[go: up one dir, main page]

JPS62110469A - X-y linear motor - Google Patents

X-y linear motor

Info

Publication number
JPS62110469A
JPS62110469A JP25051785A JP25051785A JPS62110469A JP S62110469 A JPS62110469 A JP S62110469A JP 25051785 A JP25051785 A JP 25051785A JP 25051785 A JP25051785 A JP 25051785A JP S62110469 A JPS62110469 A JP S62110469A
Authority
JP
Japan
Prior art keywords
magnet
linear motor
coils
coil
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25051785A
Other languages
Japanese (ja)
Other versions
JPH0732578B2 (en
Inventor
Hideo Niikura
英生 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60250517A priority Critical patent/JPH0732578B2/en
Publication of JPS62110469A publication Critical patent/JPS62110469A/en
Publication of JPH0732578B2 publication Critical patent/JPH0732578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To move a magnet or four coils to required positions on a plane with a simple and small size structure by arranging the four magnets in two columns by two rows so as to face the magnet. CONSTITUTION:Four coils 21-24 are arranged in two columns by two rows so as to face a magnet 20 and the magnet 20 or the four coils 21-24 are supported by supporting means 25, 26a, 26b, 27a, 27b and 28 so as to be able to be moved. The magnet 20 or the four coils 21-24 can be moved to required positions on a plane by applying predetermined current to the coils 21-24.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えばX−Yテーブル等に使用して好適なX−
Yリニヤモータに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an X-Y table suitable for use in, for example, an X-Y table.
Regarding Y linear motor.

〔発明の概要〕[Summary of the invention]

本発明は例えばX−Yテーブルに使用して好適なX−Y
リニヤモータにおいて、マグネットに対向して411M
のコイルを2行21列に配すると共にマグネット又は4
個のコイルを移動し得る様にした支持手段を設けたこと
により、簡単な構造にすると共に4(Mのコイルに流す
電流の方向を組み合わせることによってマグネット又は
4個のコイルを平面上所望の位置に移動し得る様にし、
小型化及び応答性の向上を図ることができる様にしたも
のである。
The present invention is suitable for use in, for example, an X-Y table.
In a linear motor, 411M facing the magnet
coils are arranged in 2 rows and 21 columns, and magnets or 4
By providing a supporting means that can move the 4 coils, the structure is simple, and by combining the directions of the currents flowing through the 4 (M) coils, the magnet or the 4 coils can be moved to a desired position on the plane. so that it can be moved to
This allows miniaturization and improved responsiveness.

〔従来の技術〕[Conventional technology]

従来、X−Yテーブルに使用して好適なX−Yリニヤモ
ータとして第5図にボず如きものが提案されている。
Conventionally, an XY linear motor such as the one shown in FIG. 5 has been proposed as an XY linear motor suitable for use in an XY table.

この第5図に示ずX−Yリニヤモータは、2個のりニヤ
モータ(1)及び(3)を使用し一方のりニヤモータ(
1)の可動テーブル(2)に他方のりニヤモータ(3)
をその長手方向が一方のりニヤモータ+1)の長平方向
と直交する様に固定することによって構成されている。
The X-Y linear motor (not shown in Fig. 5) uses two linear motors (1) and (3), and one linear motor (
The movable table (2) of 1) is attached to the other motor (3).
is fixed such that its longitudinal direction is perpendicular to the longitudinal direction of one of the near motors (+1).

尚、(4)は他方のりニヤモータ(3)の可動テーブル
である。
Note that (4) is a movable table for the other glue motor (3).

この場合、一方のりニヤモータ+1)は第6図及び第7
図にボず如く、断面口状の筐体(5)と、この筐体(5
1の上面開口(6)に筐体長手方向すなわち第5図に示
す矢印a及びbの方向に司摺動に取付けられた上述の1
1I動テーブル(2)と、筐体(51内に設けられたセ
ンタヨーク(7)及びサイドヨーク(81(91を有す
るヨーク (10)と、このヨーク(10)のサイドヨ
ーク(81(9)に夫々巻装された巻方向を等しくする
コイル(11)  (1’2)と、nJ動子テーブル2
)に固定され且つセンタヨーク(7)を挟んでN極同志
が対向する様に配された2つのマグネット(13)  
(14)を設ける如くして構成されている。この様に構
成された一方のりニヤモータ(1)においては、一方の
コイル(11)に第6図の矢印Cに示す如く時計方向の
電流を流すと共に他方のコイル(12)に矢印dに示す
如く反時計方向の電流を流すことによって、所謂フレミ
ングの左手の法則に従った力Fが発生し、マグネッ) 
(13)  (14)に従って可動テーブル(2)をそ
の力Fによって第5図に示す矢印aの方向に駆動させる
ことができる。また一方及び他方のコイル(11)  
(12)に流す電流方向を夫々反対方向にすることによ
って第5図に示す矢印すの方向に移動させることができ
る。また他方のりニヤモータ(3)においても、一方の
りニヤモータ(11と同様に構成され、その可動テーブ
ル(4)を矢印0及びfの方向に移動することができる
如くされている。
In this case, one linear motor +1) is
As shown in the figure, there is a casing (5) with an opening in cross section, and a casing (5) with an opening in the cross section.
1, which is slidably attached to the upper surface opening (6) of 1 in the longitudinal direction of the casing, that is, in the direction of arrows a and b shown in FIG.
1I moving table (2), a yoke (10) having a center yoke (7) and a side yoke (81 (91) provided in the housing (51), and a side yoke (81 (9) of this yoke (10)). Coils (11) (1'2) wound in the same winding direction, and nJ movable table 2.
) and arranged so that the north poles face each other with the center yoke (7) in between.
(14). In the linear motor (1) configured in this way, a clockwise current is passed through one coil (11) as shown by arrow C in FIG. 6, and a current is passed through the other coil (12) as shown by arrow d. By passing a counterclockwise current, a force F is generated according to the so-called Fleming's left hand rule, which causes the magnet to
(13) According to (14), the movable table (2) can be driven by the force F in the direction of arrow a shown in FIG. Also, one and the other coil (11)
(12) By setting the current direction to flow in the opposite direction, movement can be made in the direction of the arrow shown in FIG. The other linear motor (3) is constructed in the same manner as the one linear motor (11), and is capable of moving its movable table (4) in the directions of arrows 0 and f.

この様な一方及び他方のりニヤモータ(1)及び(3)
によって構成された従来のX−Yリニヤモータにおいて
、x−y平面上所望の位置(x、y)に他方のりニヤモ
ータ(3)の口J動テーブル(4)の中心を移動させる
場合には、先ず第8図にボず如< x−y平面の原点(
0,0)に一方のりニヤモータ(11の中心を一致させ
一方のりニヤモータ(1)の可動テーブル(2)の中心
がX軸上を矢印a及びbの方向に移動し得る様にする。
Such one and the other linear motors (1) and (3)
In a conventional X-Y linear motor configured by Figure 8 shows the origin of the x-y plane (
0, 0) so that the center of one linear motor (11) coincides with the center of one linear motor (11) so that the center of the movable table (2) of one linear motor (1) can move on the X axis in the directions of arrows a and b.

この場合、他方のりニヤモータ(3)はその長手方向及
び一方のりニヤモータ(1)の長平方向と直角になる如
く一方のりニヤモータ+1)の口■動テーブル(2)に
固定されているので、この他方のりニヤモータ(3)の
可動テーブル(4)をY軸に平行な方向ずなわち矢印C
及びfの方向に移動させることができる。そこで、一方
のりニヤモータ+11の可動テーブル(2)をY軸−h
(x、o)の位置に移動させると共に他方のりニヤモー
タ(3)の6J動テーブル(4)をY軸と平行に移動さ
せ所望の位置(x。
In this case, the other linear motor (3) is fixed to the movable table (2) of one linear motor (+1) so as to be perpendicular to its longitudinal direction and the longitudinal direction of one linear motor (1). Move the movable table (4) of the glue motor (3) in a direction parallel to the Y axis, that is, arrow C.
and f directions. Therefore, move the movable table (2) of the near motor +11 to the Y axis -h.
At the same time, the 6J moving table (4) of the other linear motor (3) is moved parallel to the Y axis to the desired position (x, o).

y)に移動させることができる。y).

(発明が解決しようとする問題点) しかしながら、斯る従来のx−Yリニヤモータにおいて
は、2つのりニヤモータ(11(31を用いるため構造
が複雑となり、且つ小型化することができないという不
都合があった。また一方のりニヤモータ(11で他方の
りニヤモータ(3)を駆動しなければならず、fi荷が
大きいため、応答性が1匹いという不都合があった。
(Problems to be Solved by the Invention) However, in the conventional x-Y linear motor, the structure is complicated due to the use of two linear motors (11 (31), and there are disadvantages in that it cannot be miniaturized. In addition, one linear motor (11) must drive the other linear motor (3), and since the fi load is large, there is an inconvenience that one motor is required for responsiveness.

本発明は、斯る点に鑑み、簡単な構造にし小型化するこ
とができると共に早い応答性を得ることができる様にし
たX−Yリニヤモータを提供することを目的とする。
In view of the above, an object of the present invention is to provide an X-Y linear motor that has a simple structure, can be miniaturized, and can provide quick response.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明に依るX−Yリニヤモータは、第1図及び第2図
に示す如く、マグネッl−(20)に対向して41固の
コイル(21)  (22)  (23)  (24)
を2行・2列に配すると共にマグネット(20)又は’
4 (Wのコイル(21)  (22)  (23) 
 (24)を移動し得る様にした支持手段(25)  
(26a )  (26b )  (27a )(27
b)  (2B)を設けたものである。
As shown in FIGS. 1 and 2, the X-Y linear motor according to the present invention has 41 coils (21) (22) (23) (24) facing the magnet (20).
are arranged in 2 rows and 2 columns, and magnets (20) or '
4 (W coil (21) (22) (23)
(24) is movable supporting means (25)
(26a) (26b) (27a) (27
b) (2B) is provided.

〔作用〕[Effect]

斯る本発明に依れば、マグネット(20)に対向して4
個のコイル(21)  (22)  (23)  (2
4)が2行2列に配されているので、マグネッl−(2
0)による磁束は4個のコイル(21)  (22) 
 (23)  (24)を鎖交する。従って、4 (I
Mのコイル(21)  (22)(23)  (24)
に電流を流すことによってマグネット(20)及び4個
のコイル(21)  (22)  (23)(24)に
平面方向の推力が生ずるが、この場合、4個のコイル(
21)  (22)  (23)  (24)に流す電
流の方向を変化させることによっ′ζ推力の方向を変化
させることができる。そして本発明においてはマグネッ
ト(20)又は41固のコイル(21)  (22)(
23)  (24)を移動し得る様にした支持手段(2
5)(26a )  (26b )  (27a ) 
 (27b )  (28)が設けられているので、コ
イル(21)  (22)  (23)  (24)に
所定の電流を流すことによって生ずる推力でマグネット
(20)又は41固のコイル(21)  (22)(2
3)  (24)を平面上所望の位置に移動させること
ができる。
According to the present invention, there are four magnets facing the magnet (20).
coils (21) (22) (23) (2
4) are arranged in 2 rows and 2 columns, so the magnet l-(2
The magnetic flux due to 0) is 4 coils (21) (22)
(23) Interlink (24). Therefore, 4 (I
M coil (21) (22) (23) (24)
By passing current through the magnet (20) and the four coils (21), (22), (23), and (24), a thrust force is generated in the plane direction.
21) By changing the direction of the current flowing in (22), (23), and (24), the direction of the 'ζ thrust can be changed. In the present invention, the magnet (20) or the 41-hard coil (21) (22) (
23) Support means (24) movable
5) (26a) (26b) (27a)
(27b) (28) are provided, so the thrust generated by passing a predetermined current through the coils (21) (22) (23) (24) is used to generate the magnet (20) or the 41-wire coil (21) ( 22)(2
3) (24) can be moved to a desired position on the plane.

〔実施例〕〔Example〕

以ト、第1図〜第4図を参照して本発明x−yリニヤモ
ータの一実施例につき説明しよう。
Hereinafter, one embodiment of the xy linear motor of the present invention will be described with reference to FIGS. 1 to 4.

この第1図において(25)は鉄製のコイル固定用部材
を示し、このコイル固定用部材(25)上に同一形状の
第1、第2、第3及び第4のヨーク(29)  (30
)  (31)及び(32)を2行2列になる如く配す
る。この場合、之等第1.第2、第3及び第4のヨーク
(29)  (30)  (31)及び(32)の頭部
(29a )  (30a )  (31a )及び(
32a )を正方形にすると共に胴部(29b )  
(30b )  (31b )及び(32b)を円柱形
状にする。また、この場合、ヨーク(29)  (30
)  (31)  (32)の頭部(29a )(30
a )  (31a )  (32a )間で漏れ磁束
が生じない様な距離の空隙を設ける如くする。
In FIG. 1, (25) indicates a coil fixing member made of iron, and on this coil fixing member (25) are first, second, third and fourth yokes (29) (30) of the same shape.
) Arrange (31) and (32) in 2 rows and 2 columns. In this case, such as No. 1. The heads (29a) (30a) (31a) and (
32a) into a square and the body (29b)
(30b) (31b) and (32b) are made into cylindrical shapes. Also, in this case, yoke (29) (30
) (31) (32) head (29a) (30
a) A gap is provided between (31a) and (32a) at such a distance that leakage magnetic flux will not occur.

また第1、第2、第3及び第4のヨーク(29)(30
)  (31)及び(32)の夫々に巻方向及び巻数を
同一にした第1、第2、第3及び第4のコイル(21)
  (22)  (23)及び(24)を装着する如く
する。
Also, the first, second, third and fourth yokes (29) (30
) The first, second, third and fourth coils (21) having the same winding direction and the same number of turns in (31) and (32), respectively.
(22) Attach (23) and (24).

またコイル固定用部材(25)にガイドローラ用支軸(
26a )  (26b )を設け、2等ガイドローラ
用支軸(26a )  (26b )にガイドローラ(
27a)(27b)を配し、2等ガイドローラ(27a
 )  (27b )が矢印g及びhの方向に回転する
と共に矢印j及びkの方向に摺動し得る様にする。
In addition, the coil fixing member (25) is attached to the guide roller support shaft (
26a ) (26b ) are provided, and the guide roller (
27a) (27b), and a second guide roller (27a)
) (27b) can be rotated in the directions of arrows g and h and slidable in the directions of arrows j and k.

またガイドローラ(27a )  (27b ) ]−
に鉄製のiiJ動テーブル(28)を配し、このづ動テ
ーブル(28)の下面中央部に厚み方向にN極及びS極
が着磁され1つ一辺の長さlがヨーク(29)  (3
0)(31)  (32)の中心間圧mtよりも大きい
正方形の板状マグネット(20)をヨーク (29) 
 (30)(31)  (32)に対向する側がN極と
なる様に固定する。この場合、板状マグネット(20)
とヨーク(29)  (30)  (31)  (32
)との間隙をなるべく狭くして、板状マグネッ1−(2
0)が移動した場合においても、この間隙における板状
マグネット(20)による磁束密度Bが変化しないもの
とみなせる様にする。
In addition, guide rollers (27a) (27b) ]-
A steel iiJ moving table (28) is arranged on the yoke (29), and the N and S poles are magnetized in the thickness direction at the center of the lower surface of the rotating table (28). 3
0) (31) A square plate magnet (20) larger than the center-to-center pressure mt of (32) is attached to the yoke (29).
(30) (31) Fix so that the side opposite to (32) becomes the N pole. In this case, the plate magnet (20)
and yoke (29) (30) (31) (32
) and the plate magnet 1-(2).
0) moves, it can be assumed that the magnetic flux density B due to the plate magnet (20) in this gap does not change.

この様に構成された本例のX−Yリニヤモータにおいて
は、第2図に示す如く、板状マグネット(20)のN極
からヨーク(29)  (30)  (31)  (3
2)、コイル固定用部材(25)、支軸(26a ) 
 (26b )、ガイドローラ(27a )  (27
b )及び可動テーブル(28)を通り、板状マグネッ
ト(20)のS極に戻る磁束のループが形成される。
In the X-Y linear motor of this example configured in this way, as shown in FIG.
2), coil fixing member (25), support shaft (26a)
(26b), guide roller (27a) (27
b) and the movable table (28), a loop of magnetic flux is formed that returns to the S pole of the plate magnet (20).

そごで本例において第3図に示す如くY軸及びY軸で表
ボされるX−Y平面を設定し、板状マグネッ) (20
)の中心点PがこのX−Y平面上(x。
In this example, we set the Y axis and the X-Y plane represented by the Y axis as shown in Figure 3, and set the plate-shaped magnet) (20
) is on this X-Y plane (x.

y)の位置にある場合の夫々のヨーク(29)  (3
0)(31)及び(32)を通過する夫々の磁束φ1.
φ2φ3及びφ→を板状マグネット(20)とヨーク(
29)  (30)  (31)  (32)との空隙
における磁束密度をBとして求めると、 となる。
y), the respective yokes (29) (3
0) Each magnetic flux φ1. passing through (31) and (32).
Connect φ2φ3 and φ→ to the plate magnet (20) and the yoke (
29) (30) (31) When the magnetic flux density in the air gap with (32) is determined as B, it becomes as follows.

そこで、之等夫々のヨーク(2!D  (30)  (
31)及び(32)を通過する磁束φl、φン、φj及
びaφ2 aφ2 aφ3 aφ3 aφ4 aφ4a
x  、ay  、ax  、ay  +ax  、a
yを求めると、 となる。
Therefore, each yoke (2!D (30) (
31) and (32) magnetic flux φl, φn, φj and aφ2 aφ2 aφ3 aφ3 aφ4 aφ4a
x, ay, ax, ay + ax, a
When we find y, we get:

この様に夫々のヨーク(29)  (30)  (31
)及び(32)を通過する磁束φ1.φ2.φ3及びφ
鴫ax   、ay   、ax   。
In this way, each yoke (29) (30) (31
) and (32), the magnetic flux φ1. φ2. φ3 and φ
Shizuku ax, ay, ax.

ので、夫々のコイル(21)  (22)  (23)
及び(24)に電流IL+  12+  13+  1
4を流すと、板状マグネット(20)は夫々のコイル(
21)  (22)  (23)及び(24)から次式
に示す如きX軸方向及びY軸方向の推力ptx・ FL
3’・ F2X・ F2F・ F3X・ F3F・F 
4X +  F 43/を受ける。尚、次式においてN
は夫々のコイル(21)  (22)  (23)及び
(24)の巻数である。
Therefore, each coil (21) (22) (23)
and (24) the current IL+ 12+ 13+ 1
4, the plate-shaped magnet (20) will be connected to each coil (
21) (22) From (23) and (24), the thrust force in the X-axis direction and Y-axis direction ptx・FL as shown in the following formula
3'・F2X・F2F・F3X・F3F・F
Receive 4X + F 43/. In addition, in the following formula, N
is the number of turns of each coil (21), (22), (23) and (24).

ここで根状マグネッl−(25)が夫々のコイル(21
)  (22)  (23)  (24)から受けるX
軸方向の推力の総和Fに及びY軸方向の推力の総和Fy
を求めると、 F x = F 1x + F 2X + F 3X 
+ F 4X! =NB  (−(−il +iz −i3+i4)+y
  (−it +i2 +13−i4))・・・(1) F y = F ty + F 23F + F 1F
 + F 4Fβ =NB  ((it +12−i3−it )+x  
(−it +i2+1a−i4))・・・(2) となる。
Here, the root magnet l-(25) is attached to each coil (21).
) (22) (23) X received from (24)
The total thrust force in the axial direction F and the total thrust force Fy in the Y-axis direction
When calculating, F x = F 1x + F 2X + F 3X
+ F 4X! =NB (-(-il +iz -i3+i4)+y
(-it +i2 +13-i4))...(1) F y = F ty + F 23F + F 1F
+F4Fβ=NB ((it +12-i3-it)+x
(-it +i2+1a-i4))...(2) It becomes.

そごで夫々のコイル(21)  (22)  (23)
  (24)に流ず電流L L +  ’ 2+  1
3 +  i 4の絶対値を等しく、即ちlil 1=
li21=li31=li→ 1=i(A)とし、第3
図において電流を時計方向に流ず場合を正方向と、反時
計方向に流す場合を負方向と設定し、tt l  12
 +  t31 14の電流方向を夫々変化させた場合
における推力Fの大きさ及びその方向を求めてみる。
Each coil (21) (22) (23)
(24) Current L L + ' 2+ 1
3 + i The absolute value of 4 is equal, i.e. lil 1=
li21=li31=li→ 1=i(A), third
In the figure, the case where the current does not flow clockwise is set as a positive direction, and the case where the current flows counterclockwise is set as a negative direction, and tt l 12
Let us find the magnitude and direction of thrust F when the current direction of + t31 14 is changed.

先ず、11=−i、に2 =i、ii =−i。First, 11=-i, then 2=i, ii=-i.

i、=iとした場合には(1)式及び(2)式はとなり
、根状マグネット(20)はX軸に平行な止の推力を受
けるのみであるから、根状マグネット(20)はX軸に
平行な正の方向に移動する。
When i, = i, equations (1) and (2) become, and the root magnet (20) only receives a stopping thrust parallel to the X axis, so the root magnet (20) is Move in the positive direction parallel to the X axis.

また11−i、i2 =−i、  i3 =i、i4 
=−iとした場合には(1)弐及び(2)式はとなり、
板状マグネッI−(20)はX軸に平行な負の推力を受
けるのみであるから、根状マグネット(20)はX軸に
平行な負の方向に移動する。
Also 11-i, i2 = -i, i3 = i, i4
When =-i, equations (1) and (2) become,
Since the plate magnet I- (20) only receives a negative thrust parallel to the X axis, the root magnet (20) moves in the negative direction parallel to the X axis.

またix =i+  iz =i+  13=−it 
 i→=−1とした場合には(1)弐及び(2)式はと
なり、板状マグネット(20)はY軸に平行な止の推力
を受けるのみであるから、板状マグネット(20)はY
軸に平行なIFの方向に移動する。
Also ix = i + iz = i + 13 = -it
When i→=-1, equations (1) and (2) become, and the plate magnet (20) only receives a stopping thrust parallel to the Y axis, so the plate magnet (20) is Y
Move in the direction of IF parallel to the axis.

また11−1+  12 = 1,13 =1+  1
4=iとした場合には、(11式及び(21式はとなり
、板状マグネフ1−(20)はY軸に平行な負の推力を
受けるのみであるから、板状マグネット(20)はY軸
に平行な負の方向に移動する。
Also 11-1+ 12 = 1, 13 = 1+ 1
When 4=i, equations (11 and (21) become, and the plate magnet 1-(20) only receives a negative thrust parallel to the Y axis, so the plate magnet (20) becomes Move in the negative direction parallel to the Y axis.

この様にして本例においては、4個のコイル(21) 
 (22)  (23)  (24)に流す電流の方向
を組み合わせることによって、板状マグネット(20)
のX−Y平面上の位置に関係なく、この板状マグネッ)
 (20)をX軸方向及びY軸方向に移動させることが
できるので、X−Yテーブル等に適用することができる
In this way, in this example, four coils (21)
(22) (23) By combining the directions of the current flowing in (24), the plate magnet (20)
Regardless of its position on the X-Y plane, this plate-shaped magnet)
(20) can be moved in the X-axis direction and the Y-axis direction, so it can be applied to an X-Y table, etc.

尚、第4図に示す図表は、上述したコイル(21)(2
2)  (23)  (24)に流す電流iの方向と板
状マグネッl−(20)が受ける推力の大きさ及び方向
との関係を整理したものである。
The diagram shown in FIG. 4 is based on the above-mentioned coil (21) (2).
2) The relationship between the direction of the current i flowing through (23) and (24) and the magnitude and direction of the thrust that the plate magnet l-(20) receives is summarized.

斯る本実施例に依れば、コイル固定用部材(25)に配
したヨーク (29)  (30)  (31)  (
32)にコイル(21)  (22)  (23)  
(24)を装着し、可動テーブル(28)に板状マグネ
ット(20)を配し、コイル(21)  (22)  
(23)  (24)に流す電流の方向を組み合わせる
ことによって1J動テーブル(28)を所望の位置に移
動させ得るので、極めて構造の簡単なX−Yリニヤモー
タとすることができると共に小型化を図ることができる
という利益がある。
According to this embodiment, the yoke (29) (30) (31) (
32) to the coil (21) (22) (23)
(24), place the plate magnet (20) on the movable table (28), and place the coils (21) and (22) on the movable table (28).
(23) By combining the directions of the currents flowing in (24), the 1J motion table (28) can be moved to a desired position, making it possible to create an X-Y linear motor with an extremely simple structure and miniaturization. There is an advantage in being able to

また第5図従来例にボず如く一方のりニヤモータ(1)
で他方のりニヤモータ(3)を移動させる必要もないの
で、負荷が小さく早い応答性をもってr+J勅テーブル
(28)を移動させることができるという利益がある。
In addition, as shown in Fig. 5 conventional example, one-sided linear motor (1)
Since there is no need to move the other linear motor (3), there is an advantage that the r+J rotary table (28) can be moved with a small load and quick response.

尚、上述実施例におい°ζはヨーク(29)  (30
)(31)  (32)を用いた場合につき述べたが、
本発明はこの上述実施例に限らず、ヨーク(29)  
(30)(31)  (32)を用いない場合にも通用
でき、この場合にも上述同様の作用効果を得ることがで
きることは容易に理解できよう。
In the above embodiment, °ζ is the yoke (29) (30
)(31) As described above using (32),
The present invention is not limited to the above-mentioned embodiment, but the yoke (29)
It is easy to understand that the present invention can also be applied without using (30), (31), and (32), and that the same effects as described above can be obtained in this case as well.

また本例においては、可動テーブル(28)に板状マグ
ネット(20)を配し、コイル固定用部材(25)にコ
イル(21)  (22)  (23)  (24)を
配した場合につき述べたが、この代りに、可動テーブル
(28)にコイル(21)  (22)  (23) 
 (24)を配し、コイル固定用部材(25)に板状マ
グネット(20)を配することもでき、この場合にも上
述同様の作用効果を得ることができることは容易に理解
できよう。
In addition, in this example, a case is described in which a plate magnet (20) is arranged on a movable table (28), and coils (21) (22) (23) (24) are arranged on a coil fixing member (25). However, instead of this, coils (21) (22) (23) are placed on the movable table (28).
(24) and a plate magnet (20) on the coil fixing member (25), it is easy to understand that the same effects as described above can be obtained in this case as well.

更に本発明は上述実施例に限らず、本発明の要旨を逸脱
することな(その他種々の構成が取り得ることは勿論で
ある。
Further, the present invention is not limited to the above-described embodiments, and it goes without saying that various other configurations may be adopted without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明に依れば、マグネットに対向して4個のコイルを
2行2列に配すると共にマグネット又は4個のコイルを
移動し得る様にした支持手段を設け、4個のコイルに流
す電流の方向を組み合わせることによってマグネット又
は4個のコイルが平面上所望の位置に移動する様にされ
ているので、構造を簡単にし、小型化を図ることができ
ると共に応答性を向上させることができるという利益が
ある。
According to the present invention, four coils are arranged in two rows and two columns facing the magnet, and a support means that allows the magnet or the four coils to be moved is provided, and the current flowing through the four coils is By combining the directions of the magnets or the four coils, the magnet or the four coils can be moved to a desired position on the plane, making it possible to simplify the structure, reduce the size, and improve responsiveness. There is profit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明X−Yリニヤモータの一実施例を示す斜
視図、第2図は第1図のA−A’線断面図、第3図及び
第4図は本発明の説明に供する線図、第5図は従来のX
−Yリニヤモータを不ず斜視図、第6図は第5図のB−
B ’線断面図、第7図は第6図のc−c’線W【面図
、第8図は第5図例の説明に供する線図である。 (20)は板状マグネット、(21)  (22)  
(23)及び(24)は夫々コイル、(25)はコイル
固定用部材、(26a)及び(26b)は夫々ガイドロ
ーラ用支軸、(27a)及び(27b )は夫々ガイド
ローラ、(28)は可動テーブル、(29)  (30
)  (31)及び(32)は夫々コークである。 第1図 第2図 第3図
FIG. 1 is a perspective view showing an embodiment of the X-Y linear motor of the present invention, FIG. 2 is a sectional view taken along the line AA' in FIG. 1, and FIGS. 3 and 4 are lines used to explain the present invention. Figure 5 shows the conventional X
- A perspective view of the Y linear motor, Figure 6 is B of Figure 5 -
FIG. 7 is a sectional view taken along line C--C' in FIG. 6, and FIG. 8 is a diagram for explaining the example shown in FIG. (20) is a plate magnet, (21) (22)
(23) and (24) are each a coil, (25) is a coil fixing member, (26a) and (26b) are each a support shaft for a guide roller, (27a) and (27b) are each a guide roller, (28) is a movable table, (29) (30
) (31) and (32) are coke, respectively. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] マグネットに対向して4個のコイルを2行2列に配する
と共に上記マグネット又は上記4個のコイルを移動し得
る様にした支持手段を設けたことを特徴とするX−Yリ
ニヤモータ。
An X-Y linear motor, characterized in that four coils are arranged in two rows and two columns facing a magnet, and a supporting means is provided to move the magnet or the four coils.
JP60250517A 1985-11-08 1985-11-08 XY linear motor Expired - Fee Related JPH0732578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60250517A JPH0732578B2 (en) 1985-11-08 1985-11-08 XY linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250517A JPH0732578B2 (en) 1985-11-08 1985-11-08 XY linear motor

Publications (2)

Publication Number Publication Date
JPS62110469A true JPS62110469A (en) 1987-05-21
JPH0732578B2 JPH0732578B2 (en) 1995-04-10

Family

ID=17209065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250517A Expired - Fee Related JPH0732578B2 (en) 1985-11-08 1985-11-08 XY linear motor

Country Status (1)

Country Link
JP (1) JPH0732578B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133245A1 (en) * 2007-04-24 2008-11-06 Sanyo Electric Co., Ltd. Vibrating device and cellular phone including vibrating device
WO2016114383A1 (en) * 2015-01-16 2016-07-21 日本電産コパル株式会社 Linear vibration motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005240A (en) * 2009-09-22 2011-03-23 Asml Netherlands Bv Actuator, positioning system and lithographic apparatus.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499907A (en) * 1978-01-25 1979-08-07 Hitachi Ltd Dc servomotor for biaxial control
JPS5688666A (en) * 1979-10-17 1981-07-18 Zeiss Jena Veb Carl Twoocoordinate stepper motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499907A (en) * 1978-01-25 1979-08-07 Hitachi Ltd Dc servomotor for biaxial control
JPS5688666A (en) * 1979-10-17 1981-07-18 Zeiss Jena Veb Carl Twoocoordinate stepper motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133245A1 (en) * 2007-04-24 2008-11-06 Sanyo Electric Co., Ltd. Vibrating device and cellular phone including vibrating device
WO2016114383A1 (en) * 2015-01-16 2016-07-21 日本電産コパル株式会社 Linear vibration motor

Also Published As

Publication number Publication date
JPH0732578B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US7145423B2 (en) Electromagnetic actuator and composite electromagnetic actuator apparatus
JP2834832B2 (en) Attitude control device
JP5194472B2 (en) Linear motor and tool moving device having the same
JPH0586845B2 (en)
JPH07131966A (en) Two-dimensional linear motor
JPS62110469A (en) X-y linear motor
JPS635984B2 (en)
JPS6211218B2 (en)
JPH03112354A (en) Linear actuator
JP2879934B2 (en) Stage equipment
JPH02219455A (en) Support mechanism of linear motor
JPS6110961A (en) Movable coil type linear dc motor
JPS5980150A (en) Linear pulse motor
KR20030020787A (en) A Fine Actuator Stage Using Moving Magnet Type Of VCM
JPS6239138A (en) Xy stage
JPS60241767A (en) Linear pulse motor
JPH02226130A (en) Light quantity controller
JPH0556626A (en) Linear pulse motor
JPS59200810A (en) Magnetic bearing
JP2600016B2 (en) Optical information recording / reproducing apparatus and method for assembling the same
JPS58192462A (en) Linear motor
JPS5830227Y2 (en) linear meter
JPH01133558A (en) Multipolar linear pulse motor
JPS6258862A (en) Plate voice coil type linear motor
JPS6020371A (en) Head transporting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees