびN2は室内へ入ろうとする。 空気の
透過率は、その合成樹脂フィルムに対する02およびN
2の透過率の加重平均とみることができるから、透過率
の差により、ガスGの室外への逸出量よりも02十N2
の室内への侵入量の方が優勢であって、密閉室内に存在
するガス量は増大する。 外部からのガスの侵入は、密
閉室内の圧力が高まり、入る量と出る母とがバランスし
たところで、見掛は上停止する。 このようにして密閉
室の膨張が完了した状況は、第3図Bに示すとおりであ
る。
典型的なフィルム材料であるLDPEに対する透過率と
して、つぎの値が測定されている(単位:cm −c
m/cm2・sec −axHQ )。
o2:2.8 N2:0.97
封入ガスとして、上で推奨したN2を使用すると、N2
より02の方がはるかに透過率が高いので、密閉室内へ
は外部から02が盛んに侵入して行く。 密閉室内のガ
スの組成が周囲の空気と同じになるまで02の侵入が続
くと考えると、空気中のN2は容量で78%、02は2
1%を占めるとして、
(7B+21>/7B=1.27 (倍)であるから、
前述の冷却により収縮したN2の体積に対して、
0.79x1.27=1.00(倍)
まで回復させる余地がある。 すなわち、N2を封入し
た場合、密閉室の体積は、製造時の体積までほぼ完全に
回復するわCノである。 封入されるガスの温度が10
0℃より低ければ、また合成樹脂中空体の使用温度が2
0℃より高ければ、密閉室がさらによく膨張することは
容易に理解されるであろう。
第1図Bの断面形状を与えるキャップフィルム金型を使
用して合成樹脂中空体を製造し、密閉室内のガス量が設
計値を超えた場合には、第4図に示すような、頂部がド
ーム状に盛り上った製品となる。
なお、封入ガスはフィルムに対する透過率が低いほど密
閉室の膨張が起るから、一般には好ましいといえる。
しかし、外部からのガスの侵入があまり多量であると、
フィルムが薄い場合には密閉室がその圧力増加に耐えき
れず破れることがあるので、注意を要する。
(実施例1]
d=0.9229/ClR3、MFR=0.8のしDP
Eを材料とし、坪量509/7Ffにて、特開昭60−
99631号に開示の方法により、ガス封入合成樹脂中
空体を製造した。 キャップフィルム成形金型の凹部は
円柱形で、直径10m、深さ4mである。 封入ガスは
N2で、封入時の温度は約100℃である。
合成樹脂中空体の製造直後、常温に冷えたところでは、
密閉室は第2図に示すようなシワのよったものであった
が、放置後約2時間で膨張し、第1図Bに示すような充
実したものとなった。
密閉室内のガスをとり出してGC分析したところ、02
の存在が確認された。
同じ成形金型を使用してつくった従来品は、1枚あたり
の高さが3.2mであったが、本発明によるものは3.
9mmの高さをもっていた。
本発明の製品につき圧縮強度(すなわち圧縮弾性率、圧
縮破断点強度)、静的緩衝係数および圧縮クリープ特性
を測定したところ、いずれも従来品を上回る成績が得ら
れ、この製品が緩衝材としてすぐれた性能を有すること
が確認できた。
(実施例2]
実施例1と同じLDPEを使用し、ただし坪量が100
9/mであるほかは同じ条件で、合成樹脂中空体を製造
した。
製造後約4時間で密閉室の膨張が完了し、第1図Bに示
す断面形状の中空体となった。
[実施例3]
実施例1と同じLDPEを材料とし、ただし封入するN
2ガスの温度を70℃としたほかは同じ条件で、合成樹
脂中空体を製造した。
製造俊約2時間で密閉室の膨張が完了し、第4図に示す
ようにドーム状に盛り上った。 この中空体は密閉室の
稜部にわずかにシワが生じたが、商品価値を損うほどで
はなく、1枚あたり4.1゛履の高さをもつ工いた。
[実施例4]
実施例1と同じLDPEを材料とし、やはり特開昭60
−99631号に開示の方法によりN2ガス封入合成樹
脂中空体を製造した。
N2封入時の温度は70℃である。 この例では、キャ
ップフィルム成形金型の凹部を、直径10m、高ざ4J
11111の半球形とした。
製造侵約2時間で密閉室の膨張が完了して、第5図に示
すように、充実した半球形となった。この半球には、シ
ワは生じなかった。
【実施例5】
d=0.9229/ClR3、VFR−0,8のL−L
DPEを材料とし、坪量50g/Tdにて、特開昭60
−99631号に開示の方法により、70℃のN2ガス
を封入した合成樹脂中空体を製造した。 キャップフィ
ルム成形金型は、実施例1〜3と同じ円柱形凹部をもっ
たものである。
製造後約4時間で密閉室が膨張し、第1図Bに示す充実
した形状をとった。[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problems, to have a fully sealed chamber and a height not less than the depth of the mold, and thus to have a high degree of buffering force and heat insulation. To provide a synthetic resin hollow body which has a high commercial value, has good properties, is free from wrinkles and has an excellent appearance. Quantitative measurement by team (means for solving the problem) To explain with reference to the drawings, the synthetic resin hollow body of the present invention has a large number of four parts, as shown in FIG. 1A and B. In a synthetic resin hollow body 1 formed by gluing together a synthetic resin film 2 and a flat film 3 to form a large number of sealed chambers, the transmittance to the synthetic resin film in the sealed chamber 4 is lower than the transmittance of air. It is characterized by gas being sealed in. Various thermoplastic resins can be used as the synthetic resin to form the film, but low density polyethylene (LDPE)
are typical, and LDPE and high density polyethylene (
Blends of HDPE> are also used. L-LDPE is also a useful material. The gas to be sealed in the sealed chamber must meet the condition that its permeability to the synthetic resin film used is lower than that of air.
You can use anything you like as long as it is harmless. Practical use is also advantageous in that N2 is easily available, inexpensive, and safe. If desired, the degree of expansion of the hollow body can be arbitrarily controlled by mixing and sealing a plurality of gases having different permeability. The method described in JP-A-60-99631 mentioned above can be used to manufacture a synthetic resin hollow body having a sealed chamber filled with a specific gas. Other methods may also be used, for example, by using existing equipment and placing the entire device under an N2 gas atmosphere.
Since this operation can be performed under normal pressure, it goes without saying that this is easier than using a high-pressure chamber. [Function] In the synthetic resin hollow body of the present invention, the closed chamber that was filled immediately after manufacture deforms due to volumetric contraction as the sealed gas cools, and as a result, the height decreases and wrinkles form on the surface. It is the same as a product, but if you leave it unattended, the sealed chamber expands and becomes full again, which lasts for a long time. To explain the mechanism, as shown in FIG. 3A, gas G is sealed in a sealed chamber that is contracted immediately after manufacture, and air, that is, 02+N2, is present around it. Gas G tries to go out of the room, and 02 and N2 try to go into the room, passing through the film that forms the sealed room. The air permeability is 02 and N for the synthetic resin film.
It can be seen as a weighted average of the transmittance of 2, so due to the difference in transmittance, the amount of gas G escaping to the outdoors is
The amount of gas entering the room is more dominant, and the amount of gas existing in the sealed room increases. The intrusion of gas from the outside appears to stop when the pressure inside the sealed chamber increases and the amount that enters and the amount that comes out are balanced. The situation in which the expansion of the sealed chamber is completed in this manner is as shown in FIG. 3B. The following values have been measured as transmittance for LDPE, which is a typical film material (unit: cm - c
m/cm2・sec-axHQ). o2: 2.8 N2: 0.97 When using the N2 recommended above as the filler gas, N2
Since 02 has a much higher transmittance, 02 actively enters the sealed chamber from the outside. Considering that 02 continues to enter until the gas composition in the sealed room becomes the same as the surrounding air, the N2 in the air is 78% by volume, and 02 is 2
Assuming that it accounts for 1%, (7B+21>/7B=1.27 (times),
There is room for the volume of N2 contracted by the aforementioned cooling to be recovered to 0.79x1.27=1.00 (times). That is, when N2 is filled in, the volume of the sealed chamber almost completely recovers to the volume at the time of manufacture. The temperature of the gas to be sealed is 10
If it is lower than 0℃, the operating temperature of the synthetic resin hollow body is 2
It will be easily understood that the closed chamber will expand better if the temperature is higher than 0°C. If a synthetic resin hollow body is manufactured using a cap film mold that gives the cross-sectional shape shown in Figure 1B, and the amount of gas in the sealed chamber exceeds the design value, the top part will be shaped as shown in Figure 4. The product will be raised in a dome shape. Note that the lower the permeability of the sealed gas to the film, the more likely the sealed chamber will expand, so it can be said that it is generally preferable.
However, if too much gas enters from the outside,
If the film is thin, the sealed chamber may not be able to withstand the increased pressure and may break, so care must be taken. (Example 1) d=0.9229/ClR3, MFR=0.8 DP
E is used as the material, and the basis weight is 509/7Ff.
A gas-filled synthetic resin hollow body was manufactured by the method disclosed in No. 99631. The concave portion of the cap film molding die was cylindrical, with a diameter of 10 m and a depth of 4 m. The sealed gas is N2, and the temperature at the time of filling is about 100°C. Immediately after manufacturing the synthetic resin hollow body, when it has cooled to room temperature,
The sealed chamber was wrinkled as shown in FIG. 2, but expanded in about 2 hours after being left to stand, and became full as shown in FIG. 1B. When we took out the gas in the sealed room and analyzed it by GC, it was found that 02
existence was confirmed. The conventional product made using the same mold had a height of 3.2 m per piece, but the height of the product according to the present invention was 3.2 m.
It had a height of 9mm. When we measured the compressive strength (i.e., compressive elastic modulus, compressive strength at break), static buffer coefficient, and compressive creep properties of the product of the present invention, we found that the product outperformed conventional products in all cases, indicating that this product is excellent as a cushioning material. It was confirmed that the product had excellent performance. (Example 2) The same LDPE as in Example 1 was used, but the basis weight was 100.
A synthetic resin hollow body was manufactured under the same conditions except that the ratio was 9/m. The expansion of the sealed chamber was completed approximately 4 hours after production, resulting in a hollow body having the cross-sectional shape shown in FIG. 1B. [Example 3] The same LDPE as in Example 1 was used as the material, but N was sealed.
A synthetic resin hollow body was manufactured under the same conditions except that the temperature of the two gases was 70°C. The expansion of the sealed chamber was completed in about 2 hours during production, and it swelled up into a dome shape as shown in Figure 4. Although this hollow body had slight wrinkles on the ridge of the sealed chamber, it did not damage the product value, and each piece had a height of 4.1 inches. [Example 4] The same LDPE as in Example 1 was used as the material, and it was also made from JP-A-60
A synthetic resin hollow body filled with N2 gas was manufactured by the method disclosed in No. 99631. The temperature when N2 is sealed is 70°C. In this example, the concave part of the cap film mold is 10 m in diameter and 4 J in height.
It was made into a hemispherical shape of 11111. The expansion of the sealed chamber was completed in 2 hours during the manufacturing process, and it became a solid hemisphere as shown in FIG. No wrinkles occurred in this hemisphere. [Example 5] L-L of d=0.9229/ClR3, VFR-0,8
Made of DPE, basis weight 50g/Td, JP-A-60
A synthetic resin hollow body filled with N2 gas at 70° C. was manufactured by the method disclosed in No. 99631. The cap film molding die had the same cylindrical recess as in Examples 1 to 3. Approximately 4 hours after production, the sealed chamber expanded and assumed the solid shape shown in FIG. 1B.
【実施例6】
封入ガスとして六フッ化イオウSF6を使用したほかは
同じ条件で、実施例2をくり返した。
製造後的1.5時間で、第1図Bに示す充実した形状に
なった。 その後も膨張を続け、製造俊約6時間で密閉
室の膨張が止まり、第4図に示すドーム形状をとった。
SF6は、02はもちろんN2よりも透過率が低いか
ら、密閉室内には02だけでなくN2も侵入し、第4図
に示す状態で内外の圧力がバランスしたと考えられる。Example 6 Example 2 was repeated under the same conditions except that sulfur hexafluoride SF6 was used as the filler gas. After 1.5 hours of manufacture, the solid shape shown in FIG. 1B was obtained. After that, it continued to expand, and the expansion of the sealed chamber stopped after about 6 hours of production, and it took on the dome shape shown in Figure 4. Since SF6 has a lower transmittance than N2 as well as 02, it is thought that not only 02 but also N2 entered the sealed chamber, and the internal and external pressures were balanced in the state shown in FIG.
【実施例7】
実施例3で得た合成樹脂中空体に、ざらに一層のLDP
Eフィルム5を揮し出しラミネーションして、第6図に
示す構成の製品1Aとした。
曲げ剛性を評価するため、水平方向にカンチレバ一式に
張り出して自重でたわむ限界をしらべたところ、従来の
製品は張り出し長さ120amですでにたわみがみられ
たのに対し、この実施例の製品は300#1I11でも
たわまなかった。
τ実施例8】
d=0.922g/CrIt3、MFR=0.8のLD
PHにアルミ粉を練り込んだ材料を用い、坪量50g/
rdにて実施例3をくり返した。
得られた合成樹脂中空体を3枚積層して、第7図に示す
構成の製品1Bとした。
従来の合成樹脂中空体を3枚積層したものは、全体の厚
さが9.6mであったが、この実施例のものは12.3
m1mあった。
また、JIS A 1412に定める方法に準拠し
て測定した平均熱伝導率0.04 kcal /m・h
r・℃を用いて熱抵抗を計算すると、つぎの数字となる
。 (単位尻・hr・’C/ kcal )従来品:
0.24 実施例:0.31[Example 7] Roughly one layer of LDP was added to the synthetic resin hollow body obtained in Example 3.
The E film 5 was volatilized and laminated to obtain a product 1A having the structure shown in FIG. In order to evaluate bending rigidity, we extended a cantilever set in the horizontal direction and examined the limit of deflection due to its own weight, and found that the conventional product already showed deflection at an extended length of 120 am, whereas the product of this example Even 300#1I11 did not bend. τ Example 8 LD with d=0.922g/CrIt3, MFR=0.8
Using a material with aluminum powder kneaded into PH, the basis weight is 50g/
Example 3 was repeated at rd. Three sheets of the obtained synthetic resin hollow bodies were laminated to form a product 1B having the structure shown in FIG. The conventional one made by laminating three synthetic resin hollow bodies had a total thickness of 9.6 m, but this example had a total thickness of 12.3 m.
There was m1m. In addition, the average thermal conductivity measured in accordance with the method specified in JIS A 1412 is 0.04 kcal/m・h
Calculating the thermal resistance using r.degree. C. results in the following numbers. (Unit: hr/'C/kcal) Conventional product:
0.24 Example: 0.31
【実施例9】
d=0.922g/CIIt3、MFR=0.8のLD
PEに黄色のカラーマスターを混練したものを材料とし
、坪150g/fにて、特開昭60−99631号に開
示の方法により、N2ガスを100℃で封入した合成樹
脂中空体を製造した。
この例では、キャップフィルム成形金型の凹部は、−辺
の長さ10履の菱形で、深ざ4sである。
製造後約2時間で密閉室が膨張し、第8図AおよびBに
示す形状となった。 一般に角柱状の密閉室は、内部の
ガス圧力が不足であるとその形状が崩れ、外観が好まし
くないが、この実施例の製品は正しい幾何学的形状がみ
られ、美麗であった。
1肌五四1
本発明の合成樹脂中空体は、密閉室内にガスが充満して
いるから、!1衝材として高い能力を有する。 とくに
、包装体の空所に充填して用いる場合には、高さが十分
あるため従来品より少い枚数で足りる。 たとえば、本
発明に従う高さ4.1Mのものを用いれば、同じ金型を
用いて製造した高さ3.2Nnの従来品にくらべて、2
2%の資材部約ができる。
第6図に示した三層構成の製品においては、実施例7に
示したように、曲げ剛性の大きい、「腰が強い」ものと
なる。 この性質も、用途によっては有用である。
本発明の合成樹脂中空体を断熱材として使用する場合も
、熱抵抗値が同じ材料を使用して製造した従来品より大
きいから、いっそう高性能である。
この事実は、実施例8に示したとおりである。
本発明の合成樹脂中空体は、密閉室の頂部表面にシワが
寄っていないから、外観がすこぶる美麗で、商品価値の
高いものである。 とくに、第8図Aおよび実施例9に
示したような、円柱状以外の形の密閉室をつくった場合
、その形状が正しく保たれるため、この効果は顕著であ
る。 合成樹脂中空体が美粧効果を有することは、それ
自身の商品価値を高めるだけでなく、それを使用して包
装した商品の価値を高めることにもなる。
製造技術として特開昭60−99631号の方法を利用
するにせよ、従来法によるにせよ、本発明の合成樹脂中
空体は容易に製造でき、そのコストも従来品にくらべ2
〜3%程度の増加ですむ。[Example 9] LD with d=0.922g/CIIt3, MFR=0.8
A synthetic resin hollow body filled with N2 gas at 100° C. was manufactured using PE and yellow color master kneaded together at 150 g/f by the method disclosed in JP-A-60-99631. In this example, the concave portion of the cap film molding die is in the shape of a diamond with a -side length of 10 mm and a depth of 4 seconds. Approximately 2 hours after production, the sealed chamber expanded and took on the shape shown in FIGS. 8A and 8B. Generally, a prismatic sealed chamber loses its shape if the internal gas pressure is insufficient, resulting in an unfavorable appearance, but the product of this example had a correct geometric shape and was beautiful. 1 Skin 541 The synthetic resin hollow body of the present invention has a closed chamber filled with gas! 1. Has high ability as a shock material. In particular, when used by filling the empty spaces of a package, fewer sheets than conventional products are required because of the sufficient height. For example, if a product with a height of 4.1M according to the present invention is used, compared to a conventional product with a height of 3.2Nn manufactured using the same mold, the product will have a height of 2.
You can save 2% on the materials department. The three-layered product shown in FIG. 6 has high bending rigidity and is "strong" as shown in Example 7. This property is also useful depending on the application. When the synthetic resin hollow body of the present invention is used as a heat insulating material, it has a higher thermal resistance value than a conventional product manufactured using the same material, so it has higher performance. This fact is as shown in Example 8. Since the synthetic resin hollow body of the present invention has no wrinkles on the top surface of the closed chamber, it has a very beautiful appearance and has high commercial value. In particular, this effect is remarkable when a closed chamber having a shape other than a columnar shape as shown in FIG. 8A and Example 9 is created, since the shape is maintained correctly. The fact that a synthetic resin hollow body has a cosmetic effect not only increases its own commercial value, but also increases the value of products packaged using it. Regardless of whether the method of JP-A-60-99631 is used as a manufacturing technique or the conventional method, the synthetic resin hollow body of the present invention can be easily manufactured, and its cost is 2 times lower than that of conventional products.
An increase of about 3% is sufficient.
第1図AおよびBは、本発明の合成樹脂中空体の代表的
な態様を示すものであって、Aは平面図、Bは断面図で
ある。
第2図は、従来の合成樹脂中空体の拡大断面図である。
第3図AおよびBは、本発明の合成樹脂中空体において
、密閉室の膨張が起る機構の説明図であって、Aは膨張
前、Bは膨張後の状態をそれぞれ示す。
第4図は、本発明の合成樹脂中空体において、密閉室が
設計値以上に膨張した状態を示す拡大断面図である。
第5図、第6図および第7図は、いずれも本発明の合成
樹脂中空体の別な態様を示す、第1図Bに対応する断面
図である。
第8図AおよびBは、やはり本発明の合成樹脂中空体の
さらに別の態様を示すものであって、Aは第1図Aに対
応する平面図、Bは第1図Bに対応する断面図である。
1・・・合成樹脂中空体
2・・・キャップフィルム
3・・・パックフィルム
4・・・密閉室
特許出願人 川上産業株式会社
代理人 弁理士 須 賀 総 夫
第11!IA
第1図B
第2図
第3図A 第3図B
第4図
第5図
第8図BFIGS. 1A and 1B show typical embodiments of the synthetic resin hollow body of the present invention, with A being a plan view and B being a sectional view. FIG. 2 is an enlarged sectional view of a conventional synthetic resin hollow body. 3A and 3B are explanatory diagrams of the mechanism by which the sealed chamber expands in the synthetic resin hollow body of the present invention, where A shows the state before expansion and B shows the state after expansion, respectively. FIG. 4 is an enlarged sectional view showing a state in which the sealed chamber of the synthetic resin hollow body of the present invention is expanded beyond the design value. FIG. 5, FIG. 6, and FIG. 7 are all sectional views corresponding to FIG. 1B, showing other embodiments of the synthetic resin hollow body of the present invention. 8A and 8B also show still another embodiment of the synthetic resin hollow body of the present invention, where A is a plan view corresponding to FIG. 1A, and B is a cross section corresponding to FIG. 1B. It is a diagram. 1... Synthetic resin hollow body 2... Cap film 3... Pack film 4... Sealed chamber Patent applicant Kawakami Sangyo Co., Ltd. Agent Patent attorney Souo Suga 11th! IA Figure 1 B Figure 2 Figure 3 A Figure 3 B Figure 4 Figure 5 Figure 8 B
Claims (2)
フィルムとをはり合わせて多数の密閉室を形成してなる
合成樹脂中空体において、密閉室内に上記合成樹脂フィ
ルムに対する透過率が空気の透過率よりも低いガスを封
入したことを特徴とする合成樹脂中空体。(1) In a synthetic resin hollow body formed by gluing together a synthetic resin film with many recesses and a flat film to form a large number of sealed chambers, the permeability of air to the synthetic resin film in the sealed chamber is A synthetic resin hollow body characterized by being filled with a gas lower than the
、封入ガスが窒素である特許請求の範囲第1項の合成樹
脂中空体。(2) The synthetic resin hollow body according to claim 1, wherein the synthetic resin film is a polyethylene film and the sealed gas is nitrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25624785A JPS62116145A (en) | 1985-11-15 | 1985-11-15 | Synthetic-resin hollow body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25624785A JPS62116145A (en) | 1985-11-15 | 1985-11-15 | Synthetic-resin hollow body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62116145A true JPS62116145A (en) | 1987-05-27 |
Family
ID=17289980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25624785A Pending JPS62116145A (en) | 1985-11-15 | 1985-11-15 | Synthetic-resin hollow body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62116145A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333523A (en) * | 1989-01-19 | 1991-02-13 | Marion F Rudy | Load support shock absorber with improved barrier material for controlling diffusion pumping |
US6521305B1 (en) | 1994-08-31 | 2003-02-18 | Paul H. Mitchell | Cushioning device with improved flexible barrier membrane |
GB2381236A (en) * | 2001-10-26 | 2003-04-30 | Plastipack Limted | Protective sheet |
US6797215B2 (en) | 1995-06-07 | 2004-09-28 | Nike, Inc. | Membranes of polyurethane based materials including polyester polyols |
US20080302059A1 (en) * | 2007-05-18 | 2008-12-11 | Cabot Corporation | Filling Fenestration Units |
JP2010089449A (en) * | 2008-10-10 | 2010-04-22 | Kawakami Sangyo Co Ltd | Synthetic resin made bubble sheet and method of manufacturing the same |
JP2010247463A (en) * | 2009-04-17 | 2010-11-04 | Kawakami Sangyo Co Ltd | Manufacturing method of synthetic resin bubble sheet laminate |
JP2014065297A (en) * | 2012-09-10 | 2014-04-17 | Ube Exsymo Co Ltd | Method for producing hollow structural sheet, and hollow structural sheet |
GB2507325A (en) * | 2012-10-26 | 2014-04-30 | Euroform Products Ltd | Composite insulation including gas filled pockets |
-
1985
- 1985-11-15 JP JP25624785A patent/JPS62116145A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333523A (en) * | 1989-01-19 | 1991-02-13 | Marion F Rudy | Load support shock absorber with improved barrier material for controlling diffusion pumping |
US6521305B1 (en) | 1994-08-31 | 2003-02-18 | Paul H. Mitchell | Cushioning device with improved flexible barrier membrane |
US6797215B2 (en) | 1995-06-07 | 2004-09-28 | Nike, Inc. | Membranes of polyurethane based materials including polyester polyols |
GB2381236A (en) * | 2001-10-26 | 2003-04-30 | Plastipack Limted | Protective sheet |
GB2381236B (en) * | 2001-10-26 | 2004-09-08 | Plastipack Limted | Protection sheet |
US20080302059A1 (en) * | 2007-05-18 | 2008-12-11 | Cabot Corporation | Filling Fenestration Units |
US8628834B2 (en) * | 2007-05-18 | 2014-01-14 | Cabot Corporation | Filling fenestration units |
JP2010089449A (en) * | 2008-10-10 | 2010-04-22 | Kawakami Sangyo Co Ltd | Synthetic resin made bubble sheet and method of manufacturing the same |
JP2010247463A (en) * | 2009-04-17 | 2010-11-04 | Kawakami Sangyo Co Ltd | Manufacturing method of synthetic resin bubble sheet laminate |
JP2014065297A (en) * | 2012-09-10 | 2014-04-17 | Ube Exsymo Co Ltd | Method for producing hollow structural sheet, and hollow structural sheet |
GB2507325A (en) * | 2012-10-26 | 2014-04-30 | Euroform Products Ltd | Composite insulation including gas filled pockets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0239619B1 (en) | Protective envelope device for packaging fragile articles | |
US6696135B2 (en) | Inflatable air cell dunnage | |
JPS62116145A (en) | Synthetic-resin hollow body | |
TWM252680U (en) | Air packing bag having film valve | |
JP2008106532A (en) | Vacuum insulation | |
US3712844A (en) | Sealing of foam plastic sheets | |
CN106986102A (en) | The preparation method and a kind of hot-melting sealed inflation vibration-proof package bag of hot-melting sealed inflation vibration-proof package bag | |
CN213263730U (en) | Novel inflatable packaging bag | |
KR20140129255A (en) | Unitized package and method of making same | |
CN206842101U (en) | A kind of hot-melting sealed inflates vibration-proof package bag | |
CN211811257U (en) | Integrated vacuum heat-insulation box | |
JP2989447B2 (en) | Insulated container and its manufacturing method | |
JP4443727B2 (en) | Manufacturing method of vacuum insulation container | |
CN215827438U (en) | Compression-resistant inflatable double-layer bubble bag | |
JP5347107B2 (en) | Cushioning packaging | |
CN215515001U (en) | Novel heat preservation box connecting piece and heat preservation box | |
JP2014205518A (en) | Heat insulating food container and method for manufacturing the same | |
JPH08105687A (en) | Vacuum insulation | |
CN213324665U (en) | Shockproof compression-resistant packaging bag | |
CN217477789U (en) | Color box with waterproof performance | |
JPH05209700A (en) | Vacuum heat insulating material pack | |
CN212891810U (en) | Air column bag for packaging | |
JP3308591B2 (en) | Extruded tube container and manufacturing method thereof | |
JPH0634094Y2 (en) | Buffer pad | |
JPH0211301Y2 (en) |