JPS62110200A - Manufacture of radiation picture conversion panel - Google Patents
Manufacture of radiation picture conversion panelInfo
- Publication number
- JPS62110200A JPS62110200A JP25053085A JP25053085A JPS62110200A JP S62110200 A JPS62110200 A JP S62110200A JP 25053085 A JP25053085 A JP 25053085A JP 25053085 A JP25053085 A JP 25053085A JP S62110200 A JPS62110200 A JP S62110200A
- Authority
- JP
- Japan
- Prior art keywords
- stimulable phosphor
- phosphor layer
- conversion panel
- radiation
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 74
- 230000005855 radiation Effects 0.000 title claims description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 46
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 129
- 238000000034 method Methods 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 24
- 239000012298 atmosphere Substances 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 92
- 230000035945 sensitivity Effects 0.000 description 21
- 230000005284 excitation Effects 0.000 description 16
- 238000007740 vapor deposition Methods 0.000 description 15
- -1 as required Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 239000011241 protective layer Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 238000004020 luminiscence type Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical group 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- YZYGGKYNSRPHOU-UHFFFAOYSA-M P.[Br-].Br.Br.Br.[Rb+] Chemical compound P.[Br-].Br.Br.Br.[Rb+] YZYGGKYNSRPHOU-UHFFFAOYSA-M 0.000 description 1
- 101150004094 PRO2 gene Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920001986 Vinylidene chloride-vinyl chloride copolymer Polymers 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical group N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- QKYBEKAEVQPNIN-UHFFFAOYSA-N barium(2+);oxido(oxo)alumane Chemical compound [Ba+2].[O-][Al]=O.[O-][Al]=O QKYBEKAEVQPNIN-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 101150115538 nero gene Proteins 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Conversion Of X-Rays Into Visible Images (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
本発明は輝尽性蛍光体を用いた放射線画像変換パネルの
製造方法に関するものであり、さらに詳しくは鮮鋭性の
高い放射線画像を5元る放射線画像変換パネルの製造方
法に関するものである。The present invention relates to a method of manufacturing a radiation image conversion panel using a stimulable phosphor, and more particularly to a method of manufacturing a radiation image conversion panel that produces five highly sharp radiation images.
V Alll1Tti llh sa l−Q
?、−+h O,+ j、el 1iri
llh I半りに’4 ”−(ト 胚 旧 戸、
・ yに多く用いられている。このxi両画像得るため
に、被写体を透過したX線を蛍光体層(蛍光スクリーン
)に照射し、これにより可視光を生じさせてこの可視光
を通常の写真をとるときと同じように銀塩を使用したフ
ィルムに照射して現像した、いわゆる放射線写真が利用
されている。しかし、近年銀塩を塗布したフィルムを使
用しないで蛍光体層から直接画像を取り出す方法が工夫
されるようになった。
この方法としては被写体を透過した放射線を蛍光体に吸
収せしめ、しかる後この蛍光体を例えば光又は熱エネル
ギーで励起することによりこの蛍光体が上記吸収により
蓄積している放射線エネルイーを蛍光として放射せしめ
、この蛍光を検出して画像化する方法がある。具体的に
は、例えば米国特許3,859,527号及び特開昭5
5−12144号には輝尽性蛍光体を用い可視光線又は
赤外線を輝尽励起光とした放射線画像変換方法が示され
ている。この方法は支持体上に叩尽性蛍光体層を形成し
た放射線画像変換パネルを使用するもので、この放射線
画像変換パネルの輝尽性蛍光体層に被写体を透過した放
射線を当てて被写体各部の放射線透過度に対応する放射
線エネルギーを′?l積させて潜像を形成し、しかる後
にこの輝尽性蛍光体層を輝尽励起光で走査することによ
って各部の蓄積された放射線エネルギーな輝尽発光とし
て放射させこの光の強弱による光信号をたとえば充電変
換し、画像再生装置により画像を得るものである。この
最終的な画像はハードコピーとして再生してしも良いし
、CRT上に再生しても良い。
さて、この放射線画像変換方法に用いられる輝尽性蛍光
体層を有する放射線画像変換パネルは、前述の蛍光スク
リーンを用いる放射線写真法の場合と同様に放射線吸収
率及び光変換率(両者を含めて以下「放射線感度」とい
う)が高いことは言うに及ばず画像の粒状性が良く、し
かも高鮮鋭性であることが要求される。
ところが、一般に輝尽性蛍光体層を有する放射線画像変
換パネルは粒径1〜30μ■程度の粒子状の輝尽性蛍光
体と有機結着剤とを含む分散液を支持体あるいは保護層
上に塗布・乾燥を行う製造方法により作成されるので、
輝尽性蛍光体の充填密度が低く(充填率50%)、放射
線感度を充分高くするには第4図(a)に示すように輝
尽性蛍光体層の/l!!厚を厚くする必要があった。
同図から明らかなように輝尽性蛍光体層の層厚200μ
Iのときに輝尽性蛍光体の耐着量は50u+g/c++
+2であり、層厚が350μmまでは放射線感度は直線
的に増大して450μm以上で飽和する。尚、放射線感
度が飽和するのは、輝尽性蛍光体層が厚くなり過ぎると
、輝尽性蛍光体粒子間での散乱のため輝尽性蛍光体層内
部で発生した輝尽発光が外部に出てこなくなるためであ
る。
一方、これに対し前記放射線画像変換方法における画像
の鮮鋭性は第4図(b)に示すように、放射線画像変換
パネルの輝尽性蛍光体層の層厚が薄いほど高い傾向にあ
り、鮮鋭性の向上のためにけ輝尽性蛍光体層の薄層化が
必要であった。
また、前記放射線画像変換方法における画像の粒状性は
放射線量子数の場所的ゆらぎ(量子モトル)あるいは放
射線画像変換パネルの輝尽性蛍光体層の構造的乱れ(構
造モトル)等によって決定されるので、輝尽性蛍光体層
の層厚が薄くなると、輝尽性蛍光体層に吸収される放射
線1子数が減少して量子モトルが増加したり構造的乱れ
が顕在化して構造モトルが増加したりして画質の低下を
生ずる。よって画像の粒状性を向上させるためには輝尽
性蛍光体層の層厚は厚い必要があった。
即ち、前述のように、従来の放射線画像変換パネルは放
射線に対する感度及び画像の粒状性と画像の鮮鋭性とが
輝尽性蛍光体層の層厚に対してまったく逆の傾向を示す
ので、前記放射線画像変換パネルは放射線に対する感度
と粒状性と鮮鋭性のあル程度の相互犠牲によってfヤ成
されてきた。
ところで従来の放射線写真法における画像の鮮鋭性が蛍
光スクリーンの中の蛍光体の瞬間発光(放射線照射時の
発光)の広がりによって決定されるのは周知の通りであ
るが、これに対し、前述の輝尽性蛍光体を利用した放射
線画像変換方法におけ性蛍光体の輝尽発光の広がりによ
って決定されるのではなく、すなわち放射線写真法にお
けるように蛍光体の発光の広がりによって決定されるの
ではなく、輝尽励起光の該パネル内での広がりに依存し
て決まる。なぜならばこの放射#X画像変換方法におい
ては、放射線画像変換パネルに蓄積さね−た放射線画像
情報は時系列化されて取り出されるので、ある時間(t
i)に照射されたall尽励起光による輝尽発光は望ま
しくは全て採光されその時間に輝尽励起光が照射されて
いた該パネル上のある画素(x++yi)からの出力と
して記録されるが、もし輝尽励起光が該パネル内で散6
L等により広がり、照射画素(xi+yi)の外側に存
在する輝尽性蛍光体をも励起してしまうと、上記(xi
、yi)なる画素からの出力としてその画素よりも広い
領域からの力が記録されてしまうからである。従って、
ある時間(ti)に照射された輝尽励起光によるIIr
I尽発光が、その時間(ti)に輝尽励起光が真に照射
されていた該パネル上の画素(xi、yi)からの発光
のみであろうと得られる画像の鮮鋭性には影響がなり・
。
このような情況の中で、放射線画像の鮮鋭性を改善する
方法がいくつか考案されて米な。例えば特開昭55−1
46447号記載の放射線画像変換パネルの輝尽性蛍光
体層中に白色粉体を混入する方法、特開昭55−163
500号記載の放射線画像変換パネルを輝尽性蛍光体の
輝尽励起波a領域における平均反射率が前記輝尽性蛍光
体の輝尽発光波長領域における平均反射率よりも小さく
なるように着色する方法等である。しかし、これらの方
法は鮮鋭性を改良すると必然的に感度が著しく低下して
いまい、好ましい方法とは言えない。
一方これに対し本出願人は既に特願昭59−19636
5号において前述のような輝尽性蛍光体を用いた放射線
画像変換パネルにおける従来の欠点を改良した新規な放
射線画像変換パネルおよびその製造方法として、輝尽性
蛍光体層が結着剤を含有しない放射線画像変換パネルお
よびその製造方法を提案している。これによれば、放射
線画像変換パネルの輝尽性蛍光体層が結着剤を含有しな
いので輝尽性蛍光体の充填率が者しく向上すると共に輝
尽性蛍光体層の透明性が向上するので、前記放射線画像
変換パネルの放射線に対する感度と画像の粒状性が改善
されると同時に、画像の鮮鋭性も改善される。
さらに本出願人は特願昭59−266912〜2669
16号においてI[lり′!−性蛍光体層が微細柱状ブ
ロック構造を有する放射線画像変換パネルおよびその製
造方法を提案している。これによると、輝7?−励起尤
は微細柱状ブロック構造の光誘導効果のため柱状ブロッ
ク内で反射を繰り返しながら柱状プロンク外に散逸する
ことなく柱状ブロックの底まで到達するため、輝尽発光
による画像の鮮鋭性をより増大することができる。
しかしながら前記特願昭59−2613912〜266
916号の放射線画像変換パネル製造方法においては、
微細柱状ブロックの素壱となるべき層すなわち支持体表
面の微細な凹凸パターンあるいは微小タイル状板が互い
に隔絶されて敷きつめられたごときt’ft造あるいは
微小タイル状板とそれらを区画する細線網との組み合わ
せなどを製造する工程を含むため、製造工程が複雑であ
るという欠点を有して−・た。さらに前記素地層の構造
をある程度以上微細化することは困難であり、画像の鮮
鋭性にも限界があった。V Alll1Tti llh sa l-Q
? , -+h O, + j, el 1iri
llh I half '4''-(To embryo old door,
・It is often used for y. In order to obtain these two images, X-rays that have passed through the subject are irradiated onto a phosphor layer (phosphor screen), thereby producing visible light, and this visible light is then irradiated with silver salt in the same way as when taking ordinary photographs. A so-called radiographic photograph is used, which is a film made by irradiating and developing the film. However, in recent years, methods have been devised to directly extract images from the phosphor layer without using a film coated with silver salt. In this method, the radiation transmitted through the object is absorbed by a phosphor, and then this phosphor is excited with light or thermal energy, so that the phosphor emits the radiation energy accumulated by the absorption as fluorescence. There is a method of detecting this fluorescence and creating an image. Specifically, for example, U.S. Pat.
No. 5-12144 discloses a radiation image conversion method using a stimulable phosphor and using visible light or infrared rays as stimulable excitation light. This method uses a radiation image conversion panel with a stimulable phosphor layer formed on a support.The stimulable phosphor layer of this radiation image conversion panel is exposed to radiation that has passed through the object, and each part of the object is visualized. What is the radiation energy corresponding to the radiation transparency? This photostimulable phosphor layer is then scanned with photostimulable excitation light to emit the accumulated radiation energy in each part as stimulated luminescence, which produces an optical signal based on the intensity of this light. For example, the battery is charged and converted, and an image is obtained by an image reproducing device. This final image may be reproduced as a hard copy or on a CRT. Now, the radiation image conversion panel having a stimulable phosphor layer used in this radiation image conversion method has a radiation absorption rate and a light conversion rate (including both In addition to having high radiation sensitivity (hereinafter referred to as "radiation sensitivity"), images are required to have good graininess and high sharpness. However, in general, a radiation image conversion panel having a stimulable phosphor layer is prepared by dispersing a dispersion containing a particulate stimulable phosphor with a particle size of about 1 to 30 μm and an organic binder on a support or a protective layer. It is created using a manufacturing method that involves coating and drying.
The packing density of the stimulable phosphor is low (filling rate 50%), and in order to obtain sufficiently high radiation sensitivity, the /l! ! It needed to be thicker. As is clear from the figure, the layer thickness of the stimulable phosphor layer is 200 μm.
When I, the adhesion resistance amount of stimulable phosphor is 50u+g/c++
+2, and the radiation sensitivity increases linearly up to a layer thickness of 350 μm and is saturated above 450 μm. Note that the radiation sensitivity becomes saturated because when the stimulable phosphor layer becomes too thick, the stimulated luminescence generated inside the stimulable phosphor layer is emitted to the outside due to scattering between the stimulable phosphor particles. This is because it will not come out. On the other hand, as shown in FIG. 4(b), the image sharpness in the radiation image conversion method tends to be higher as the thickness of the stimulable phosphor layer of the radiation image conversion panel becomes thinner. In order to improve the performance, it was necessary to make the stimulable phosphor layer thinner. In addition, the graininess of images in the radiation image conversion method is determined by local fluctuations in the number of radiation quanta (quantum mottles) or structural disturbances in the stimulable phosphor layer of the radiation image conversion panel (structural mottles). When the layer thickness of the stimulable phosphor layer becomes thinner, the number of single rays absorbed by the stimulable phosphor layer decreases, resulting in an increase in quantum mottles, and structural disorder becomes apparent, resulting in an increase in structural mottles. This may cause a decrease in image quality. Therefore, in order to improve the graininess of images, the stimulable phosphor layer needs to be thick. That is, as mentioned above, in the conventional radiation image conversion panel, the sensitivity to radiation, the graininess of the image, and the sharpness of the image exhibit completely opposite trends with respect to the layer thickness of the stimulable phosphor layer. Radiographic image conversion panels have been developed by mutually sacrificing radiation sensitivity, graininess, and sharpness to some extent. By the way, it is well known that the sharpness of images in conventional radiography is determined by the spread of instantaneous light emission (light emission during radiation irradiation) of the phosphor in the fluorescent screen. In the radiation image conversion method using a stimulable phosphor, it is not determined by the spread of the stimulated luminescence of the stimulable phosphor, but rather by the spread of the stimulable luminescence of the phosphor as in radiography. It depends on the spread of the stimulated excitation light within the panel. This is because in this radiation #X image conversion method, the radiation image information that has not been accumulated in the radiation image conversion panel is retrieved in a time-series manner.
Preferably, all of the stimulated luminescence due to the all exhaustion excitation light irradiated at time i) is collected and recorded as an output from a certain pixel (x++yi) on the panel that was irradiated with the stimulation excitation light at that time. If the stimulated excitation light is scattered within the panel,
If the stimulable phosphor spreads by L etc. and excites the stimulable phosphor existing outside the irradiated pixel (xi+yi), the above (xi
, yi), the force from a wider area than that pixel is recorded as the output from the pixel. Therefore,
IIr due to stimulated excitation light irradiated at a certain time (ti)
Even if the I-stimulated luminescence is only from the pixels (xi, yi) on the panel that were truly irradiated with the stimulated excitation light at that time (ti), it will not affect the sharpness of the image obtained.・
. Under these circumstances, several methods have been devised to improve the sharpness of radiographic images. For example, JP-A-55-1
Method of incorporating white powder into the stimulable phosphor layer of a radiation image conversion panel described in No. 46447, JP-A-55-163
The radiation image conversion panel described in No. 500 is colored so that the average reflectance of the stimulable phosphor in the stimulated excitation wave a region is smaller than the average reflectance of the stimulable phosphor in the stimulated emission wavelength region. Method etc. However, in these methods, improving sharpness inevitably leads to a significant decrease in sensitivity, and therefore cannot be said to be a preferable method. On the other hand, the present applicant has already applied for patent application No. 59-19636.
No. 5 describes a new radiation image conversion panel that improves the conventional drawbacks of radiation image conversion panels using stimulable phosphors as described above, and a method for producing the same, in which the stimulable phosphor layer contains a binder. We are proposing a radiation image conversion panel that does not require the use of radiographic images, and a method for manufacturing the same. According to this, since the stimulable phosphor layer of the radiation image conversion panel does not contain a binder, the filling rate of the stimulable phosphor is significantly improved and the transparency of the stimulable phosphor layer is improved. Therefore, the sensitivity of the radiation image conversion panel to radiation and the graininess of the image are improved, and at the same time, the sharpness of the image is also improved. Furthermore, the present applicant has filed Japanese Patent Application No. 59-266912-2669.
In issue 16, I[liri'! This paper proposes a radiation image conversion panel in which the phosphor layer has a fine columnar block structure and a method for manufacturing the same. According to this, Hikaru 7? - Due to the light guiding effect of the fine columnar block structure, the excitation light reaches the bottom of the columnar block without being dissipated outside the columnar block while repeating reflection within the columnar block, further increasing the sharpness of images due to stimulated luminescence. can do. However, the said patent application No. 59-2613912-266
In the radiation image conversion panel manufacturing method of No. 916,
A fine uneven pattern on the surface of the support, which is the base layer of the fine columnar block, or a t'ft structure in which fine tile-like plates are separated from each other and laid out, or minute tile-like plates and a fine wire network that partitions them. It has the disadvantage that the manufacturing process is complicated because it includes the process of manufacturing a combination of. Furthermore, it is difficult to make the structure of the base layer finer than a certain level, and there is also a limit to the sharpness of images.
【発明の目的]
本発明は輝尽性蛍光体を泪いた前記提案の放射線画像変
換パネルの1ft!遣方法に関連し、これをさらに改良
するものであり、本発明の目的は放射線に対する感度が
向上すると共に鮮鋭性の高い画像を与える放射線画像変
換パネルの製造方法を提供することにある。
本発明の他の目的は粒状性が向上すると共に、鮮鋭性の
高い画像を与える放射線画像変換パネルの製造方法を提
供することにある。
さらに本発明の他の目的は、放射線画像変換パネル(以
後変換パネルと略称する)を安価に安定して製造するこ
とのできる簡便な製造方法を提供することにある。
【発明の構成】
前記の本発明の目的は、支持体上に少くとも一層の輝尽
性蛍光体層を有する放射線画像変換パネルの製造方法に
おいて、前記輝尽性蛍光体層をガス雰囲気中で蒸着して
空隙を有する蛍光体層を形成する工程と、曲記輝尽性蛍
光体層を加熱して前記空隙の一部を前記輝尽性蛍光体層
の厚み方向に拡げる工程とを有することを特徴とする変
換パ(ルの製造方法によって達成される。
次に本発明を具体的に説明する。
第2図に本発明の変換パネル製造方法(以後、単にパネ
ル製造方法と略称することがある)において輝尽性蛍光
体層の形成に使用される蒸着装置1゛の一例の概略図を
示す。
第2図の蒸着装置は真空槽20および真空槽基板21と
その一部に設けられた排気口22およびメイ・バルブ2
3を有する。真空槽20の内部には蒸発源を加熱するだ
めのボートまたはルツボ24があり、ボートまたはルツ
ボの中には輝尽性蛍光体25が充填されている。ボート
またはルツボ24の開口端上方に変換パネルの支持体2
6があり、!III尽性蛍光性蛍光体はこの支持体の表
面に蒸着され輝尽性蛍光体層を形成する。支持体26上
部には支持体加熱用ヒーター27が設けられ、また膜厚
制御用の測定子28が支持体と並設されている。真空槽
基板21を通して不活性ガスを導入するための管29お
上り真空計211が取付けられておりガス導入管29に
は微少量の気体流入を制御できるバリアプルリークパル
プ210が取付けられている。
本発明のパネル製造方法において使用される蒸着装置は
第2図に示すものとは限らず、不活性〃ス雰囲気中で被
蒸着物に輝尽性蛍光体を蒸着することのできる装置であ
ればいかなるものであってもよい。
さて、12図の装置を用いて行なう本発明のパネル製造
方法を具体例として述べる。該方法においては、まず支
持体を蒸着装置内に設置した後装置内を排気して10−
6〜10−’ T orr程度の真空度とする。
次いで支持体用加熱ヒーター27により300〜500
°Cに加熱して支持体表面を清浄にした後、支持体の温
度を100〜200 ’C程度に設定し、バリアプルリ
ークパルプ210を開いてAr%He5Nzなとの不活
性〃スを導入して圧力10−コ〜10−’ T orr
程度の低真空とする。尚好ましい雰囲気ガスとしてはA
rである。
次にポートまたはルツボ24に通電し、抵抗加熱法によ
りボートまたはルツボ中の輝尽性蛍光体25たとえばタ
リウムを付活剤とした臭化ルビジウム蛍光体を蒸発させ
る。すると、輝尽性蛍光体は支持体26上に堆積される
と同時に結晶成長し、支持体面から垂直方向に柱状晶が
形成されてゆく。
しかし、蒸着過程において結晶成長が促進される結晶面
と、部分的に雰囲気ガスが吸着されて結晶r&艮が抑制
される面が生ずる。結晶成長が促進される面は蒸発分子
または原子が付着する方向にどんどん成長する。′結晶
成長が抑制される面は、蒸着層内の多数の微細な空洞あ
るいは空隙を形づくる。前記空洞の形状は、支持体面に
対しほぼ垂直方向に延びた細長い形状が多い。このよう
にして支持体上に多数の微細な空洞を有する輝尽性蛍光
体層が蒸着形成される。
この際、雰囲気ブスを吸着させながら堆積させる輝尽性
蛍光体層の生長速度は102〜10’A/min、好ま
しくは103−106A / rIlinである。
このようにして作成された輝尽性蛍光体層を有するパネ
ルを大気中に取り出し、300〜400 ’C程度の温
度で熱処理を行うと、輝尽性蛍光体層中の前記空洞の一
部が支持体面に垂直な方向へ延びるとともに前記柱状晶
どうしの境界面に沿って発達し、空隙あるいは亀裂を形
成する(ただし空洞のまま残存するものもある)。こう
して前記柱状晶は、数本が束ねられたような形状の、そ
れぞれが前記空隙あるいは亀裂により区画されて光学的
に独立した柱状ブロックとなり、多数の微細な空洞を有
する微細柱状ブロック構造の輝尽性蛍光体層が形成され
る。
前記の例て゛は大気中で熱処理を施した場合について述
べたが、これを省略して排気中のベーキングを柱状ブロ
ンク購造形成の工程にあてても同様ヒーターを高温すな
わち300°C〜400°C程度に設定して、蒸着と同
時に前記熱処理の場合と同様の柱状ブロック構造形成を
促すようにしてもよい。
また、直配蒸着工程では抵抗加熱法のかわり[Object of the Invention] The present invention provides a 1ft. An object of the present invention is to provide a method for manufacturing a radiation image conversion panel that improves sensitivity to radiation and provides images with high sharpness. Another object of the present invention is to provide a method for manufacturing a radiation image conversion panel that has improved graininess and provides images with high sharpness. Still another object of the present invention is to provide a simple manufacturing method that can stably manufacture a radiation image conversion panel (hereinafter referred to as a conversion panel) at low cost. Structure of the Invention The object of the present invention is to provide a method for producing a radiation image conversion panel having at least one photostimulable phosphor layer on a support, in which the stimulable phosphor layer is placed in a gas atmosphere. A step of vapor depositing to form a phosphor layer having voids, and a step of heating the stimulable phosphor layer to expand a portion of the voids in the thickness direction of the stimulable phosphor layer. This is achieved by a conversion panel manufacturing method characterized by the following. Next, the present invention will be specifically explained. 2 is a schematic diagram of an example of a vapor deposition apparatus 1" used for forming a stimulable phosphor layer in a vacuum chamber 20, a vacuum chamber substrate 21, and a part thereof. Exhaust port 22 and May valve 2
It has 3. Inside the vacuum chamber 20 is a boat or crucible 24 for heating the evaporation source, and the boat or crucible is filled with a stimulable phosphor 25. Support 2 of the conversion panel is placed above the open end of the boat or crucible 24.
There are 6! The III-stimulable fluorescent phosphor is deposited on the surface of this support to form a stimulable phosphor layer. A heater 27 for heating the support is provided above the support 26, and a measuring element 28 for controlling the film thickness is arranged in parallel with the support. A vacuum gauge 211 is attached to a tube 29 for introducing an inert gas through the vacuum chamber substrate 21, and a barrier pull leak pulp 210 that can control the inflow of a minute amount of gas is attached to the gas introduction tube 29. The vapor deposition apparatus used in the panel manufacturing method of the present invention is not limited to the one shown in FIG. 2, but can be any apparatus that can vapor deposit the stimulable phosphor onto the object to be vapor-deposited in an inert gas atmosphere. It can be anything. Now, the panel manufacturing method of the present invention using the apparatus shown in FIG. 12 will be described as a specific example. In this method, the support is first placed in a vapor deposition apparatus, the inside of the apparatus is evacuated, and 10-
The degree of vacuum is approximately 6 to 10-' Torr. Then, the heating temperature of 300 to 500
After cleaning the surface of the support by heating it to °C, set the temperature of the support to about 100-200'C, open the barrier pull leak pulp 210, and introduce an inert gas such as Ar%He5Nz. and the pressure is 10-10-' Torr
The vacuum should be as low as possible. A preferable atmospheric gas is A
It is r. Next, the port or crucible 24 is energized to evaporate the stimulable phosphor 25 in the boat or crucible, such as a rubidium bromide phosphor using thallium as an activator, by a resistance heating method. Then, the stimulable phosphor is deposited on the support 26 and at the same time crystals grow, forming columnar crystals in a direction perpendicular to the surface of the support. However, during the vapor deposition process, there are crystal planes where crystal growth is promoted, and there are planes where atmospheric gas is partially adsorbed and crystal r&suppression is suppressed. The surface where crystal growth is promoted grows steadily in the direction to which the evaporated molecules or atoms attach. 'The surface where crystal growth is suppressed forms many fine cavities or voids within the deposited layer. The shape of the cavity is often an elongated shape extending substantially perpendicularly to the surface of the support. In this way, a stimulable phosphor layer having a large number of fine cavities is formed on the support by vapor deposition. At this time, the growth rate of the stimulable phosphor layer deposited while adsorbing the atmosphere is 102 to 10'A/min, preferably 103 to 106 A/rIlin. When the panel having the stimulable phosphor layer prepared in this way is taken out into the atmosphere and heat-treated at a temperature of about 300 to 400'C, some of the cavities in the stimulable phosphor layer are removed. It extends in a direction perpendicular to the surface of the support and develops along the interface between the columnar crystals, forming voids or cracks (although some remain as cavities). In this way, the columnar crystals are formed into optically independent columnar blocks each having a shape in which several pieces are bundled and separated by the voids or cracks. A fluorescent phosphor layer is formed. The above example describes the case where heat treatment is performed in the atmosphere, but even if this is omitted and baking in the exhaust air is applied to the process of purchasing and forming columnar broncs, the heater is heated to a high temperature, that is, 300°C to 400°C. The heat treatment may be set to a certain degree to encourage the formation of a columnar block structure similar to that in the heat treatment described above at the same time as vapor deposition. In addition, in the direct deposition process, instead of the resistance heating method,
【lエレク
トロンビーム法を用いてもよい。
さらに、前記蒸着工程では複数の抵抗加熱器才、るいは
エレクトロンビームを用いて共蒸着を行う二とも可能で
あるし、輝尽性蛍光体原料を複数の抵抗加熱器あるいは
エレクトロンビームな用いて共蒸着し、支持体上で目的
とする輝尽性蛍光体を合成すると同時に輝尽性蛍光体層
を形成することも可能である。
蒸着工程および加熱処理工程の終了後、必要1:応じて
前記支持体上の輝尽性蛍光水層の外気への露呈面に好ま
しくはr、ζ護層を設けることにより変換パネルが製造
される。
なお、保護層上に輝尽性蛍光体層を形成した後支持体を
設ける手順をとってもよい6
第1図に、本発明のパネル製造方法により製造された変
換パネルの一例を、厚み方向の断面図として示す。
同図において10は本発明に関わる変換パネルの形態を
示す。
11は支持体、12は該支持体面にほぼ垂直方向に延び
r−微細柱状ブロック構造を有する輝尽性蛍光体層であ
り、12aは一つ一つの微細柱状ブロックを表し、12
bは12a間を隔絶する微細な空隙あるいは亀裂を表し
ている。さらに前記微細柱状ブロック中には支持体面に
対しほぼ垂直方向に延びた細長い空洞12cが存在する
。
前記微細柱状ブロック12aの平均的径は1〜400μ
mが好ましく、また前記微細柱状ブロック間の空隙12
bは前記微細柱状ブロック12aが互いに光学的に独立
していればいがなる間隔でもよいが、平均的には0〜2
0μmが好ましい。前記空洞12cの間隔は好ましくは
100μm以下、より好ましくは40μm以下とするの
がよい。
なお、前記輝尽性蛍光体層12の上部には、保護層13
を設けることが好ましい。
また、支持体11と輝尽性蛍光体層12どの間には、必
要に応じ各層間の接着性をよ(するための接着層を設け
てもよいし、あるいは輝尽励起光およ1/または輝尽発
光の反射層もしくは吸収層を設けてもよい。
本発明のパネル!!!!遣方法において輝尽性蛍光体と
は、最初の光もしくは高エネルギー放射線が照射された
後に、光的、熱的、機械的、化学的または電気的等の刺
激(輝尽励起)により、最初の光もしくは高エネルギー
の放射線の照射量に対応した輝尽発光を示す蛍光体を言
うが、実用的な面から好ましくは500nm以上の輝尽
励起光によってIIIE。
発光を示す蛍光体である。本発明安パネルに用11られ
る輝尽性蛍光体としては、例えば特開昭48−8048
7号に記載されているB aS O4:A x(但しA
はDy、Tb及びTmのうち少なくとも1種であり、X
は0.001≦x<1モル%である。)で表される蛍光
体、特開昭48−80488号記載のM gS O4:
A X(但しAはHO或いはDyのうちいずれかであり
、0.001≦X≦1モル%である)で表される蛍光体
、特開昭48−80489号に記載されているS rS
O、:A x(但しAはDy、Tb及びTmのうち少
なくとも1種でありXは0.001≦×く1モル%ある
。)で表わされている蛍光体、特開昭51−29889
号に記載されているN a2S O、、CaS O、及
びBa5O−等にMn、Dy及びT I)のうち少なく
とも1種を添加した蛍光体、特開昭52−30487号
に記載されているBed、LiF。
MgSO4及びCaF2等の蛍光体、特開昭53−39
277号に記載されているL i 2 B 407 :
Cu HA g等の蛍光体、特開昭54−47883
号に記載されているL izo・(B 202)X:C
u(但し×は2<x≦3)、及びL i 20・(B
202)X:Cul A g(但しXは2くに≦3)等
の蛍光体、米国特許3 、859 、527号に記載さ
れているSrS:Ce、Sm、 SrS;Eu、Sm
、 La2O2S:Eu、Sm及び(Z n = C
d ) S : M n 、X (但しXはハロゲン)
で表わされる蛍光体が挙げられる。また、特開昭55−
12142号に記載されているZnS:Cu、Pb蛍光
体、一般式がB ao−xA 1□03:E u(但し
0.8≦X≦10)で表わされるアルミン酸バリツム蛍
光体、及び一般式力M ” 0−xS io 2:A
(但1. M” ハMgvCatPb、TI、Bi及び
Mnのうち少なくとも1!t1であr)、×は0.5≦
X≦2.5である。)で表わされるアルカリ土類金属珪
酸塩系蛍光体が挙げられる。また、一般式が
(Bat−x 、MgxCa、 )FX: eEu
”(但しXはBr及びCIの中の少なくとも1つであり
、x、y及びeはそれぞれO<x+y≦0.6、xy≠
O及び10+6≦e≦5×10+2なる条件を満たす数
である。)で表される蛍光体が挙げられる。一般式%式
%:
(但しLnはLa、Y、Gd及びLuの少なくとも1つ
を、XはC1及び/又はBrを、AはCe及び/又はT
bを、XはO<x<0.1を満足する数を表す。
で表される蛍光体、特開昭55−12145号に記載さ
れている一般式が
(B a I XM ”X)F X :yA(但しM
”は、Mir+CavS r+Zn及びCdのうちの少
なくとも1つを、XはCI、Br及VIのうち)、し
11 ()−L 1 つ 4 、 A
I+ V n、T h、(’、a−T +n、n
u−PrtHo、NdtYb及びErのうちの少な
くとも1つを、×及びyはO≦X≦0.6及び0≦y≦
0.2なる条件を満たす数を表す。)で表される蛍光体
、特開昭55−84389号に記載されている一般式が
B aF X :xCe、yA (但し、XはCI、B
r及び■のうちの少なくとも1つ、AはIn、TI、G
d、Sw及びZrのうちの少なくとも1つであり、X及
(/Vはそれぞれ0くX≦2X10−’及びo<y≦5
X10−2である。)で表される蛍光体、特開昭55−
160078号に記載されている一般式が
MlFX−xA:yLn
(但しMlはM gs Cat B at S rf
Z n及(/Cdのうちの少なくとも1種、A 1.t
B e Ot M g Ot Ca OvS ro
=B ao 、Z no −A I20−Y 20 C
1−L n20 :ltI n203.S io 2.
T io 2.ZrOt、Geo 、、S no 2゜
N bzo s、T n20 s及びThe2のうちの
少な(とも1種、LnはEutTbtCetTm、Dy
tPrtHotNd。
Yb、Er、Sm及びGdのうちの少なくとも1種であ
り、XはCI、Br及びIのうちの少なくとも1種であ
り、X及びyはそれぞれ5X10−’≦X≦0.5及び
o<y≦0.2なる条件を満たす数である。)で表され
る希土類元素付活2価金属フルオロハライド蛍光体、一
般式がZnS:A、(Zn、Cd)S:A、CdS:A
、ZnS:A、X及ucds:A、X((BLAはCu
。
Ag*Au又はMnであり、Xはハロゲンである。)で
表される蛍光体、特開昭57−148285号に記載さ
れている一般式〔1〕又は[Il)、
一般式(1) xMi(pot)2−NX2:yA
一般式(n ) M、(PO,)2・yA(式中
、M及INはそれぞれM Fi+ Cal S r、
B atZn及びCdのうち少なくとも1種、XはF
、CI。
Br、及びIのうち少なくとも1種、AはE u、 T
b。
CelTm*Dy*Pr*HomN′d*Er+sb+
T’ ltMn及びSnのうち少なくとも1aを表す。
また、X及びyは0<x≦6.0≦y≦1なる条件を満
たす数である。)で表される蛍光体、一般式(III)
又は(IV)一般式(III) nReX3・mA
X’:xEu一般式(■) nReXz・mAX;
:xEu、ysm(式中、ReはLa、GdtY、Lu
のうち少なくとも1!11、Aはアルカリ±yII金属
、Ba、Sr*Caのうち少なくとも1種、X及びX′
はF 、CI、B rのうち少なくとも1種を表わす、
また、X及びyは、1xio−’<x< 3 Xl0−
’、I Xl0− ’<y< I Xl0−1な
る条件を満たす数であり、n7mはI X 10−’
< n7m< 7 X 10−’なる条件を満たす。)
で表される蛍光体、及び
一般式
%式%:
(但し、MlはLi、Na、に、Rb及1/ Csがら
選ばれる少なくとも一種のアルカリ金属であり、Mlは
B e + M g + Ca + S r r B
a t Z n t Cd v Cu及びNiがら選ば
れる少なくとも一種の二価金属である。MlはSctY
tLatCetPrtNdtPm、51EutGdtT
btDy+Ho+Er+T+a+Yb、Lu+A It
Gat及びInから選ばれる少なくとも一種の三価金属
である。
x、x’及びx ”はF 、CI、B r及び工がら選
ばれる少なくとも一種のハロゲンである。AはEu。
T byce+T III、D y+P r、Ho+N
d+Y b+E rtG dtL usStatY+
TLNa+Ag+Cu及びMgから選ばれる少なくとも
一種の金属である。
またaは0≦a<0.5範囲の数値であり、bはO≦b
<o、sの範囲の数値であり、CはO<c≦0.2の範
囲の数値である。)で表されるアルカリハライド蛍光体
等が挙げられる。特にアルカリハライド蛍光体は蒸着用
として好適であって好ましい蛍光体である。
しかし、本発明のパネル製造方法に用いられるIQI尽
性蛍光体は、前述の蛍光体に限られるものではなく、放
射線を照射した後輝尽励起光を照射した場合に輝尽蛍光
を示す蛍光体であればいがなる蛍光体であってもよい。
本発明のパネル製造方法は前記の輝尽性蛍光体の少なく
とも一種類を含む一つ若しくは二つ以上の輝尽性蛍光体
層から成る輝尽性蛍光体層群を形成する工程を含んでも
よい。また、それぞれの輝尽性蛍光体層に含まれる輝尽
性蛍光体は同一であってもよいが異なっていてもよい。
本発明のパネル製造方法において、用いられる支持体と
しては各種高分子材料、ガラス、金属等が用いられる。
特に情報記録材料としての取り扱い上可撓性のあるシー
トあるいはウェブに加工できるものが好適であり、この
点から例えばセルロー入アセテートフイルム、ポリエス
テルフィルム。
ポリエチレンテレフタレートフィルム、ポリ7ミドフイ
ルム、ポリイミドフィルム、トリアセテートフィルム、
ポリカーボネイトフィルム等のプラスチックフィルム、
アルミニウム、鉄、@、クロム等の金属シート或は該金
属酸化物の被覆層を有する金属シートが好ましい。
また、これら支持体の層厚は用いる支持体の材質等によ
って異なるが、一般的には80μ謔〜100゜μ箇であ
り、取り扱い上の点からさらに好ましくは80μ謔〜5
00μmである。
本発明のパネル製造方法においては、一般的に前記輝尽
性蛍光体層が露呈する面に、輝尽性蛍光体層群を物理的
にあるいは化学的に保護するための保護層を設けること
が好ましい。この保1層は、保護層用塗布液を輝尽性蛍
光体層上に直接塗布して形成してもよいし、あるいはあ
らかじめ別途形成した保護層を輝尽性蛍光体層上に接着
してもよい。保31層の材料としては酢酸セルロース、
ニドミセルロース、ポリメチルメタクリレート、ポリビ
ニルブチラール、ポリビニルホルマール、ポリカーボネ
ート、ポリエステル、ポリエチレンテレフタレート、ポ
リエチレン、ポリプロピレン、ポリ塩化ビニリデン、ナ
イロン、ポリ四7フ化エチレン、ポリ三77化−塩化エ
チレン、四7ツ化エチレン−六7フ化プロピレン共重合
体、塩化ビニリデン−塩化ビニル共重合体、塩化ビニリ
デン、アクリロニトリル共重合体等の保護層用材料が用
いられる。
また、この保オ層は真空蒸着法、スパッタ法等により、
S iC、S io 2.S iN 、A I203な
どの無機物質を積層して形成してもよい。
前記したような本発明のパネル製造方法により得られる
変換パネルは輝尽性蛍光体層に結着剤を含んでいないの
で輝尽性蛍光体の耐着量(充填率)が従来の輝尽性蛍光
体を塗設した輝尽性蛍光体層の約2倍あり、輝尽性蛍光
体層単位厚さ当たりの放射線吸収率が向上し放射線に対
して高感度となるぽかりか、画像の粒状性が向上する。
更に前記蒸着法による輝尽性蛍光体層は透明性に優れて
おり、輝尽励起光及V輝尽発光の透過性が高く、従来の
塗設法による輝尽性蛍光体層上り層厚を厚くすることが
可能であり、放射線に対して一層高感度となる。
第3図(a)は本発明のパネル製造方法による変換パネ
ルの輝尽性蛍光体層及び該層厚に対応する輝尽性蛍光体
耐着量と放射線感度の関係の一例を表している。
また本発明のパネル製造方法により得られた微細柱状ブ
ロック構造の輝尽性蛍光体層を有するパネルの鮮鋭性の
一例を第3図(b)に於いて特性曲線31によって示す
。
本発明のパネル製造方法によれば、特願昭59−266
912〜266916号に記載されている微細柱状ブロ
ック構造よりも微細な構造が形成され、得られるパネル
は、光誘導効果により輝尽励起光が柱状ブロック内面お
上り空洞面で内部に反射を繰り返すので、たとえば特願
昭59−266914号に示されるタイル状32と比較
すると明らかなように、画像の鮮鋭性が向上するととも
に輝尽性蛍光体の層厚の増大にともなう鮮鋭性をより向
上することが可能である。
また、輝尽性蛍光体粒子を結着剤に分散塗布する従来の
製造方法による変換パネルの特性を第3図(b)の33
に示す。これより明らかに画像の鮮鋭性が優れているこ
とがわかる。
また、本発明のパネル製造方法は、特願昭59−266
912−266915号ニ述ヘラレテいル’1ltla
柱状プ0ツク゛構造の素地層すなわち支持体表面の微細
な凹凸パターンあるいは微小タイル状板構造あるいは微
小タイル状板と細線網との組み今わせなどを製造する工
程を必要としないため、従来のパネル製造方法に比ベニ
程が簡略化される。
【実施例】
次に実施例によって本発明を説明する。
実施例1゜
支持体としで0,5I厚のアルミニウム板を蒸着層中に
設置した。次に抵抗加熱用のモリブデンボ:0.004
T uを入れ、抵抗加熱用電極に七ッYし、続いて蒸着
器内を排気してI X 10−’T orr真空度とし
た。次いで支持体加熱用ヒーターにより支持体を300
〜500 ’Cに加熱して支持体表面を清浄した後、支
持体を100 ’Cに設定し、アルゴンガスを導入して
I X 10−’Torr程度に保持した。次にモリブ
デンボートに通電し、抵抗加熱法によりRbBr:0.
004T Qを蒸発させ、約250μ「6厚の輝尽性蛍
光体層を有する変換パネル原体を作成した。この変換パ
ネル原体を大気中に取り出して350℃で30分間熱処
理を施し、本発明のパネル製造方法による変換パネルA
を得た。
このようにして得られた本発明のパネル製造方法による
変換パネルAに管電圧80KVpのX線を10IIR照
射した後、半導体レーザ光(780nw)で輝尽励起し
、輝尽性蛍光体層から放射される輝尽発光を光検出器(
光電子増倍管)で充電変換し、この信号を画像再生装置
によって画像として再生し、銀塩フィルム上に記録した
。信号の大きさより、変換パネルAI:r)X線に対す
る感度を調べ、また得られた画像より、画像の変調伝達
関数(M T F )及び粒状性を調べ第1表に示す。
#IJ1°表において、X#iに対する感度は、本発明
のパネルAを100相対値で示しである。また、変調伝
達関数(MTF)は、空間周波数が2サイクル/mmの
時の値である。
実施例2゜
実施例1において蒸着中のアルゴン圧力を5×10−’
T orrに、また蒸着中の支持体温度を350℃に
設定することと蒸着終了後の加熱処理を省くこと以外は
実施例1と同様の作業を行うことにより、本発明のパネ
ル製造方法による変換パネルBを得た。
このようにして得られた本発明のパネル製造方法による
変換パネルBは、実施例1と同様にして評価し、結果を
第1表に併記する。
比較例1゜
輝尽性蛍光体RbB r:0.004T rl 8重量
部とポリビニルブチラール樹脂1重量部と溶剤(シクロ
ヘキサノン)5重量部を用いて混合、分散し、輝尽性蛍
光体層用塗布液を調整した。次にこの塗布液を水平に置
いた300μIll厚の支持体としての黒色ポリエチレ
ンテレフタレートフィルム上に均一に塗布し、自然乾燥
させて250μm厚の輝尽性蛍光体層を形成した。
このようにして得られた比較の変換パネルPは実施例1
と同様にして評価し、結果を第1表に併記する。
比較例2゜
0.5+am厚のアルミニウム板を特願昭59−266
914号に示した方法により陽極酸化処理、封孔処理お
よび加熱処理してタイル状板が微細な間隙により互いに
隔絶されて敷きつめられたごとき表面t’iVj造とし
た支持体を蒸着話中に設置した。
次に抵抗加熱用のモリブデンボート中にアルカリハライ
ド系輝尽性蛍光体RbB r:0.004T Qを入れ
、抵抗加熱用電極にセットし、続いて蒸着器内を排気し
てI X 10−’ T orrの真空度とした。次い
で支持体加熱用ヒーターにより支持体を300〜500
・/+lIゆhnInl岬−責1−クノムi↓需す5祷
)9(け1hり負;東を童1づ!噛ごを100℃に設定
し、2 X 10−’ T orrの真空度とした。
次にモリブデンボートに通電し、抵抗加熱法によりRb
B r:o、004T Qを蒸発させ、約250μ■の
厚さに真空蒸着して比較の変換パネルQを得た。
このようにして得られた比較の変換パネルQは実施例1
と同様にして評価し、結果を第1表に併記する。
第1表より明らかなように本発明の製造方法による変換
パネルA、Bは、比較の変換パネルPに比べてXm感度
が約2倍高くしがも画像の粒状性が優れていた。これは
本発明の製造方法による変換パネルは輝尽性蛍光体層中
に結着剤を含んでおらずlll1尽性蛍光体の充R率が
…鯵の寄漁パ木ルに比べて高くX線の吸収率が良いため
である。
また、本発明の製造方法による変換パネルA、Bは比較
の変換パネルPに比べてxi感度が高いにもかかわらず
鮮鋭性の点でも優れていた。これは、本発明の製造方法
によれば、変換パネルの輝尽性蛍光体層は微細柱状ブロ
ック構造および微細な空隙を有しているので、輝尽励起
光である半導体レーザの輝尽性蛍光体層中での散孔が減
少するためである。
さらに、本発明の製造方法による変換パネルA。
Bは比較の変換パネルQに比べて、XM感度および粒状
性は同等であるにもかわらず鮮鋭性が優れていた。これ
は本発明の製造方法では、アルゴン雰囲気中で蒸着を行
いかつ加熱処理を施しているため、変換パネルA、Bは
比較の変換パネルQの微細柱状プロ・2り構造よりも微
細な構造をもち、光誘導効果がより優れているためであ
る。[l Electron beam method may be used. Furthermore, in the vapor deposition process, it is possible to carry out co-evaporation using multiple resistance heaters or electron beams, and it is also possible to co-evaporate the stimulable phosphor raw material using multiple resistance heaters or electron beams. It is also possible to form the stimulable phosphor layer at the same time as vapor deposition and synthesis of the desired stimulable phosphor on the support. After the completion of the vapor deposition step and the heat treatment step, a conversion panel is manufactured by forming a protective layer, preferably on the surface of the stimulable fluorescent water layer on the support, which is exposed to the outside air. . Note that the step of providing a support after forming the stimulable phosphor layer on the protective layer may be taken.6 Figure 1 shows a cross section in the thickness direction of an example of a conversion panel manufactured by the panel manufacturing method of the present invention. Shown as a diagram. In the figure, numeral 10 indicates the form of a conversion panel related to the present invention. 11 is a support, 12 is a stimulable phosphor layer extending substantially perpendicular to the surface of the support and having an r-fine columnar block structure, 12a represents each fine columnar block, 12
b represents a minute void or crack that separates 12a. Further, in the fine columnar block, there is an elongated cavity 12c extending substantially perpendicularly to the surface of the support. The average diameter of the fine columnar blocks 12a is 1 to 400μ
m is preferable, and the void 12 between the fine columnar blocks is preferably
b may be any distance as long as the fine columnar blocks 12a are optically independent from each other, but on average it is 0 to 2.
0 μm is preferable. The spacing between the cavities 12c is preferably 100 μm or less, more preferably 40 μm or less. Note that a protective layer 13 is provided on the stimulable phosphor layer 12.
It is preferable to provide Further, an adhesive layer may be provided between the support 11 and the stimulable phosphor layer 12 to improve the adhesion between each layer, as required, or an adhesive layer may be provided between the support 11 and the stimulable phosphor layer 12. Alternatively, a reflective layer or an absorbing layer for photostimulated luminescence may be provided.In the panel application method of the present invention, the photostimulable phosphor is a material that is , refers to a phosphor that exhibits stimulated luminescence corresponding to the initial light or high-energy radiation irradiation amount due to thermal, mechanical, chemical, or electrical stimulation (photostimulation excitation), but it is not practical. It is a phosphor that emits IIIE light with a stimulable excitation light of preferably 500 nm or more from the surface. Examples of the stimulable phosphor used in the safety panel of the present invention include, for example, Japanese Patent Application Laid-Open No. 48-8048.
B aS O4:A x (However, A
is at least one of Dy, Tb and Tm, and X
is 0.001≦x<1 mol%. ), M gS O4 described in JP-A-48-80488:
A phosphor represented by A
O, :A x (where A is at least one of Dy, Tb and Tm, and X is 0.001≦×1 mol%), JP-A-51-29889
Phosphors in which at least one of Mn, Dy, and Ti) is added to Na2SO, CaSO, Ba5O-, etc., described in Japanese Patent Application Laid-Open No. 1983-30487; , LiF. Phosphors such as MgSO4 and CaF2, JP-A-53-39
L i 2 B 407 described in No. 277:
Phosphors such as Cu HA g, JP-A-54-47883
Lizo・(B 202)X:C described in the issue
u (where x is 2<x≦3), and L i 20・(B
202) X: Phosphors such as Cul A g (where X is 2≦3), SrS: Ce, Sm, SrS; Eu, Sm described in U.S. Pat. No. 3,859,527
, La2O2S:Eu, Sm and (Z n = C
d) S: Mn, X (However, X is halogen)
Examples include phosphors represented by Also, JP-A-55-
ZnS:Cu, Pb phosphor described in No. 12142, barium aluminate phosphor whose general formula is represented by Bao-xA 1□03:E u (however, 0.8≦X≦10), and general formula Force M” 0-xS io 2:A
(However, 1. M” is at least 1 of MgvCatPb, TI, Bi, and Mn! r at t1), × is 0.5≦
X≦2.5. ) Alkaline earth metal silicate-based phosphors represented by: Also, the general formula is (Bat-x, MgxCa, )FX: eEu
” (However, X is at least one of Br and CI, x, y, and e are O<x+y≦0.6, xy≠
This is a number that satisfies the following conditions: O and 10+6≦e≦5×10+2. ) can be mentioned. General formula % formula %: (Ln is at least one of La, Y, Gd and Lu, X is C1 and/or Br, A is Ce and/or T
b, and X represents a number satisfying O<x<0.1. The general formula of the phosphor represented by JP-A-55-12145 is (B a I
” is Mir+CavS r+at least one of Zn and Cd, X is CI, Br and VI),
11 ()-L 1 4, A
I+ V n, T h, (', a-T +n, n
At least one of u-PrtHo, NdtYb and Er, x and y are O≦X≦0.6 and 0≦y≦
It represents a number that satisfies the condition of 0.2. ), the general formula described in JP-A-55-84389 is B aF X :xCe,yA (where X is CI, B
At least one of r and ■, A is In, TI, G
is at least one of d, Sw, and Zr, and X and (/V are 0 x ≦ 2
It is X10-2. ), a phosphor expressed by JP-A-1987-
The general formula described in No. 160078 is MlFX-xA:yLn (where Ml is M gs Cat Bat S rf
At least one of Z n and (/Cd, A 1.t
B e Ot M g Ot Ca OvS ro
=B ao , Z no −A I20−Y 20 C
1-L n20:ltI n203. S io 2.
Tio 2. ZrOt, Geo,, S no 2゜N bzo s, T n20 s and The2 (both are one type, Ln is EutTbtCetTm, Dy
tPrtHotNd. At least one of Yb, Er, Sm, and Gd, X is at least one of CI, Br, and I, and X and y are 5X10-'≦X≦0.5 and o<y, respectively. This is a number that satisfies the condition of ≦0.2. ) Rare earth element-activated divalent metal fluorohalide phosphors, whose general formulas are ZnS:A, (Zn, Cd)S:A, CdS:A
, ZnS: A, X and ucds: A, X ((BLA is Cu
. Ag*Au or Mn, and X is halogen. ), general formula [1] or [Il) described in JP-A-57-148285, general formula (1) xMi(pot)2-NX2:yA
General formula (n) M, (PO,)2・yA (wherein M and IN are respectively M Fi + Cal S r,
At least one of B atZn and Cd, X is F
, C.I. At least one of Br and I, A is E u, T
b. CelTm*Dy*Pr*HomN'd*Er+sb+
T' lt represents at least 1a among Mn and Sn. Further, X and y are numbers that satisfy the condition 0<x≦6.0≦y≦1. ), a phosphor represented by general formula (III)
or (IV) general formula (III) nReX3·mA
X': xEu general formula (■) nReXz・mAX;
:xEu, ysm (where Re is La, GdtY, Lu
at least 1!11, A is an alkali ±yII metal, Ba, at least one of Sr*Ca, X and X'
represents at least one of F, CI, and Br,
Moreover, X and y are 1xio-'<x<3 Xl0-
', I Xl0-'< y < I Xl0-1, and n7m is I X 10-'
The condition <n7m<7×10-' is satisfied. )
A phosphor represented by the general formula % formula %: (However, Ml is at least one kind of alkali metal selected from Li, Na, Rb and 1/Cs, and Ml is Be + M g + Ca + S r r B
at Z n t Cd v At least one divalent metal selected from Cu and Ni. Ml is SctY
tLatCetPrtNdtPm, 51EutGdtT
btDy+Ho+Er+T+a+Yb, Lu+A It
It is at least one trivalent metal selected from Gat and In. x, x' and x'' are at least one kind of halogen selected from F, CI, Br and engineering. A is Eu. T byce+T III, Dy+P r, Ho+N
d+Y b+E rtG dtL usStatY+
It is at least one metal selected from TLNa+Ag+Cu and Mg. Also, a is a numerical value in the range of 0≦a<0.5, and b is a value in the range of O≦b
C is a numerical value in the range of <o, s, and C is a numerical value in the range of O<c≦0.2. ) and the like can be mentioned. In particular, alkali halide phosphors are suitable and preferred phosphors for vapor deposition. However, the IQI exhaustible phosphor used in the panel manufacturing method of the present invention is not limited to the above-mentioned phosphor, but is a phosphor that exhibits stimulated fluorescence when irradiated with radiation and then irradiated with stimulated excitation light. Any phosphor that is phosphor may be used. The panel manufacturing method of the present invention may include a step of forming a stimulable phosphor layer group consisting of one or more stimulable phosphor layers containing at least one kind of the above-mentioned stimulable phosphors. . Furthermore, the stimulable phosphors contained in each stimulable phosphor layer may be the same or different. In the panel manufacturing method of the present invention, various polymeric materials, glass, metals, etc. are used as the support. In particular, materials that can be processed into flexible sheets or webs are suitable for handling as information recording materials, such as cellulose-containing acetate films and polyester films. Polyethylene terephthalate film, poly7mid film, polyimide film, triacetate film,
Plastic films such as polycarbonate films,
A metal sheet of aluminum, iron, @, chromium, etc., or a metal sheet having a coating layer of the metal oxide is preferred. The layer thickness of these supports varies depending on the material of the support used, but is generally 80 μm to 100 μm, more preferably 80 μm to 5 μm from the viewpoint of handling.
00 μm. In the panel manufacturing method of the present invention, generally a protective layer for physically or chemically protecting the stimulable phosphor layer group may be provided on the surface where the stimulable phosphor layer is exposed. preferable. This first protective layer may be formed by directly coating the protective layer coating liquid on the stimulable phosphor layer, or by adhering a separately formed protective layer on the stimulable phosphor layer. Good too. The material for the 31st layer is cellulose acetate,
Nidomicellulose, polymethyl methacrylate, polyvinyl butyral, polyvinyl formal, polycarbonate, polyester, polyethylene terephthalate, polyethylene, polypropylene, polyvinylidene chloride, nylon, polytetrafluoroethylene, polytetrafluoroethylene, polytetrafluoroethylene, polytetrafluoroethylene Materials for the protective layer such as ethylene-propylene hexafluoride copolymer, vinylidene chloride-vinyl chloride copolymer, vinylidene chloride, and acrylonitrile copolymer are used. In addition, this insulation layer is formed by vacuum evaporation, sputtering, etc.
S iC, S io 2. It may also be formed by stacking inorganic materials such as SiN and AI203. Since the conversion panel obtained by the panel manufacturing method of the present invention as described above does not contain a binder in the photostimulable phosphor layer, the adhesion resistance amount (filling rate) of the photostimulable phosphor is lower than that of the conventional photostimulable material. The amount of phosphor is approximately twice that of the stimulable phosphor layer coated with phosphor, and the radiation absorption rate per unit thickness of the stimulable phosphor layer is improved, resulting in high sensitivity to radiation, and image graininess. will improve. Furthermore, the stimulable phosphor layer formed by the vapor deposition method has excellent transparency, and has high transmittance to stimulated excitation light and V-stimulated emission, making it possible to increase the layer thickness of the stimulable phosphor layer formed by the conventional coating method. It is possible to do this, making it even more sensitive to radiation. FIG. 3(a) shows an example of the relationship between the photostimulable phosphor deposition amount and the radiation sensitivity corresponding to the stimulable phosphor layer and the layer thickness of the conversion panel produced by the panel manufacturing method of the present invention. Further, an example of the sharpness of a panel having a stimulable phosphor layer having a fine columnar block structure obtained by the panel manufacturing method of the present invention is shown by a characteristic curve 31 in FIG. 3(b). According to the panel manufacturing method of the present invention, Japanese Patent Application No. 59-266
A finer structure than the fine columnar block structure described in No. 912-266916 is formed, and the resulting panel has a light induction effect in which the stimulated excitation light goes up the inner surface of the columnar block and is repeatedly reflected inside at the cavity surface. For example, as is clear when compared with the tile-shaped 32 shown in Japanese Patent Application No. 59-266914, the sharpness of the image is improved and the sharpness is further improved as the layer thickness of the stimulable phosphor increases. is possible. In addition, the characteristics of the conversion panel manufactured by the conventional manufacturing method in which stimulable phosphor particles are dispersed and coated in a binder are shown at 33 in Figure 3(b).
Shown below. This clearly shows that the image sharpness is excellent. Further, the panel manufacturing method of the present invention is disclosed in Japanese Patent Application No. 59-266
No. 912-266915
Conventional panels do not require manufacturing processes such as a base layer with a columnar block structure, that is, a fine uneven pattern on the surface of the support, a micro tile-like plate structure, or a combination of a micro tile-like plate and a fine wire mesh. The manufacturing method is considerably simplified. [Examples] Next, the present invention will be explained by examples. Example 1 A 0.5I thick aluminum plate was placed in the vapor deposited layer as a support. Next, molybdenum for resistance heating: 0.004
Tu was placed in the evaporator, and the resistive heating electrode was evacuated to a vacuum of 10-' Torr. Next, the support was heated to 300℃ using a heater for heating the support.
After cleaning the surface of the support by heating it to ~500'C, the support was set at 100'C, and argon gas was introduced to maintain it at about I x 10-'Torr. Next, the molybdenum boat was energized and RbBr: 0.
004TQ was evaporated to create a conversion panel material having a stimulable phosphor layer with a thickness of about 250 μm. This conversion panel material was taken out into the atmosphere and heat treated at 350° C. for 30 minutes to form a conversion panel material of the present invention. Converted panel A using the panel manufacturing method of
I got it. After irradiating 10 IIR of X-rays with a tube voltage of 80 KVp to the conversion panel A obtained by the panel manufacturing method of the present invention thus obtained, the conversion panel A is stimulated with semiconductor laser light (780 nw) and radiated from the photostimulable phosphor layer. The photodetector (
This signal was reproduced as an image by an image reproducing device and recorded on a silver halide film. The sensitivity of the conversion panel AI:r) to X-rays was investigated from the signal magnitude, and the modulation transfer function (M T F ) and graininess of the image were investigated from the obtained images, which are shown in Table 1. In the #IJ1° table, the sensitivity to X#i is expressed as a relative value of 100 for panel A of the present invention. Further, the modulation transfer function (MTF) is a value when the spatial frequency is 2 cycles/mm. Example 2゜In Example 1, the argon pressure during vapor deposition was changed to 5×10-'
Conversion by the panel manufacturing method of the present invention was carried out by carrying out the same operations as in Example 1 except for setting the support temperature during vapor deposition at 350°C and omitting the heat treatment after the completion of vapor deposition. Panel B was obtained. The thus obtained conversion panel B manufactured by the panel manufacturing method of the present invention was evaluated in the same manner as in Example 1, and the results are also listed in Table 1. Comparative Example 1 8 parts by weight of photostimulable phosphor RbBr: 0.004T rl, 1 part by weight of polyvinyl butyral resin, and 5 parts by weight of a solvent (cyclohexanone) were mixed and dispersed, and applied for a stimulable phosphor layer. The liquid was adjusted. Next, this coating solution was uniformly applied onto a horizontally placed black polyethylene terephthalate film having a thickness of 300 μm as a support and air-dried to form a stimulable phosphor layer having a thickness of 250 μm. The comparative conversion panel P obtained in this way is Example 1
It was evaluated in the same manner as above, and the results are also listed in Table 1. Comparative Example 2 An aluminum plate with a thickness of 0.5+am was obtained in a patent application filed in 1986-266.
A support with a surface t'iVj structure in which tile-like plates are separated from each other by minute gaps by anodizing treatment, sealing treatment, and heat treatment by the method shown in No. 914 is installed during vapor deposition. did. Next, an alkali halide stimulable phosphor RbBr:0.004TQ was placed in a molybdenum boat for resistance heating, and set on an electrode for resistance heating.Then, the inside of the evaporator was evacuated and I The degree of vacuum was set to Torr. Next, the support is heated to a temperature of 300 to 500 by using a heater for heating the support.
・/+lI YuhnInl Cape - Responsibility 1 - Kunomi ↓ Demand 5 prayers) 9 (Ke 1h return; East is 1 zu! Set the temperature to 100℃, vacuum degree of 2 X 10-' Torr Next, the molybdenum boat was energized and Rb was heated using the resistance heating method.
B r:o,004T Q was evaporated and vacuum deposited to a thickness of about 250 μι to obtain a comparative conversion panel Q. The comparative conversion panel Q obtained in this way is Example 1
It was evaluated in the same manner as above, and the results are also listed in Table 1. As is clear from Table 1, the conversion panels A and B manufactured by the manufacturing method of the present invention had Xm sensitivity approximately twice as high as that of the comparative conversion panel P, and had excellent image graininess. This is because the conversion panel manufactured by the manufacturing method of the present invention does not contain a binder in the stimulable phosphor layer, and the charging rate of the stimulable phosphor is higher than that of the stimulable phosphor layer. This is because the line absorption rate is good. In addition, the conversion panels A and B produced by the manufacturing method of the present invention were superior in sharpness to the comparative conversion panel P despite having higher xi sensitivity. According to the manufacturing method of the present invention, the stimulable phosphor layer of the conversion panel has a fine columnar block structure and fine voids, so the stimulable phosphor layer of the conversion panel has a fine columnar block structure and fine voids. This is because the number of pores in the body layer is reduced. Furthermore, a conversion panel A produced by the manufacturing method of the present invention. Compared to the comparative conversion panel Q, B had superior sharpness even though the XM sensitivity and graininess were the same. This is because in the manufacturing method of the present invention, vapor deposition is performed in an argon atmosphere and heat treatment is performed, so conversion panels A and B have a finer structure than the fine columnar PRO-2 structure of comparison conversion panel Q. This is because it has a better light-inducing effect.
以上述べてきたように、本発明によれば輝尽性蛍光体層
が微細柱状ブロック構造および微細な空隙を有するため
、輝尽励起光の輝尽性蛍光体層中での散乱が者しく減少
し、その結果画像の鮮鋭性を向上されることが可能であ
る。
また、本発明によれば輝尽性蛍光体層の増大による画像
の鮮鋭性の低下が小さいため、輝尽性蛍光体層を大きく
することにより、画像の鮮鋭性を低下させることなく放
射線感度を向上させることが可能である。
また、本発明によれは輝尽性蛍光体層の増大による画像
の鮮鋭性の低下が小さいため、輝尽性蛍光体層厚を大き
くすることにより、画像の鮮鋭性を低下させることなく
画像の粒状性を向上させることが可能である。
また、本発明によれば本発明の放射線画像変換パネルを
安価に安定して製造することが可能である。
本発明はその効果が極めて大きく、工業的に有用である
。As described above, according to the present invention, since the stimulable phosphor layer has a fine columnar block structure and fine voids, scattering of stimulable excitation light in the stimulable phosphor layer is significantly reduced. As a result, the sharpness of the image can be improved. Furthermore, according to the present invention, the decrease in image sharpness due to an increase in the stimulable phosphor layer is small, so by increasing the stimulable phosphor layer, radiation sensitivity can be increased without reducing image sharpness. It is possible to improve. In addition, according to the present invention, since the decrease in image sharpness due to an increase in the stimulable phosphor layer is small, by increasing the stimulable phosphor layer thickness, the image sharpness can be improved without decreasing the image sharpness. It is possible to improve graininess. Further, according to the present invention, it is possible to stably manufacture the radiation image conversion panel of the present invention at low cost. The present invention has extremely great effects and is industrially useful.
第1図は本発明の製造方法による変換パネル例の一部を
示す断面図である。第2図は本発明において用いられる
蒸着装置の一例を示す概略図である。第3図(a)は本
発明によって作成された変換パネル例における輝尽性蛍
光体層′厚及び付着量と放射線に対する感度とを示す図
であり、(b)は空間周波数と変調伝達関数(M T
F )との関係をを示す図である。第4図(a)は従来
の変換パネルにおける輝尽性蛍光体層及び付着量と放射
線に対する感度とを示す図であり、(b)は前記従来の
変換パネルにおける輝尽性蛍光体層厚及び付着量と空間
周波数が2サイクル/Ifimにおける変調伝達関数(
MTF)とを示す図である。
10・・・変換パネル 11・・・支持体12・
・・輝尽性蛍光体層 13・・・保護層20・・・真
空槽 21・・・真空槽基板22・・・排気
口 23・・・メインバルブ24・・・ボー
トまたはルツボ
25・・・輝尽性蛍光体 26・・・支持体27・
・・支持体加熱用ヒーター
28・・・m厚告j1湘田」11やヱ
29・・・〃ス導入管
210・・・バリアプルリークバルブ
211・・・真空計
31・・・本発明の製造方法による変換パネルの特性曲
線
32・・・微細柱状ブロック構造を有する変換パネルの
特性曲線
33・・・従来の変換パネルの特性曲線出願人 小西六
写真工業株式会社
第1図
10 :変キレ、0ネ1し
11:天埒体
12:糧兄性教絶)1
12a: 立6田ネろr−lメこブ゛ロック12b:墾
狩、
12c: ’?二目
13;作護漕
第2図 2゜・真空槽
22:判P帆口
24 : 1し・)ヤ(
25:蝉融慮九株
26 二 in )nζ。
第3図
(b)
訊問周吸救〈1り□□)
第4図FIG. 1 is a sectional view showing a part of an example of a conversion panel manufactured by the manufacturing method of the present invention. FIG. 2 is a schematic diagram showing an example of a vapor deposition apparatus used in the present invention. FIG. 3(a) is a diagram showing the thickness and adhesion amount of the stimulable phosphor layer and the sensitivity to radiation in an example of the conversion panel made according to the present invention, and FIG. 3(b) is a diagram showing the spatial frequency and the modulation transfer function ( MT
FIG. FIG. 4(a) is a diagram showing the stimulable phosphor layer, its adhesion amount, and sensitivity to radiation in the conventional conversion panel, and FIG. 4(b) is a diagram showing the thickness and radiation sensitivity of the stimulable phosphor layer in the conventional conversion panel. Modulation transfer function when the adhesion amount and spatial frequency are 2 cycles/Ifim (
FIG. 10... Conversion panel 11... Support body 12.
... Stimulable phosphor layer 13 ... Protective layer 20 ... Vacuum chamber 21 ... Vacuum chamber substrate 22 ... Exhaust port 23 ... Main valve 24 ... Boat or crucible 25 ... Stimulable phosphor 26...Support 27.
・・Heater for heating the support 28 ・・M 11 and 29 ・・〃S inlet pipe 210 ・・Barrier pull leak valve 211 ・・Vacuum gauge 31 ・・・Characteristic curve 32 of the conversion panel according to the manufacturing method...Characteristic curve 33 of the conversion panel having a fine columnar block structure...Characteristic curve of the conventional conversion panel Applicant: Roku Konishi Photo Industry Co., Ltd. Figure 1 10: Changeable sharpness, 0 ne 1 shi 11: Tenpōtai 12: Propaganda's teachings) 1 12a: Tachi6ta Nero r-l Meko block 12b: Kengari, 12c: '? Second eye 13; Sakugo row Figure 2 2゜・Vacuum tank 22: Size P mouth 24: 1 し・) Ya (25: Semi fusion 9 shares 26 2 in) nζ. Figure 3 (b) Interrogation Shusuke (1ri □□) Figure 4
Claims (1)
線画像変換パネルの製造方法において、前記輝尽性蛍光
体層を不活性ガス雰囲気中で蒸着して空隙を有する蛍光
体層を形成する工程と、前記輝尽性蛍光体層を加熱して
前記空隙の一部を前記輝尽性蛍光体層の厚み方向に拡げ
る工程とを有することを特徴とする放射線画像変換パネ
ルの製造方法。In a method for producing a radiation image conversion panel having at least one stimulable phosphor layer on a support, the stimulable phosphor layer is deposited in an inert gas atmosphere to form a phosphor layer having voids. A method for manufacturing a radiation image conversion panel, comprising the steps of heating the stimulable phosphor layer and expanding a portion of the voids in the thickness direction of the stimulable phosphor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60250530A JPH0631902B2 (en) | 1985-11-07 | 1985-11-07 | Radiation image conversion panel manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60250530A JPH0631902B2 (en) | 1985-11-07 | 1985-11-07 | Radiation image conversion panel manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62110200A true JPS62110200A (en) | 1987-05-21 |
JPH0631902B2 JPH0631902B2 (en) | 1994-04-27 |
Family
ID=17209264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60250530A Expired - Lifetime JPH0631902B2 (en) | 1985-11-07 | 1985-11-07 | Radiation image conversion panel manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0631902B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6835940B2 (en) | 2002-02-18 | 2004-12-28 | Konica Corporation | Radiation image conversion panel |
EP1619691A2 (en) | 2004-07-22 | 2006-01-25 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and manufacturing method thereof |
US7173258B2 (en) | 2003-11-18 | 2007-02-06 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and preparation method thereof |
JP2007232633A (en) * | 2006-03-02 | 2007-09-13 | Fujifilm Corp | Radiological image conversion panel, and manufacturing method of same |
JPWO2006049026A1 (en) * | 2004-11-04 | 2008-05-29 | コニカミノルタエムジー株式会社 | Radiation image conversion panel and manufacturing method thereof |
US7659524B2 (en) | 2007-07-05 | 2010-02-09 | Konica Minolta Medical & Graphics, Inc. | Radiation image conversion panel and preparation method thereof |
EP2261932A2 (en) | 2002-11-27 | 2010-12-15 | Konica Minolta Holdings, Inc. | Radiographic image conversion panel, method for manufacturing the same, method for forming phosphor particle, method for forming photostimulable phosphor precursor, phosphor precursor and photostimulable phosphor |
US8436322B2 (en) | 2008-03-31 | 2013-05-07 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel |
US8440983B2 (en) | 2007-03-27 | 2013-05-14 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel, its manufacturing method, and X-ray radiographic system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59202100A (en) * | 1983-04-30 | 1984-11-15 | コニカ株式会社 | Radiation image conversion panel and manufacture thereof |
-
1985
- 1985-11-07 JP JP60250530A patent/JPH0631902B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59202100A (en) * | 1983-04-30 | 1984-11-15 | コニカ株式会社 | Radiation image conversion panel and manufacture thereof |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6835940B2 (en) | 2002-02-18 | 2004-12-28 | Konica Corporation | Radiation image conversion panel |
EP2261932A2 (en) | 2002-11-27 | 2010-12-15 | Konica Minolta Holdings, Inc. | Radiographic image conversion panel, method for manufacturing the same, method for forming phosphor particle, method for forming photostimulable phosphor precursor, phosphor precursor and photostimulable phosphor |
US7173258B2 (en) | 2003-11-18 | 2007-02-06 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and preparation method thereof |
EP1619691A2 (en) | 2004-07-22 | 2006-01-25 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and manufacturing method thereof |
US7183561B2 (en) | 2004-07-22 | 2007-02-27 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel and manufacturing method thereof |
JPWO2006049026A1 (en) * | 2004-11-04 | 2008-05-29 | コニカミノルタエムジー株式会社 | Radiation image conversion panel and manufacturing method thereof |
JP4770737B2 (en) * | 2004-11-04 | 2011-09-14 | コニカミノルタエムジー株式会社 | Radiation image conversion panel |
JP2007232633A (en) * | 2006-03-02 | 2007-09-13 | Fujifilm Corp | Radiological image conversion panel, and manufacturing method of same |
US8440983B2 (en) | 2007-03-27 | 2013-05-14 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel, its manufacturing method, and X-ray radiographic system |
US7659524B2 (en) | 2007-07-05 | 2010-02-09 | Konica Minolta Medical & Graphics, Inc. | Radiation image conversion panel and preparation method thereof |
US8436322B2 (en) | 2008-03-31 | 2013-05-07 | Konica Minolta Medical & Graphic, Inc. | Radiation image conversion panel |
Also Published As
Publication number | Publication date |
---|---|
JPH0631902B2 (en) | 1994-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2899812B2 (en) | Radiation image conversion panel and manufacturing method thereof | |
JP2677818B2 (en) | Radiation image conversion panel | |
JPS6173100A (en) | Radiation picture converting panel and manufacture thereof | |
JP3398406B2 (en) | Radiation image conversion panel | |
JP3130633B2 (en) | Manufacturing method of radiation image conversion panel | |
JPS62110200A (en) | Manufacture of radiation picture conversion panel | |
JPS61142497A (en) | Radiation picture conversion panel and manufacture thereof | |
JPS61245100A (en) | Radiation picture conversion panel | |
JP2741209B2 (en) | Radiation image conversion panel | |
JPS61142500A (en) | Radiation image conversion panel and manufacture thereof | |
JPS6239800A (en) | Radiation image conversion panel | |
JPH05249298A (en) | Radiation image conversion pannel | |
JP4731091B2 (en) | Radiation image conversion panel and manufacturing method thereof | |
JPH077114B2 (en) | Phosphor panel for X-ray sensitization having heating and drying means | |
JP5119572B2 (en) | Radiation image conversion panel and manufacturing method thereof | |
JP3164598B2 (en) | Manufacturing method of radiation image conversion panel | |
JPS61245099A (en) | Radiation picture conversion panel | |
JPH04152299A (en) | Manufacture of radiation image conversion panel | |
JPS61142498A (en) | Radiation image conversion panel and manufacture thereof | |
JPH04164298A (en) | Manufacture of radiation image conversion panel | |
JP4687799B2 (en) | Radiation image conversion panel and manufacturing method thereof | |
JPH04152300A (en) | Manufacture of radiation image conversion panel | |
JPS6247599A (en) | Manufacture of radiation picture conversion panel | |
JPH04152298A (en) | Manufacture of radiation image conversion panel | |
JPS62105099A (en) | Radiation picture conversion panel and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |