[go: up one dir, main page]

JPS62108764A - Refractories for molten metal vessel - Google Patents

Refractories for molten metal vessel

Info

Publication number
JPS62108764A
JPS62108764A JP60248021A JP24802185A JPS62108764A JP S62108764 A JPS62108764 A JP S62108764A JP 60248021 A JP60248021 A JP 60248021A JP 24802185 A JP24802185 A JP 24802185A JP S62108764 A JPS62108764 A JP S62108764A
Authority
JP
Japan
Prior art keywords
carbon
magnesia
aggregate
bricks
refractories
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60248021A
Other languages
Japanese (ja)
Other versions
JPH0568424B2 (en
Inventor
八田 篤明
原 周一
秋元 信夫
正岡 盛勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP60248021A priority Critical patent/JPS62108764A/en
Publication of JPS62108764A publication Critical patent/JPS62108764A/en
Publication of JPH0568424B2 publication Critical patent/JPH0568424B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄鋼業等に用いられる耐火物に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to refractories used in the steel industry and the like.

[従来の技術] 純酸素転炉操業は」二次から底吹き、および−上底吹へ
と大きな変革をもたらし、その変革を大きく支えたのが
マグネシア・カーボン煉瓦の出現であった。昭和40年
代市半生主として電気炉むけに開発されたマグネシア・
カーボン煉瓦はタールで結合され還元焼成された焼成品
であったが、40年代後半に入って熱硬化性レジンを耐
火物用結合材に利用することによって不焼成マグネシア
・カーボン煉瓦が開発され50年代前半は、それまで主
流であった焼成ドロマイト煉瓦が耐食性能で2倍以上優
れる不焼成マグネシア・カーボン煉瓦に急速に置き換え
られていった時代である。50年代後半に入ってマグネ
シア・カーボン煉瓦の性能向上が図られ、マグネシア・
クリンカーの高純度化、粗大結晶化、黒鉛の高純度化、
電融マグネシアの利用、真空大型プレスを用いた高密度
化、酸化防[にのための金@添加等種々の改良によって
、相当性能は向上した。他方、転炉操業の方も主流は」
二底吹きで定着したがマグネシア・カーボン煉瓦の内張
りは、かっての焼成ドロマイト煉瓦に較へて補修材の付
着が悪く、局部溶損対策がむつかしくなり材質の性能と
ライニング環を変えることによって損耗バランスをとる
ことが余儀なくされた。特に底吹ノズルのある底部およ
び鋼浴部の損耗、エネルギー補障操業による炉j度の損
耗等、損耗部位も多様化し、ますますレベルの高いとこ
ろでバランスをとる高性能炉材の要求が強くなってきた
。高価な″電融マグネシアを大量にもちいたマグネシア
・カーボン煉瓦を最も厳しいところに配したところで精
一杯の状態であり、損耗の少ない部分は大きな残厚のま
ま廃却される無駄も生じている。
[Prior Art] Pure oxygen converter operation brought about a major change from secondary to bottom blowing to top and bottom blowing, and the advent of magnesia carbon bricks greatly supported this change. Magnesia, which was developed mainly for electric furnaces in the 1960s,
Carbon bricks were fired products that were bonded with tar and subjected to reduction firing, but in the late 1940s, unfired magnesia carbon bricks were developed by using thermosetting resin as a binding material for refractories, and in the 50s. The first half was a time when fired dolomite bricks, which had been the mainstream until then, were rapidly replaced by unfired magnesia carbon bricks, which had more than twice the corrosion resistance. In the late 1950s, efforts were made to improve the performance of magnesia carbon bricks, and magnesia carbon bricks
High purity of clinker, coarse crystallization, high purity of graphite,
Performance has improved considerably through various improvements such as the use of electrofused magnesia, high density using a large vacuum press, and the addition of gold for oxidation prevention. On the other hand, converter operation is also mainstream.
The magnesia carbon brick lining, which was fixed by double-bottom blowing, has poor adhesion of repair materials compared to the former fired dolomite bricks, making it difficult to prevent local erosion, and the balance of wear and tear can be improved by changing the performance of the material and the lining ring. I was forced to take it. In particular, wear and tear is diversifying, such as wear and tear on the bottom section where the bottom blowing nozzle is located and the steel bath section, and wear and tear on the furnace due to energy auxiliary operations, and the demand for high-performance furnace materials that maintain balance at increasingly high levels is increasing. It's here. Even when magnesia carbon bricks, which use large amounts of expensive electrofused magnesia, are placed in the most difficult areas, they are at their best, and areas with little wear and tear are discarded with large residual thicknesses, resulting in waste.

従来形のマグネシア・カーボン煉瓦もほぼゆきつくとこ
ろに到着しており、経済性を加味した炉材の高性能化の
尽きない要求を満たすためには、このマグネシア・カー
ボンの壁をつき破る新しい耐火物技術の開拓が強く望ま
れている。
Conventional magnesia-carbon bricks have almost reached their final stage, and in order to meet the ever-increasing demand for high-performance furnace materials that take economic efficiency into account, new fire-resistant materials that break through this magnesia-carbon barrier are needed. Development of material technology is strongly desired.

[発明が解決しようとする問題点コ 本発明は、マグネシア・カーボン煉瓦を構成するマグネ
シアとカーボンの機能の研究の成果として得られたもの
であり、下記に詳述するごとく、煉瓦を構成する強い骨
材のスラグコーチング効果、および反応層保護効果に着
眼し、骨材の効果を最大限に発揮せしめるため、骨材の
特に粗粒子の形状、大きさ、分布密度、方向性をコント
ロールして新規な耐火物を創作し、溶融金属容器用内張
りとして画期的な性能の耐火物を提供することを目的と
している。
[Problems to be solved by the invention] The present invention was obtained as a result of research into the functions of magnesia and carbon that constitute magnesia-carbon bricks. Focusing on the slag coating effect of the aggregate and the reaction layer protection effect, we have developed a new method by controlling the shape, size, distribution density, and directionality of the coarse particles of the aggregate, in order to maximize the effects of the aggregate. The aim is to create refractories with innovative performance and to provide refractories with revolutionary performance as linings for molten metal containers.

[問題点ね解決するための手段] 本発明は、黒鉛、コークス、オイルカーボン等の炭素原
料の1種又は2種以上、および又はレジン、ピッチ、タ
ール等の高炭素残留樹脂の1種又は2種以上を含有する
炭素含有耐火物において、主量成分としての耐食性骨材
が長柱状をなし、その長柱状骨材が加熱侵食面に対して
垂直方向に配列されることを特徴とする溶融金属容器用
耐火物である。
[Means for solving the problems] The present invention provides one or more types of carbon raw materials such as graphite, coke, and oil carbon, and/or one or more types of high carbon residual resins such as resin, pitch, and tar. A molten metal characterized in that the corrosion-resistant aggregate as the main component has a long columnar shape, and the long columnar aggregates are arranged in a direction perpendicular to the heat-eroded surface. It is a refractory material for containers.

[作用コ 以下に本発明の詳細な説明する。先ず従来のマグネシア
・カーボン煉瓦について説明する。
[Function] The present invention will be explained in detail below. First, conventional magnesia carbon bricks will be explained.

マグネシア・カーボン煉瓦の有利性は、そこに用いられ
たグラファイトおよび結合部の炭素からもたらされてい
る。グラファイトの高熱伝導性によって稼働面の温度が
下がり、侵食反応のスピードが著しく低減されるだけで
なく、グラファイトの濡れに対する抵抗性によって外来
スラグの浸潤が稼働面の極く薄い表層にとどめられてい
る。従って煉瓦の侵食は主として、酸素分圧による気相
酸化、スラグ等の液相酸化、内在する5in2.Fe。
The advantages of magnesia carbon bricks derive from the graphite used therein and the carbon bond. Graphite's high thermal conductivity not only lowers the temperature of the working surface and significantly reduces the speed of erosion reactions, but graphite's resistance to wetting limits the infiltration of foreign slag to a very thin surface layer on the working surface. . Therefore, the corrosion of bricks is mainly caused by gas phase oxidation due to oxygen partial pressure, liquid phase oxidation of slag, etc., and internal 5in2. Fe.

01等不純物の触媒的作用による酸化等グラフアイ1−
および結合部の炭素の酸化が律速するものである。次に
従来のマグネシア・カーボン煉瓦の介在について通入る
Oxidation etc. due to the catalytic action of impurities such as 01 etc. 1-
And the oxidation of carbon at the bonding part is rate-determining. Next, we will discuss the use of conventional magnesia carbon bricks.

マグネシア・カーボン煉瓦の骨材組粒子は、その化学組
成および結晶構造にあって、S ioz tA ] 2
03 HF e 203 HB 203等の不純物を低
減することによって、実験室でも実炉でも煉瓦の損耗ス
ピードが低減し、耐食性能は向上している。
The aggregate particles of magnesia carbon bricks are characterized by their chemical composition and crystal structure, S ioz tA ] 2
By reducing impurities such as 03 HF e 203 HB 203, the wear speed of bricks is reduced both in the laboratory and in actual furnaces, and the corrosion resistance performance is improved.

このように重要視される骨材粗粒子が、多くの使用渋み
煉瓦を回収し観察した結果、殆どの場合炭素を含む微粒
子部分(以下マトリックス部という)から突出しており
、場合によっては脱落した大きな孔の部分も見受けられ
る。高純度電融マグネシアは原粒形を保ちながらの突出
であり、焼成マグネシア・クリンカーはやや丸く角がと
れて突出しており、概して高純度品の方が突出度が大き
い。
As a result of collecting and observing many used astringent bricks, we found that coarse aggregate particles, which are considered important in this way, protrude from the carbon-containing fine particle part (hereinafter referred to as the matrix part) in most cases, and in some cases large particles that have fallen off. Holes can also be seen. High-purity electrofused magnesia has protrusions while maintaining its original particle shape, while calcined magnesia clinker has slightly rounded corners and protrusions, and in general, high-purity products have a larger protrusion.

従ってマグネシア・カーボン煉瓦の骨材粗粒子は稼働面
を洗う流動溶損に対して防波堤のような役割を演じてス
ラブコーティングを促進し、粘稠な反応層を保持する作
用があって、マドソックス部の侵食作用を低減せしめる
効果がある。現実に、トップサイズ5mmのマグネシア
・クリンカーを用いた煉瓦とトップサイズ1n+mのマ
グネシア・クリンカーを用いた煉瓦とでは、実炉テスト
において前者の損耗スピードが30%小さかった。
Therefore, the coarse aggregate particles of magnesia carbon bricks play the role of a bulwark against flow erosion that washes over the working surface, promoting slab coating, and retaining a viscous reaction layer. This has the effect of reducing the erosion effect on the parts. In fact, in actual furnace tests, the wear speed of the bricks using magnesia clinker with a top size of 5 mm and the bricks using magnesia clinker with a top size of 1n+m was 30% lower.

第3図に上底吹転炉で用いた従来のマグネシア・カーボ
ン煉瓦の断面図を示したが、1は突出したマグネシア粒
子、2はコーチングしたスラグ層、3は脱落したマグネ
シア粒子の抜けあと、4は原煉瓦組成である。マトリッ
クス部の侵食が進んで。
Figure 3 shows a cross-sectional view of a conventional magnesia-carbon brick used in a top-bottom blowing converter. 1 is the protruding magnesia particles, 2 is the coated slag layer, and 3 is the area after the fallen magnesia particles have fallen off. 4 is the raw brick composition. Erosion of the matrix is progressing.

粗骨材の原煉瓦に喰いこんだ根の部分が少なくなると突
然3のように脱落し、−挙にその抜けあとにスラブがア
タックするので次の粗骨材が呪われるまでかなり速いス
ピードで侵食が進行する。
When the part of the roots that have bitten into the raw bricks of the coarse aggregate decreases, it suddenly falls off as shown in 3, and after that, the slab attacks, so it erodes at a fairly high speed until the next coarse aggregate is cursed. progresses.

本発明者等の数多くの写真観察によって、この脱落は根
の部分が粗骨材の30〜40%で起っており、粗骨材の
突出表面のみが、やや丸味をおびるところまで侵食抵抗
体として寄与するが、次に脱落して部分的には瞬間侵食
スピードが大きくなる。このような部分の集合で稼働面
が構成されているので脱落を防止することが重要である
Through numerous photographic observations by the present inventors, it has been found that this shedding occurs at the roots of 30 to 40% of the coarse aggregate, and that only the protruding surface of the coarse aggregate becomes an erosion resistor to the point where it becomes slightly rounded. However, it then falls off and the instantaneous erosion speed increases in some areas. Since the operating surface is made up of a collection of such parts, it is important to prevent them from falling off.

次に本発明の詳細な説明する。本発明は黒鉛、コークス
、オイルカーボン等の炭素原料の1種又は2種以上およ
び又はレジン、ピッチ、タール等の高炭素残留樹脂の1
種又は2種以上を含有する炭素含有耐火物である。ここ
で炭素含有耐火物とした理由は炭素の濡れに対する強さ
によってスラブの浸潤を防止できるからである。同様な
濡れの抵抗性は13N(六方晶)でも期待できる。場合
によってはSiC,84Gにも期待できる。浸潤が防止
できないマトリックスの構成では、本発明の長柱状粗骨
材を用いる特徴は消失し、浸潤層が次々に構造的にスポ
ーリングないし剥離する。本発明者等は濡れに強い性質
をもった安価な材料の代表として炭素を特許請求範囲と
したが、BNが耐火物原料として経済ベースに載れば当
然これも利用できる。
Next, the present invention will be explained in detail. The present invention utilizes one or more carbon raw materials such as graphite, coke, and oil carbon, and/or one or more high carbon residual resins such as resin, pitch, and tar.
It is a carbon-containing refractory containing one or more species. The reason for using a carbon-containing refractory here is that carbon's strength against wetting can prevent infiltration of the slab. Similar wetting resistance can be expected with 13N (hexagonal crystal). In some cases, we can also expect SiC and 84G. In a matrix configuration in which infiltration cannot be prevented, the feature of using the long columnar coarse aggregate of the present invention disappears, and the infiltrated layers structurally spall or peel one after another. The present inventors have claimed carbon as a typical inexpensive material that is resistant to wetness, but if BN becomes economically viable as a raw material for refractories, then of course it can also be used.

本発明は、また車量成分である耐食性骨材が長柱状をな
し、その長柱状骨材が煉瓦稼働面に対して垂直方向に配
列されることを特徴とする耐火物である。骨材成分は転
炉であればマグネシア、あるいはジルコニア、他の容器
であればアルミナ、マグネシア・ドロマイト系、マグ・
フロ系等侵食に強いものであれば利用できる。転炉でマ
グネシアライム系についても利用できるクリンカーが出
現している。転炉の出孔口および羽口ではジルコニアも
適当である。高炉では今後SiC,Si、N4骨材のよ
うな非酸化物系で展開できる。要は、これらの成分から
成る耐食性骨材がマトリックス部よりも侵食に強いこと
が条件であり、突出したこれらの骨材がスラグを造膜し
、マトリックスを保護することにある。
The present invention is also a refractory characterized in that the corrosion-resistant aggregate, which is a weight component, is in the form of long columns, and the long column-shaped aggregates are arranged in a direction perpendicular to the brick operating surface. Aggregate components are magnesia or zirconia for converters, alumina, magnesia/dolomite, mag/
It can be used as long as it is resistant to erosion, such as a fluorocarbon type. Clinkers are emerging that can also be used for magnesia-lime systems in converters. Zirconia is also suitable for the converter outlet and tuyeres. In the future, non-oxide materials such as SiC, Si, and N4 aggregates can be used in blast furnaces. The key point is that the corrosion-resistant aggregate made of these components is more resistant to erosion than the matrix portion, and these protruding aggregates form a slag film to protect the matrix.

次に骨材の形状、寸法について説明する。Next, the shape and dimensions of the aggregate will be explained.

第1図は骨材の例示である。5はストレートな棒状物で
、例えば直径が5mm、長さが30mmのものでは、長
さが侵食によって減少してきて2〜3Ia11になると
脱落し易い。6はネジ切状の凹凸部を設けたもので、こ
れは減った状態でも脱落し難い。
FIG. 1 is an example of aggregate. 5 is a straight rod-shaped object, for example, a rod-like object with a diameter of 5 mm and a length of 30 mm is likely to fall off when the length decreases due to erosion and reaches 2 to 3 Ia11. 6 is provided with a threaded concave and convex portion, which does not easily fall off even in a reduced state.

7は大きな四部を有するもので、これも脱落に対して効
果的である。8,8Aは断面が丸形で8Aは凹凸部を有
するもの、9,9Aは断面が四角形で9Aは凹凸部を有
するもの、10.IOAは断面が六角形で、10Aは同
じく凹凸部を有するものである、凹凸部を有することに
よって脱落に対しては効果的である。が反面、タリンヵ
ー製造時の折れ、煉瓦成形時の折れを生じ易いので一長
一短である。
No. 7 has large four parts, which is also effective against falling off. 8, 8A has a round cross section and 8A has an uneven portion; 9, 9A has a square cross section and 9A has an uneven portion; 10. The IOA has a hexagonal cross section, and the IOA also has an uneven portion.The uneven portion is effective against falling off. However, on the other hand, it is prone to breakage during the manufacturing of the tarinkar and during brick molding, so it has both advantages and disadvantages.

長柱状粗骨材を分けて、断面直径が3〜5mmのものを
A型、1〜3mmのものをB型、0.3〜1mmのもの
をC型と以後称するが、従来の骨材のような粒度充填は
あまり必要としない簡便さがある。
Long columnar coarse aggregates are divided into type A with a cross-sectional diameter of 3 to 5 mm, type B with a cross-sectional diameter of 1 to 3 mm, and type C with a cross-sectional diameter of 0.3 to 1 mm. It is convenient and does not require much particle size packing.

但し、長さは直径の3倍以上15倍未満のものがよい。However, the length is preferably 3 times or more and less than 15 times the diameter.

あまり長くすると製造上の折れと使用上のスポーリング
が起り易くなるので好ましくない。
If the length is too long, folding during manufacturing and spalling during use are likely to occur, which is undesirable.

第2図は直径4Infflの長さ30mmのA型組骨材
を511I!1方眼に配列した断面、及び側面の図であ
る。この場合は、骨材の占める部分が体積の約50%で
、その他が炭素を含むマトリックスである。同じ断面構
造で8間距離を変えずに直径5mmの骨材にすると、骨
材の体積は76%まで可能である。更に4.5mm角に
すると骨材の体積は78.4%まで可能である。この場
合のすきまは何れも1mmで、そこにマトリックス部が
ある。これを更に正六角形で1辺2 、6 mmの骨材
にすると、骨材の体積は93%まで可能である。この六
角形の場合は隣の辺との間に、どこも1mmのすきまを
残している。要は形を選ぶことによってマトリックスの
存在を損うことなく粗骨材の体積比をどのようにでも加
減することが可能である。
Figure 2 shows A-type aggregate with a diameter of 4 Inffl and a length of 30 mm. It is a cross-sectional view and a side view arranged in one grid. In this case, the aggregate occupies about 50% of the volume, and the rest is the carbon-containing matrix. If the aggregate has the same cross-sectional structure and a diameter of 5 mm without changing the distance between the sections, the volume of the aggregate can be increased to 76%. Furthermore, if the size is 4.5 mm square, the volume of aggregate can be up to 78.4%. In this case, the gap is 1 mm in each case, and the matrix portion is located there. If this is further made into a regular hexagonal aggregate with sides of 2.6 mm, the volume of the aggregate can be increased to 93%. In the case of this hexagon, a gap of 1 mm is left between each side of the hexagon. In short, by selecting the shape, it is possible to adjust the volume ratio of coarse aggregate in any way without impairing the presence of the matrix.

煉瓦の大きさ、厚み、形状によって骨材を使い分けする
ことがあるが、本発明者等が実施する溶融金属容器の場
合はA型、B型の場合が多い。
Different aggregates may be used depending on the size, thickness, and shape of the bricks, but in the case of the molten metal containers made by the present inventors, type A and type B are often used.

第2図の矢印は稼働面を示し、突出した粗骨材の根元が
スラグ付着による反応層である。粗骨材の体積比を上げ
ることにより、マトリックス部の耐食性は、そう大きな
問題ではなくなり、むしろMgo+c→M、、+C○の
還元反応を抑制するためにCaOの活用や酸化防止用金
属の使用量低減等、別の観点での検討が可能となった。
The arrow in FIG. 2 indicates the working surface, and the base of the protruding coarse aggregate is the reaction layer due to slag adhesion. By increasing the volume ratio of coarse aggregate, the corrosion resistance of the matrix part becomes less of a problem, and rather the use of CaO and the amount of anti-oxidation metals are improved to suppress the reduction reaction of Mgo+c→M,, +C○. It is now possible to consider other aspects such as reduction.

次に本発明の耐火物の製造方法を実施例として述べる。Next, the method for manufacturing a refractory of the present invention will be described as an example.

[実施例] クリンカーメーカーが用いる押出し成形機およびロール
方式の造粒器を用いて、第1図5の形状物と6の形状物
を断面丸形で成形し、小形のロータリーキルンを用いて
1900℃で焼成し、直径4mm、長さ30mmのクリ
ンカーを製造した。クリンカーのカサ比重は3.45で
その組成はMgO:98.5%、Sin、: 0.3%
、Fe、O,: 0.5%。
[Example] Using an extrusion molding machine and a roll-type granulator used by a clinker manufacturer, the shapes of shapes 5 and 6 in FIG. A clinker with a diameter of 4 mm and a length of 30 mm was produced. The bulk specific gravity of the clinker is 3.45, and its composition is MgO: 98.5%, Sin: 0.3%
, Fe, O,: 0.5%.

B20.: 0.02%であった。B20. : 0.02%.

耐火物製造用の下廻りミキサーに25℃に保温した粗骨
材クリンカ−300kgと純度98%で粒度0.2mm
の鱗状黒鉛100kgを投入し、市販の高炭素残留性の
レジンと硬化剤を各々16kg、1kgを加え、粗骨剤
および黒鉛のまわりにレジンをまぶした後、200μ以
下100%、74μ以下82%の高純度マグネシア・ク
リンカー(MgO:98.6%)を加えて約40分間混
錬した。その配合物を第4図に示す方法でモールド内で
粗骨材の方向性をもたせた。第4図の13は側壁および
下部の金型、14は配合物、15は強靭でフレキシブル
な布地に中20mm、厚さQ、6+n+n、長さは金型
長さマイナス0 、5 ohmのバネ鋼を10+am+
間隔に張り付けた配合物転がしベルト、17はそのベル
トに張りつけたバネ鋼で、16はバネ鋼とバネ鋼の間の
布地のみの部分である。ベルトを一方に長く引っ張るか
又は交互に引き上げることによって配合物はずりを生じ
ながら、全て煉瓦の長手方向に再配列した。再配列が完
了した段階で一方向にベルトを引抜き、金型内を配合物
のみとした。
300kg of coarse aggregate clinker kept at 25℃ and particle size of 0.2mm with purity of 98% in the lower mixer for refractory manufacturing.
100 kg of scale graphite was added, 16 kg and 1 kg of commercially available high carbon residual resin and curing agent were added respectively, and the resin was sprinkled around the coarse aggregate and graphite. High purity magnesia clinker (MgO: 98.6%) was added and kneaded for about 40 minutes. The mixture was made to have coarse aggregate orientation in a mold by the method shown in FIG. In Fig. 4, 13 is the side wall and lower mold, 14 is the compound, 15 is a strong and flexible fabric, medium 20 mm, thickness Q, 6 + n + n, length is mold length minus 0, 5 ohm spring steel. 10+am+
A compound rolling belt is attached at intervals, 17 is a spring steel attached to the belt, and 16 is a section of fabric only between the spring steels. By pulling the belt long to one side or pulling it up alternately, the mixture was rearranged with shear, all along the length of the brick. When the rearrangement was completed, the belt was pulled out in one direction, leaving only the compound inside the mold.

油圧加圧方式で1500kg/、−dの圧力で1501
X150+++n+X 450mmの煉瓦を成形した。
1500kg/ by hydraulic pressurization method, 1501 by pressure of -d
A brick of X150+++n+X 450mm was molded.

乾燥炉に入れて200℃でレジンを硬化せしめ、煉瓦と
しての一般品質を測定した結果、カサ密度3.10.見
掛気孔率1.7%であった。
The resin was cured at 200°C in a drying oven, and the general quality of the brick was measured. As a result, the bulk density was 3.10. The apparent porosity was 1.7%.

0高周波電気炉を用いて溶鋼とスラグの侵食試験を行っ
た結果、高純度電融マグネシアを60%用いた最高級の
マグネシア・カーボン煉瓦の損耗を100とすると47
の損耗であった。
0 As a result of an erosion test of molten steel and slag using a high-frequency electric furnace, the wear of the highest grade magnesia carbon brick made of 60% high-purity electrofused magnesia is 47, assuming the wear is 100.
There was a lot of wear and tear.

この煉瓦を」二底吹転炉の比較的損爆の激しい出鋼口周
辺およびスラグラインの交点に内張り、テストした結果
、500回出鋼までに周囲の高純度電融マグネシアを使
用したマグネシア・カーボン煉瓦よりも100mm以上
突出し、著しく優秀であることが分かった。
These bricks were lined around the tapping port and at the intersection of the slag lines in a two-bottom blowing converter, where explosion losses are relatively high, and as a result of testing, it was found that magnesia and high-purity electrofused magnesia from the surrounding area could be used up to 500 taps. It was found that it protruded more than 100 mm than carbon bricks, and was extremely superior.

[発明の効果] 以上述べてきたように本発明は、粗骨材の形状、大きさ
、配列をコントロールするという点で、従来の耐火物製
造技術とは大きく異なるものであり、その性能において
も画期的な効果をもたらすものである。
[Effects of the Invention] As described above, the present invention is significantly different from conventional refractory manufacturing technology in that it controls the shape, size, and arrangement of coarse aggregate, and is also superior in performance. This has a revolutionary effect.

即ち本発明による耐火物は、転炉、電気炉を始めとする
製鋼炉のダイナミックなアブレージヨンに体して従来品
に比へて1.5〜2倍の耐食性能を示し、画期的な性能
の向丘が認められた。即ち本発明品はスラグの付着を促
進し、スラブのリフレッシュを阻止するためにスラグに
よる液相酸化を遅らせ、且つ気相酸化を防止する点で著
しい改良テアル。今後、AOD、VOD、LF鍋、DH
In other words, the refractory according to the present invention exhibits 1.5 to 2 times more corrosion resistance than conventional products in the dynamic abrasion of steelmaking furnaces such as converters and electric furnaces, and has revolutionary performance. Mukai-no-Ki was recognized. That is, the product of the present invention promotes slag adhesion, delays liquid phase oxidation by slag in order to prevent slab refreshing, and is significantly improved in that it prevents gas phase oxidation. In the future, AOD, VOD, LF pot, DH
.

RH、製鋼用取鍋、高炉用内張、出銑樋、出鋼樋等多く
の使用箇所で、その著しい使用効果が期待される。
It is expected to have remarkable effects in many places where it is used, such as RH, steelmaking ladles, blast furnace linings, tap troughs, tap troughs, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は長柱状骨材の形状を例示した図第2図は長柱状
骨材とマトリックスを示す図第3図は従来の煉瓦の使用
後の断面図 第4図は本発明の耐火物の製造方法を例示した図である
Figure 1 shows an example of the shape of long columnar aggregate. Figure 2 shows the long columnar aggregate and matrix. Figure 3 is a cross-sectional view of a conventional brick after use. Figure 4 shows the refractory structure of the present invention. It is a figure which illustrated the manufacturing method.

Claims (1)

【特許請求の範囲】[Claims] 黒鉛、コークス、オイルカーボン等の炭素原料の1種又
は2種以上、および又はレジン、ピッチ、タール等の高
炭素残留樹脂の1種又は2種以上を含有する炭素含有耐
火物において、主量成分としての耐食性骨材が長柱状を
なし、その長柱状骨材が加熱侵食面に対して垂直方向に
配列されることを特徴とする溶融金属容器用耐火物。
In carbon-containing refractories containing one or more types of carbon raw materials such as graphite, coke, and oil carbon, and/or one or more types of high carbon residual resins such as resin, pitch, and tar, the main component is A refractory for a molten metal container, characterized in that the corrosion-resistant aggregate has a long columnar shape, and the long columnar aggregates are arranged in a direction perpendicular to a heating erosion surface.
JP60248021A 1985-11-07 1985-11-07 Refractories for molten metal vessel Granted JPS62108764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60248021A JPS62108764A (en) 1985-11-07 1985-11-07 Refractories for molten metal vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60248021A JPS62108764A (en) 1985-11-07 1985-11-07 Refractories for molten metal vessel

Publications (2)

Publication Number Publication Date
JPS62108764A true JPS62108764A (en) 1987-05-20
JPH0568424B2 JPH0568424B2 (en) 1993-09-28

Family

ID=17172020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60248021A Granted JPS62108764A (en) 1985-11-07 1985-11-07 Refractories for molten metal vessel

Country Status (1)

Country Link
JP (1) JPS62108764A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298982A (en) * 1994-05-02 1995-11-14 Chiyou Pura Kogyo Kk Method for pressure-cooking and preservation in sealed container with vent cock
GB201601878D0 (en) 2016-02-02 2016-03-16 Highview Entpr Ltd Improvements in power recovery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146824A (en) * 1978-05-05 1979-11-16 Europ Propulsion Multidirectional structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146824A (en) * 1978-05-05 1979-11-16 Europ Propulsion Multidirectional structure

Also Published As

Publication number Publication date
JPH0568424B2 (en) 1993-09-28

Similar Documents

Publication Publication Date Title
Lee et al. Evolution of in situ refractories in the 20th century
Ewais Carbon based refractories
CN101215176A (en) Energy-saving refractories with high strength and low thermal conductivity
JPS6024068B2 (en) Method for producing spalling-resistant dense refractories
CN111362676A (en) High-wear-resistance quick-drying refractory castable and preparation method thereof
CN1030095A (en) Refractory Castables for BF Troughs and Runners
EP0198925A1 (en) Composition which is capable of being converted into an aluminium oxynitride refractory
US20240246861A1 (en) Ca6-based refractory material with medium volume density, preparation method therefor, and use thereof
US4431745A (en) Carbon-bonded magnesia carbon bricks
US3687437A (en) Metallurgical furnaces or vessels
JPS62108764A (en) Refractories for molten metal vessel
CN1202039C (en) Heat resistance substance for refractory moulding body and its fabricated moulding body
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
JPH0463032B2 (en)
US3294386A (en) Oxygen converter linings
US3262795A (en) Basic fused refractory
Koley et al. Development and application of Al 2 O 3-MgO-C refractory for secondary refining ladle
Hubble Steel plant refractories
US3272490A (en) Steelmaking furnace
US3403213A (en) Electric furnace having refractory brick of specific composition in the critical wear areas
JPS5917072B2 (en) Massive refractories for hot-insertion repair
CN113845353A (en) Transition brick layer for ladle wall of ladle working lining
CN111018496A (en) Carbon-free magnesium dolomite slide plate and preparation method and application thereof
US3262794A (en) Basic fused refractories
RU2163579C2 (en) Exothermic refractory mortar