[go: up one dir, main page]

JPS6211066B2 - - Google Patents

Info

Publication number
JPS6211066B2
JPS6211066B2 JP55127782A JP12778280A JPS6211066B2 JP S6211066 B2 JPS6211066 B2 JP S6211066B2 JP 55127782 A JP55127782 A JP 55127782A JP 12778280 A JP12778280 A JP 12778280A JP S6211066 B2 JPS6211066 B2 JP S6211066B2
Authority
JP
Japan
Prior art keywords
coining
alloy
amorphous
temperature
heating time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55127782A
Other languages
Japanese (ja)
Other versions
JPS5754222A (en
Inventor
Masahiro Nawa
Takao Maeda
Hirozo Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP55127782A priority Critical patent/JPS5754222A/en
Publication of JPS5754222A publication Critical patent/JPS5754222A/en
Publication of JPS6211066B2 publication Critical patent/JPS6211066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、非晶質金属であるCo―Fe―Si―B
合金をの塑性加工方法に関し、その要旨は、メタ
ルーメタロイド系非晶質合金の高温下における塑
性加工において、縦軸側を対数目盛とした片数表
の縦軸側を表材加熱時間(単位秒)とし、横軸側
を加工温度(単位℃)とし、素材加熱時間が14秒
の位置から横方向に伸した直線と加工温度が400
℃の位置から上方に伸した線との交点をP1とし、
素材加熱時間が5秒の位置から横に伸した線と加
工温度500℃の位置から上方に伸した線との交点
をP2とし、P1,P2を結ぶ直線下で加工温度400℃
〜500の範囲に囲まれる範囲を塑性加工領域と
し、被凹凸加工を施した圧印金型を使用してCo
―Fe―Si―B合金を塑性加工することを特徴と
する非晶質金属の塑性加工方法にある。 従来の電気かみそり用外刃の材質は、
SUS420j2(ステンレス合金)を使用していた。
しかし、このステンレス合金では焼入れ状態での
強度は、180Kg/mm2、ヤング率2.1×104Kg/mm2
硬度575HVである。ところで目下、深剃り追求の
ため、電気かみそり用外刃の開孔率を上げ、且つ
刃厚を薄くしようとしているが、強度的に限界が
ある。そして、上記の材質では水洗に対しては耐
食性の上で問題があつた。 本発明は、かかる従来例の欠点に鑑みてなされ
たもので、その目的とするところは、耐食性に優
れ、高強度を有する非晶質金属の塑性加工方法を
提供するにある。 以下、本発明を図示実施例に従つて詳述する。
メタルーメタロイド系非晶質合金(非晶質Co―
Fe―Si―B合金)をさらに詳述すれば、非晶質
Co70.5Fe4.5Si12.5B12.5合金である。 以下、非晶質Co70.5Fe4.5Si12.5B12.5合金(メタ
ルーメタロイド系非晶質合金)について、その詳
細を説明する。 非晶質Co70.5Fe4.5Si12.5B12.5合金の引張性質の
温度依存性を第1図に示す。同図において実線は
破断応力(最高応力)を示しており、その単位は
左側に目盛られており、破線は塑性伸びを示して
おり、その単位は右側に目盛られている。試験
は、0〜600℃の温度範囲の各温度で15分保持後
引張速度1mm/minで行つたものである。ここで
470〜510℃付近で、明確な降伏を生じて約30%以
上の塑性伸びを示していることがわかる。また、
ガラス転位温度(Tg≒510℃)以上になると脆化
により早期破断するものが多くなり、強度が著し
く低下していることがわかる。 一般に、メタルーメタロイド系非晶質合金は、
温度上昇にともない次に示す結晶化の過程があ
る。
The present invention focuses on Co--Fe--Si--B, which is an amorphous metal.
Regarding plastic working methods for alloys, the gist is that in plastic working of metal-metalloid amorphous alloys at high temperatures, the vertical axis of a piece number table with logarithmic scale on the vertical axis is the surface material heating time (unit: seconds), and the horizontal axis is the processing temperature (unit: °C), and the straight line extending horizontally from the position where the material heating time is 14 seconds is the processing temperature of 400 seconds.
Let P 1 be the intersection with the line extending upward from the ℃ position,
The intersection of the line extending horizontally from the position where the material heating time is 5 seconds and the line extending upward from the position where the processing temperature is 500℃ is P 2 , and the processing temperature is 400℃ below the straight line connecting P 1 and P 2 .
The area surrounded by ~500 is defined as the plastic processing area, and a coining die with a textured surface is used to process Co.
- A method for plastic working an amorphous metal, which is characterized by plastic working a Fe-Si-B alloy. The material of the outer blade for conventional electric razors is
SUS420j2 (stainless steel alloy) was used.
However, the strength of this stainless steel alloy in the quenched state is 180 Kg/mm 2 , Young's modulus 2.1×10 4 Kg/mm 2 ,
Hardness is 575HV. Currently, attempts are being made to increase the aperture ratio and reduce the thickness of the outer blades for electric shavers in order to achieve a closer shave, but there are limits to their strength. The above-mentioned materials had problems in terms of corrosion resistance when washed with water. The present invention has been made in view of the drawbacks of the conventional examples, and its purpose is to provide a method for plastic working of amorphous metals having excellent corrosion resistance and high strength. The present invention will be described in detail below with reference to illustrated embodiments.
Metal-metalloid amorphous alloy (amorphous Co-
In more detail, the Fe-Si-B alloy) is amorphous.
It is a Co 70.5 Fe 4.5 Si 12.5 B 12.5 alloy . The details of the amorphous Co 70.5 Fe 4.5 Si 12.5 B 12.5 alloy ( metal -metalloid amorphous alloy) will be described below. Figure 1 shows the temperature dependence of the tensile properties of the amorphous Co70.5Fe4.5Si12.5B12.5 alloy . In the figure, the solid line indicates the breaking stress (maximum stress), the units of which are scaled on the left, and the broken line indicates plastic elongation, whose units are scaled on the right. The test was carried out at a tensile rate of 1 mm/min after holding at each temperature in the temperature range of 0 to 600°C for 15 minutes. here
It can be seen that clear yielding occurs at around 470 to 510°C, showing plastic elongation of about 30% or more. Also,
It can be seen that when the temperature exceeds the glass transition temperature (Tg≒510°C), many pieces break early due to embrittlement, and the strength decreases significantly. Generally, metal-metalloid amorphous alloys are
As the temperature rises, the following crystallization process occurs.

【表】 なお、前記ガラス転位温度(Tg)は、準安定
相―(MS―)付近であると推定され、ガラ
ス転位温度(Tg)以上では、結晶化により、完
全脆性体となり、早期破断するようになる。従つ
て、アモルフアス金属に塑性加工を施す際の温度
範囲の上限はガラス転位温度(Tg)以下本系合
金では約500℃)にとることが望ましく、また、
電気かみそり用外刃を作製するために必要な塑性
伸び(約20%以上)を満足する必要があり、温度
範囲の下限は本系合金では約400℃以上に取るこ
とが望ましい。次にメタルーメタロイド系非晶質
合金の熱的不安定性に起因する脆化挙動について
説明する。メタルーメタロイド系非晶質合金のこ
のような脆化現象は、非晶質相から結晶相への遷
移過程に依存し、結晶化前段階に生じる構造緩和
による相分離によつて、形成される脆い各種析出
物に起因する。なお結晶化以後は、極めて脆化が
顕著となる。第2図に素材加熱時間10分での非晶
質Co70.5Fe4.5Si12.5B12.5合金の結晶化前段階の脆
化の温度依存性を示し、第3図に素材加熱時間
500(±5)℃での同合金の時間依存性の一例を
示す。第2図及び第3図において、縦軸の脆化係
数EPは対数目盛で目盛つてあり、更に、第3図
において、横軸の素材加熱時間も対数目盛で目盛
つてある。ただし脆化係数EPは曲げ試験によ
り、次式によつて定義した。 但しEP:脆化係数 t:試験片の厚さ(mm) Rmin:最小曲げ半径(mm) 一般に非晶質金属は、多数の辷り変形により、
180゜密着曲げが可能であるが、高温度処理を施
すことにより、脆化すると、その変形能が著しく
減少し、脆化破壊を示すようになる。また急冷し
たままの非晶質金属は、180゜密着曲げが可能で
あるのでRmin→0となりEP→1となる。一方脆
くなるにつれ、Rminが増大し、EPは限りなく0
に近づく。いま、第2図、第3図を参照すると、
メタルーメタロイド系合金の脆化は、加熱温度、
加熱時間の増加に伴い顕著となることが判る。従
つて加工時間の最適値の決定は前記加工温度T
(400≦T≦500℃)の下限値(400℃)から規定さ
れる以内に取れば良いことがわかる。また、第3
図の脆化の時間依存性より加熱温度500℃では加
熱時間5秒を境に特性がかわり、素材加熱時間
は、5秒以内にとることが望ましいことがわか
る。 一方、第4図にせん断応力τの加熱時間依存性
を加熱温度T:432(±3)℃を例にとり示す。
同図において、縦軸のせん断応力τ及び横軸の素
材加工時間は対数目盛で目盛つてある。なお、前
記せん断応力τは引き裂き試験により次式により
定義した。 τ=P/l・t(Kg/mm2) (2) 但し τ:せん断応力(Kg/mm2) P:荷重(Kg) l:単一き裂長さ(mm) t:板厚(mm) 加熱時間 T:432℃で、せん断応力τは加熱
時間10秒を境に急激に減少し脆化していることか
ら、素材加熱時間は、10秒以内に取ることが望ま
しいことがわかる。 以上考察により、メタルーメタロイド系非晶質
合金の良好なかみそり外刃を製造する最適圧印加
条件は第5図イ,ロに示すハツチングの範囲内で
あるのが望ましい。なお、同図ロにおいて縦軸の
素材加熱時間は対数目盛りで目盛つてある。 次に本系合金を電気かみそり用外刃に利用した
場合について詳述する。本発明を利用した電気か
みそり用外刃を製造する圧印金型Aの構造の1例
を第6図に示す。金型の両側方に、カートリツジ
ヒータ5を配置し、金型加熱を行ない、素材1で
ある本系非晶質合金を、キヤビテイ3と圧印板2
との間に挿入し、ポンチ4を押圧することにより
キヤビテイ形状が素材1に転写される構造となつ
ている。なお、圧印後素材1に、研削孔開けを施
し、外刃を製造する。(ソフトスタンプ加工)こ
こで、圧印板2は、高温状態でも使用でき、変形
が容易でしかも伸びが比較的豊富なアルミニウ
ム、銅などの軟質金属を用い、キヤビテイ形状を
素材1に転写した。ここで8はバツクプレート、
9はリテーナ、10はキヤビテイホルダ、13は
バツクプレート、14は断熱材、15はダイセツ
ト上板、16はダイセツト下板である。なお、ア
ルミニウム、銅などの軟質金属は、ゴムなどのよ
うないわゆる弾性体ではないが、その変形能よ
り、繰返し使用が可能であつた。また、この軟質
金属を圧印板2として使用するに際し、第8図a
〜cに示すように、一度圧印した後、キヤビテイ
形状が転写された印板2に、時効処理(焼入れ)
を施して圧印板2を硬化させ、その圧印板2を使
用し、第8図d〜fに示すように圧印することに
より、第7図に示すようにキヤビテイ肩部での応
力集中を緩和してその部分における素材1の断面
収縮を最小限にとどめることが可能となる。な
お、時効処理を施す軟質金属としては、例えばベ
リリウム銅、あるいは、焼入れ硬化を施すために
軟銅を使用するのが望ましい。 高温状態(400〜500℃)で圧印され送り出され
たばかりの本系非晶質合金は、加熱状態にあるた
め、これを例えば不活性ガスにより強制急冷する
ことにより非晶質金属の脆化をかなり防いでい
る。この点は、第3図の本系非晶質合金の脆化の
時間依存性で述べたように本系非晶質合金の熱的
不安定性に起因する脆化挙動は、素材加熱時間が
長くなるほど脆化助長する傾向にある。したがつ
て送り出されたばかりの加熱状態にある本系非晶
質合金を、例えば不活性ガスにより、強制急冷す
ることにより、素材加熱時間を大幅に短縮するこ
とができ、結果として脆化を防ぐ効果をもたら
す。冷却方法としては、この他、冷却媒体(ロー
ルなど)やエアーなど種々の方法がある。第9図
に本発明の圧印素材フープ12の構成を、第10
図a,bにその加工説明図を示す。圧印素材フー
プ12は本系非晶質合金の素材1部分と他種材料
薄箔11とを交互に一体的に連結してある。しか
して、圧印時において本系非晶質合金の素材1の
加熱時間を短縮するため、非圧印時〔第10図a〕
においては、他種材料薄箔11が圧印金型A内に
位置するように配置し、本系非晶質合金の素材1
が圧印金型Aにより加熱されるのを防ぐ。次に、
ポンチ4押圧による、圧印開始と同時にすばやく
圧印素材フープ12を送り、本系非晶質合金の素
材1部分がキヤビテイ3上にくるように配置して
圧印する。〔第10図b〕圧印後は、ただちに圧
印素材フープ12を送り、他種材料薄箔11が圧
印金型A内に配置されるようにする。〔第10図
a〕上述の一連の動作を繰返すことにより、本系
非晶質合金の素材1部分が加熱される時間を大幅
に短縮でき、脆化のない良好な非晶質金属電気か
みそり用外刃を製造することができる。本系非晶
質合金の素材1の加熱時間短縮をさらにはかるに
は、圧印素材フープ12を上金型6(ポンチ・リ
テーナ側)と下金型7(キヤビテイ・キヤビテイ
ホールダ側)の中間に位置させることにより、
(第10図a参照)圧印時に、前記圧印素材フー
プ12を送り、本系非晶質合金の素材1部分を、
キヤビテイ3上に配置する際上金型6が押圧によ
り、下降し、下金型7に接するまでは、前記本系
非晶質合金の素材1部分は、圧印金型Aに直接接
しないようにすればよく加熱時間の短縮ができる
もので、脆化のない良好な非晶質金属の電気かみ
そり用外刃を製造することができるものである。 本発明は、叙上のような構成であるので、被凹
凸加工を施した圧印金型を使用してCo―Fe―Si
―B合金を最適塑性加工領域内で塑性加工するこ
とができ、伸び不足による破損やガラス転位温度
による塑性破壊を防止して健全な塑性加工物を得
ることてができるという利点がある。
[Table] The above glass transition temperature (Tg) is estimated to be near the metastable phase (MS), and above the glass transition temperature (Tg), the material becomes completely brittle due to crystallization and breaks early. It becomes like this. Therefore, it is desirable that the upper limit of the temperature range when applying plastic working to amorphous metals is below the glass transition temperature (Tg) (approximately 500°C for this alloy);
It is necessary to satisfy the plastic elongation (approximately 20% or more) required for producing outer blades for electric shavers, and the lower limit of the temperature range is preferably approximately 400°C or higher for this alloy. Next, the embrittlement behavior of metal-metalloid amorphous alloys due to thermal instability will be explained. This embrittlement phenomenon of metal-metalloid amorphous alloys depends on the transition process from the amorphous phase to the crystalline phase, and is formed by phase separation due to structural relaxation that occurs in the pre-crystallization stage. Caused by various brittle precipitates. Note that after crystallization, embrittlement becomes extremely noticeable. Figure 2 shows the temperature dependence of embrittlement in the pre - crystallization stage of the amorphous Co70.5Fe4.5Si12.5B12.5 alloy when the material was heated for 10 minutes . Material heating time
An example of the time dependence of the same alloy at 500 (±5)°C is shown. 2 and 3, the embrittlement coefficient EP on the vertical axis is plotted on a logarithmic scale, and further, in FIG. 3, the material heating time on the horizontal axis is also plotted on a logarithmic scale. However, the embrittlement coefficient EP was defined by the following equation based on the bending test. However, EP: embrittlement coefficient t: Thickness of test piece (mm) Rmin: Minimum bending radius (mm) In general, amorphous metals undergo multiple sliding deformations.
Although 180° tight bending is possible, if it becomes brittle due to high-temperature treatment, its deformability decreases significantly and it begins to show brittle fracture. In addition, an amorphous metal that has been rapidly cooled can be bent closely by 180 degrees, so Rmin→0 and EP→1. On the other hand, as it becomes brittle, Rmin increases and EP reaches zero.
approach. Now, referring to Figures 2 and 3,
The embrittlement of metal-metalloid alloys is caused by heating temperature,
It can be seen that this becomes more noticeable as the heating time increases. Therefore, the optimum value of the machining time is determined by the machining temperature T.
(400≦T≦500°C) It can be seen that it is sufficient to take the temperature within the prescribed range from the lower limit (400°C). Also, the third
From the time dependence of embrittlement in the figure, it can be seen that at a heating temperature of 500°C, the properties change after a heating time of 5 seconds, and it is desirable to heat the material within 5 seconds. On the other hand, FIG. 4 shows the heating time dependence of the shear stress τ using a heating temperature T: 432 (±3)° C. as an example.
In the figure, the shear stress τ on the vertical axis and the material processing time on the horizontal axis are plotted on a logarithmic scale. In addition, the said shear stress (tau) was defined by the following formula by the tear test. τ=P/l・t (Kg/mm 2 ) (2) where τ: Shear stress (Kg/mm 2 ) P: Load (Kg) l: Single crack length (mm) t: Plate thickness (mm) Heating time T: At 432°C, the shear stress τ rapidly decreased after the heating time of 10 seconds and the material became brittle, indicating that it is desirable to heat the material within 10 seconds. Based on the above considerations, it is desirable that the optimum pressure application conditions for manufacturing a good razor outer cutter made of a metal-metalloid amorphous alloy be within the range of the hatchings shown in Figures 5A and 5B. In addition, in the figure (b), the material heating time on the vertical axis is scaled on a logarithmic scale. Next, we will discuss in detail the case where this alloy is used for the outer blade of an electric shaver. FIG. 6 shows an example of the structure of a coining die A for manufacturing an outer cutter for an electric shaver using the present invention. Cartridge heaters 5 are placed on both sides of the mold to heat the mold, and the main amorphous alloy, which is the material 1, is placed between the cavity 3 and the coining plate 2.
The structure is such that the cavity shape is transferred to the material 1 by inserting it between the two and pressing the punch 4. Note that after coining, the material 1 is ground and drilled to produce an outer cutter. (Soft Stamp Processing) Here, the coining plate 2 was made of a soft metal such as aluminum or copper, which can be used even in high temperature conditions, is easily deformed, and has relatively high elongation, and the cavity shape was transferred to the material 1. Here 8 is the back plate,
9 is a retainer, 10 is a cavity holder, 13 is a back plate, 14 is a heat insulator, 15 is a die set upper plate, and 16 is a die set lower plate. Although soft metals such as aluminum and copper are not so-called elastic bodies like rubber, they can be used repeatedly due to their deformability. In addition, when using this soft metal as the coining plate 2, please refer to Fig. 8a.
As shown in ~c, once coined, the stamp plate 2 to which the cavity shape has been transferred is subjected to aging treatment (quenching).
By hardening the coining plate 2 and using the coining plate 2 to perform coining as shown in Fig. 8 d to f, the stress concentration at the cavity shoulder is alleviated as shown in Fig. 7. This makes it possible to minimize cross-sectional shrinkage of the material 1 in that portion. As the soft metal to be subjected to the aging treatment, it is desirable to use, for example, beryllium copper, or soft copper for quench hardening. This amorphous alloy, which has just been coined and sent out at a high temperature (400 to 500°C), is in a heated state, so by forcibly quenching it with an inert gas, for example, the embrittlement of the amorphous metal can be significantly reduced. Preventing. In this respect, as mentioned in the time dependence of embrittlement of the present amorphous alloy in Figure 3, the embrittlement behavior due to thermal instability of the present amorphous alloy is caused by a long material heating time. Indeed, it tends to promote embrittlement. Therefore, by forcibly quenching the heated amorphous alloy that has just been delivered, using an inert gas, for example, it is possible to significantly shorten the material heating time, and as a result, it is effective in preventing embrittlement. bring about. In addition to this, there are various other cooling methods such as cooling medium (roll etc.) and air. FIG. 9 shows the structure of the coining material hoop 12 of the present invention.
Figures a and b show illustrations of the process. The coining material hoop 12 is made by alternately and integrally connecting one part of the present amorphous alloy material and a thin foil 11 of another type of material. Therefore, in order to shorten the heating time of the material 1 of the present amorphous alloy during coining, when not coining [Fig. 10a]
In this case, the thin foil 11 of the other material is placed in the coining mold A, and the material 1 of the present amorphous alloy is placed in the coining mold A.
This prevents the metal from being heated by the coining die A. next,
Simultaneously with the start of coining by pressing the punch 4, the coining material hoop 12 is quickly sent, and the coining material hoop 12 is arranged so that a part of the raw material of the present amorphous alloy is on the cavity 3, and coined. [FIG. 10b] Immediately after coining, the coining material hoop 12 is sent so that the other material thin foil 11 is placed in the coining die A. [Fig. 10a] By repeating the above-mentioned series of operations, the heating time of one part of the material of the present amorphous alloy can be significantly shortened, resulting in a good amorphous metal electric shaver without embrittlement. Outer blades can be manufactured. In order to further shorten the heating time for the material 1 of this amorphous alloy, the coining material hoop 12 is placed between the upper mold 6 (punch/retainer side) and the lower mold 7 (cavity/cavity holder side). By positioning
(See Figure 10a) When coining, the coining material hoop 12 is sent, and a portion of the material of the present amorphous alloy is
When placing it on the cavity 3, the material 1 of the present amorphous alloy is not in direct contact with the coining die A until the upper die 6 is pressed down and comes into contact with the lower die 7. By doing so, the heating time can be shortened, and an excellent amorphous metal outer blade for an electric shaver without embrittlement can be manufactured. Since the present invention has the above-mentioned configuration, Co-Fe-Si is produced using a coining mold with an uneven finish.
- B alloy can be plastic-processed within the optimum plastic-processing range, and there is an advantage that damage due to insufficient elongation and plastic fracture due to glass transition temperature can be prevented and a sound plastic-processed product can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における非晶質Co70.5Fe4.5Si12.
5B12.5合金の引張性質のの温度依存性を示すグラ
フ、第2図は同上の脆化の温度依存性を示す片対
数グラフ、第3図は同上の脆化の時間依存性を示
す両対数グラフ、第4図は同上のせん断応力の加
熱時間依存性を示す両対数グラフ、第5図イは本
発明の最適圧印条件を示す素材加熱時間―加工温
度グラフ、第5図ロは第5図イの片対数グラフ、
第6図は本発明に使用する圧印金型の正面図、第
7図は圧印加工時に素材の肩部に断面減少現象を
生じた時の縦断面図、第8図a〜fは本発明にお
ける圧印加工手順を示す縦断面図、第9図イ,ロ
本発明に使用する圧印素材フープの平面図及び断
面図、第10図a,bは本発明における圧印加工
手順を示す概略正面図である。
Figure 1 shows the amorphous Co70.5Fe4.5Si12 .
5 B 12 . 5 A graph showing the temperature dependence of the tensile properties of the alloy. Figure 2 is a semi-logarithmic graph showing the temperature dependence of the embrittlement of the same as above. Figure 3 is a graph showing the time dependence of the embrittlement of the same as above. Figure 4 is a double logarithmic graph showing the heating time dependence of shear stress, Figure 5 A is a material heating time vs. processing temperature graph showing the optimum coining conditions of the present invention, Figure 5 B is a graph showing the heating time dependence of shear stress. Semilogarithm graph in Figure 5 A,
Fig. 6 is a front view of the coining die used in the present invention, Fig. 7 is a longitudinal cross-sectional view when a cross-section reduction phenomenon occurs in the shoulder of the material during coining, and Fig. 8 a to f are the coining molds used in the present invention. FIGS. 9A and 9B are a plan view and a sectional view of the coining material hoop used in the present invention, and FIGS. 10A and 10B are schematic front views showing the coining procedure in the present invention. .

Claims (1)

【特許請求の範囲】[Claims] 1 メタルーメタロイド系非晶質合金であるCo
―Fe―Si―B合金の高温下における塑性加工に
おいて、縦軸側を対数目盛とした片対数表の縦軸
側を素材加熱時間(単位秒)とし、横軸側を加工
温度(単位℃)とし、素材加熱時間が14秒の位置
から横方向に伸した直線と加熱温度が400℃の位
置から上方に伸した線との交点をP1とし、素材加
熱時間が5秒の位置から横に伸した線と加工温度
500℃の位置から上方に伸した線との交点をP2
し、P1,P2を結ぶ直線下で加工温度400℃〜500℃
の範囲に囲まれる範囲を塑性加工領域とし、被凹
凸加工を施した圧印金型を使用してCo―Fe―Si
―B合金を塑性加工することを特徴とする非晶質
金属の塑性加工方法。
1 Co, a metal-metalloid amorphous alloy
-In plastic working of Fe-Si-B alloy at high temperatures, the vertical axis of the semi-logarithmic table with logarithmic scale on the vertical axis is the material heating time (in seconds), and the horizontal axis is the processing temperature (in °C) Let P 1 be the intersection of a straight line extending horizontally from the position where the material heating time is 14 seconds and a line extending upward from the position where the heating temperature is 400℃, and Stretched wire and processing temperature
The intersection with the line extending upward from the 500°C position is P2 , and the processing temperature is 400°C to 500°C under the straight line connecting P1 and P2 .
The area surrounded by
- A method for plastic working of amorphous metals, which is characterized by plastic working of B alloy.
JP55127782A 1980-09-13 1980-09-13 Plastic working method for amorphous metal Granted JPS5754222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55127782A JPS5754222A (en) 1980-09-13 1980-09-13 Plastic working method for amorphous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55127782A JPS5754222A (en) 1980-09-13 1980-09-13 Plastic working method for amorphous metal

Publications (2)

Publication Number Publication Date
JPS5754222A JPS5754222A (en) 1982-03-31
JPS6211066B2 true JPS6211066B2 (en) 1987-03-10

Family

ID=14968541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55127782A Granted JPS5754222A (en) 1980-09-13 1980-09-13 Plastic working method for amorphous metal

Country Status (1)

Country Link
JP (1) JPS5754222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD878146S1 (en) 2017-10-04 2020-03-17 Whirlpool Corporation Grinder attachment for a stand mixer
USD885822S1 (en) 2018-12-14 2020-06-02 Whirlpool Corporation Food grinder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584036A (en) * 1984-10-03 1986-04-22 General Electric Company Hot working of amorphous alloys
US4782994A (en) * 1987-07-24 1988-11-08 Electric Power Research Institute, Inc. Method and apparatus for continuous in-line annealing of amorphous strip
JP2753739B2 (en) * 1989-08-31 1998-05-20 健 増本 Method for producing aluminum-based alloy foil or aluminum-based alloy fine wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483622A (en) * 1977-12-16 1979-07-03 Matsushita Electric Ind Co Ltd Heat treatment method for amorphous magnetic alloy sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483622A (en) * 1977-12-16 1979-07-03 Matsushita Electric Ind Co Ltd Heat treatment method for amorphous magnetic alloy sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD878146S1 (en) 2017-10-04 2020-03-17 Whirlpool Corporation Grinder attachment for a stand mixer
USD891853S1 (en) 2017-10-04 2020-08-04 Whirlpool Corporated Grinder attachment for a stand mixer
USD902640S1 (en) 2017-10-04 2020-11-24 Whirlpool Corporation Grinder attachment for a stand mixer
USD885822S1 (en) 2018-12-14 2020-06-02 Whirlpool Corporation Food grinder
USD899179S1 (en) 2018-12-14 2020-10-20 Whirlpool Corporation Food grinder

Also Published As

Publication number Publication date
JPS5754222A (en) 1982-03-31

Similar Documents

Publication Publication Date Title
RU2066253C1 (en) Method of making turbine blades
JP4551694B2 (en) Method for manufacturing warm molded product and molded product
JPS6358908B2 (en)
Panka et al. Microstructure and mechanical properties of multiphase NiAl-based alloys
JP2013023753A (en) Method of manufacturing high-strength 7000 series aluminum alloy member and the high-strength 7000 series aluminum alloy member
JP2006144059A (en) Magnesium alloy sheet superior in press formability, and manufacturing method therefor
JP2004360024A (en) Method for producing β-type titanium alloy material
JPS619561A (en) Manufacture of al alloy plate having superior hot formability
US4421570A (en) Making molds for continuous casting
JPS6211066B2 (en)
JPH0987815A (en) Production of copper alloy mold stock for continuous casting for steelmaking, and mold produced by using the same
CA1196552A (en) Making a mold for continuous casting
JP2003103311A (en) Press forming method for magnesium alloy thin plate
US4832756A (en) Controlling distortion in processed beryllium copper alloys
CN114959230B (en) Copper-nickel-tin alloy strip or plate and preparation method thereof
CN112210734B (en) Method for producing 7000 series aluminum alloy member
US5407499A (en) Making a mold for continuous casting
US3094442A (en) Methods of producing extreme flatness in heat treated stainless steel and the like
WO2005113842A1 (en) Method of manufacturing hot drawn product
JP2540161B2 (en) Copper alloys and their use as work materials for continuous casting molds
JPS59183906A (en) Method for rolling ti-base alloy
JP3480568B2 (en) High speed tool steel material for cold forging, hollow product made of high speed tool steel, and method of manufacturing the same
JP4002213B2 (en) Shape memory alloy material having high shape recoverability and high transformation temperature and method for producing the same
JP4329065B2 (en) Method for producing Ti-containing copper alloy sheet or strip
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture