[go: up one dir, main page]

JPS62108507A - Superconducting coil - Google Patents

Superconducting coil

Info

Publication number
JPS62108507A
JPS62108507A JP24697685A JP24697685A JPS62108507A JP S62108507 A JPS62108507 A JP S62108507A JP 24697685 A JP24697685 A JP 24697685A JP 24697685 A JP24697685 A JP 24697685A JP S62108507 A JPS62108507 A JP S62108507A
Authority
JP
Japan
Prior art keywords
coil
winding
tension
blank
spool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24697685A
Other languages
Japanese (ja)
Inventor
Masami Urata
昌身 浦田
Hideaki Maeda
秀明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24697685A priority Critical patent/JPS62108507A/en
Publication of JPS62108507A publication Critical patent/JPS62108507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coil Winding Methods And Apparatuses (AREA)

Abstract

PURPOSE:To increase the effective inner diameter of a superconducting coil by winding a superconducting lead by applying a tension which is large at the inside of the coil and small at the outside of the coil to the lead at winding time to reduce the thickness of a coil spool. CONSTITUTION:When a winding tension is varied according to the position of a layer so as to be strong at the inner layer side and weak at the outer layer side, the radial compressing force 2 applied to a winding blank becomes strong at the inner layer side and weak at the outer layer side. Accordingly, when the compressing force of each layer in case of applying an electromagnetic force generated by the energization becomes a predetermined value or higher, the wire blanks 3 or the blank 3 and the spool 1 are fixed with a predetermined value or larger compressing force. Accordingly, the blank does not move radially nor move axially by a stationary frictional force to eliminate a quench due to the movement of the blank. Thus, the compressing force applied to the coil spool 1 is reduced smaller than that of a coil wound in all layers by the tension of the innermost layer to reduce the thickness of the spool, thereby increasing the effective inner diameter.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、コイル巻枠に超電導線を巻回してなる超電
導コイルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting coil formed by winding a superconducting wire around a coil frame.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導線をコイル巻枠に巻く際、超電導線にはある一定
の張力をかけながら巻くのが通常である。
When winding a superconducting wire around a coil frame, it is usually done while applying a certain tension to the superconducting wire.

このように張力をかけて巻く理由の1つは、巻き線時の
作業性のためであり又、もう1つの理由は、巻き上がっ
たコイルに通電したときに生じる、半径方向に広がろう
とする力に抗する力を、あらかじめ超電導線に与えてお
くためである。巻線時の張力を弱くしておくと、巻枠へ
の線材の固定、あるいは、内層側の線材への外層側の線
材の固定が十分になされず、通電時に半径方向あるいは
軸方向に生じる電磁力によって、導体が動きやすくなる
。この導体の動きは、超電導コイルをクエンチさせる原
因になり、超電導線材に流し得る最大電流よりかなり低
い電流でコイルがクエンチしてしまうことが多い。また
、トレーニング現象と呼ばれる、通電する毎にクエンチ
する電流か増加する現象も、超電導コイルの中で、線材
が安定な位置をめざして動くことにより起こると言われ
ている。
One of the reasons for winding with tension in this way is to improve workability during winding, and another reason is to prevent the coil from spreading in the radial direction, which occurs when electricity is applied to the wound coil. This is to give the superconducting wire a force to resist the force in advance. If the tension during winding is too weak, the wire will not be fixed to the winding frame or the outer layer wire to the inner layer wire, and electromagnetic waves will occur in the radial or axial direction when energized. The force makes the conductor easier to move. This movement of the conductor causes the superconducting coil to quench, and the coil often quenches at a current that is considerably lower than the maximum current that can be passed through the superconducting wire. It is also said that the training phenomenon, in which the current quenches and increases each time it is energized, occurs when the wire moves toward a stable position in the superconducting coil.

これらの現象を起こらないようにするには、巻線時の張
力を大きくすればよいが、巻線張力を大きくするために
は、巻枠の肉厚を厚くして、巻枠を構成する材料が降伏
を起さないようにしなければならない。
In order to prevent these phenomena from occurring, it is possible to increase the tension during winding, but in order to increase the winding tension, the thickness of the winding frame must be increased and the material that makes up the winding frame must be increased. must be prevented from surrendering.

高均一磁界を必要とする超電導磁石の巻枠に使われる、
非磁性のアルミニウム合金や、p RPなどの弾性限界
の低い材料では、巻枠の肉厚をかなり厚くとらねばなら
なくなり、有効なコイル内径が小さくなったり、コイル
の冷却に要する液体ヘリウム量か増加したりするなどの
不都合が生じる。
Used in the winding frame of superconducting magnets that require a highly uniform magnetic field.
When using materials with low elastic limits such as non-magnetic aluminum alloys and PRP, the wall thickness of the winding frame must be made considerably thicker, which reduces the effective inner diameter of the coil and increases the amount of liquid helium required to cool the coil. This may cause inconveniences such as

〔発明の目的〕[Purpose of the invention]

この発明は、上述した超電導コイルの欠点を改良したも
ので、導体の動きにより生じるコイルクエンチをなくし
、しかも、コイル巻枠の厚さの薄く、有効内径の大きな
超電導コイルを得ることを目的とする。
This invention improves the above-mentioned drawbacks of superconducting coils, and aims to eliminate coil quench caused by conductor movement, and to obtain a superconducting coil with a thin coil winding frame and a large effective inner diameter. .

〔発明の概要〕[Summary of the invention]

コイル巻枠に超電導線を巻く際に線材にかける張力を、
コイルの内径側で強く、外径側で弱くすることにより、
コイル巻枠にかかる力が弱くなるようにする。
The tension applied to the wire when winding the superconducting wire around the coil frame is
By making the coil stronger on the inner diameter side and weaker on the outer diameter side,
Reduce the force applied to the coil winding frame.

〔発明の効果〕〔Effect of the invention〕

この発明を実施することにより、導体の動きにより生じ
るクエンチをなくし、線材に流し得る最大の電流を超電
導コイルに通電することが可能になり、トレーニング現
象もなくすことができる。
By implementing the present invention, it is possible to eliminate quench caused by the movement of the conductor, and it is possible to apply the maximum current that can flow through the wire to the superconducting coil, thereby eliminating the training phenomenon.

また、コイル巻枠厚を薄くすることができるので、冷却
に要する液体ヘリウムの量を減らすことができるように
なるとともに、同じ量の線材で得られるコイルの有効内
径を大きくとることが可能になる。
Additionally, since the coil winding frame can be made thinner, the amount of liquid helium required for cooling can be reduced, and the effective inner diameter of the coil can be increased using the same amount of wire. .

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図に示す。ソレノイドコイルに通
電したときに生じる、半径方向に広がろうとする力は、
内層部で大きく、外層部で小さい。
An embodiment of the invention is shown in FIG. The force that occurs when the solenoid coil is energized and tends to spread in the radial direction is
Larger in the inner layer and smaller in the outer layer.

無限長ソレノイドコイルでは、半径方向電磁力の分布は
、直線状で、コイル最外径では0である。
In an infinite length solenoid coil, the distribution of radial electromagnetic force is linear and zero at the outermost diameter of the coil.

有限長ソレノイドコイルでも、半径方向電磁力分布はほ
ぼ直線状であり、最内層で゛最大、最外層で最小となる
。そして最外層の電磁力は半径方向の内向きである。そ
こで、第1図に示すように、巻線張力を層の位置によっ
て変化させ、内M側で強く、外層側で弱く巻くと、線材
にかかる半径方向圧縮力2も内層側で強く、外層側で弱
くなる。したがって、通電により生じる電磁力がかかっ
た際の各層での圧縮力が、ある一定値以上になるように
しておけば、線材3同志、あるいは線材3と巻枠1は一
定値以上の圧縮力をもって固定されているので、半径方
向には動かないし、軸方向にも、靜止まさつ力をもって
動かないようにすることができる。したがって線材の動
きによるクエンチをこのようにしてなくすことができる
Even with a finite length solenoid coil, the radial electromagnetic force distribution is approximately linear, with the maximum at the innermost layer and the minimum at the outermost layer. The electromagnetic force in the outermost layer is directed inward in the radial direction. Therefore, as shown in Fig. 1, if the winding tension is changed depending on the layer position, and the wire is wound strongly on the inner M side and weakly on the outer layer side, the radial compressive force 2 applied to the wire is also strong on the inner layer side and on the outer layer side. It becomes weaker. Therefore, if the compressive force in each layer is set to exceed a certain value when electromagnetic force generated by energization is applied, the wire 3 or the wire 3 and the winding frame 1 will have a compressive force above a certain value. Since it is fixed, it does not move in the radial direction, and can be prevented from moving in the axial direction with a locking force. Therefore, quenching due to movement of the wire can be eliminated in this way.

最内層の張力で全層を巻いていた従来のコイルと比べる
と、コイル巻枠1にかかる圧縮力は小さくなるので、巻
枠の厚さを薄くすることができるようになるとともに、
有効内径を大きくとれるようになる。
Compared to conventional coils in which all layers are wound with the tension of the innermost layer, the compressive force applied to the coil winding frame 1 is smaller, making it possible to reduce the thickness of the winding frame, and
The effective inner diameter can be increased.

巻線張力の分布は、直線上であってもよいし、軸方向の
電磁力の分布と靜止まさつ力の大きさを考慮して、最適
の張力を与えることもできる。また、液体ヘリウム温度
に冷却した際巻き枠と、線材の熱収縮差も考慮して、最
適の張“4力を与えることもできる。
The distribution of winding tension may be on a straight line, or the optimum tension may be given by taking into consideration the distribution of electromagnetic force in the axial direction and the magnitude of the stopping force. Furthermore, it is also possible to give the optimum tension by taking into account the difference in thermal contraction between the winding frame and the wire when cooled to liquid helium temperature.

また巻線張力は、1層毎に変えてもよいし、何層か毎に
変化させてもよい。
Further, the winding tension may be changed for each layer or for every several layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す、超電導コイル断面図、
第2図は、従来の超電導コイルの概略断面図である。 1・・・超電導コイル巻枠 2・・・巻線張力により線材にかかる圧縮応力3・・・
超電導線材 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男
FIG. 1 is a cross-sectional view of a superconducting coil showing an embodiment of the present invention;
FIG. 2 is a schematic cross-sectional view of a conventional superconducting coil. 1... Superconducting coil winding frame 2... Compressive stress applied to the wire due to winding tension 3...
Superconducting wire agent Patent attorney Nori Chika Yudo Kikuo Takehana

Claims (1)

【特許請求の範囲】[Claims] コイル巻枠に超電導線を巻回してなる超電導コイルにお
いて、巻線時に超電導線にかける張力を、コイル内径位
置では大きく、コイル外径位置では小さくして巻回して
なることを特徴とする超電導コイル。
A superconducting coil formed by winding a superconducting wire around a coil winding frame, characterized in that the tension applied to the superconducting wire at the time of winding is large at the inner diameter of the coil and smaller at the outer diameter of the coil. .
JP24697685A 1985-11-06 1985-11-06 Superconducting coil Pending JPS62108507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24697685A JPS62108507A (en) 1985-11-06 1985-11-06 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24697685A JPS62108507A (en) 1985-11-06 1985-11-06 Superconducting coil

Publications (1)

Publication Number Publication Date
JPS62108507A true JPS62108507A (en) 1987-05-19

Family

ID=17156516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24697685A Pending JPS62108507A (en) 1985-11-06 1985-11-06 Superconducting coil

Country Status (1)

Country Link
JP (1) JPS62108507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463957U (en) * 1990-09-29 1992-06-01
DE102010040272A1 (en) * 2010-09-06 2012-03-08 Siemens Aktiengesellschaft High temperature superconductor (HTS) coil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463957U (en) * 1990-09-29 1992-06-01
DE102010040272A1 (en) * 2010-09-06 2012-03-08 Siemens Aktiengesellschaft High temperature superconductor (HTS) coil
EP2601660A1 (en) * 2010-09-06 2013-06-12 Siemens Aktiengesellschaft High-temperature superconductor (hts) coil
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil
US9048015B2 (en) 2010-09-06 2015-06-02 Siemens Aktiengesellschaft High-temperature superconductor (HTS) coil
DE102010040272B4 (en) 2010-09-06 2018-04-19 Siemens Aktiengesellschaft High temperature superconductor (HTS) coil

Similar Documents

Publication Publication Date Title
US3559126A (en) Means to provide electrical and mechanical separation between turns in windings of a superconducting device
JPH0260042B2 (en)
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
JPS62108507A (en) Superconducting coil
JP2745780B2 (en) Superconducting magnet
US3239725A (en) Superconducting device
JPS6182404A (en) Superconductive magnet
JPH11214214A (en) Hybrid superconducting magnet
JPH0365641B2 (en)
JPH0838454A (en) Magnet of magnetic resonance image device
JPH07320928A (en) Superconducting magnet
JPH09139309A (en) Superconductive coil
JPS586106A (en) Spool for superconductive magnet
JPS62285405A (en) Superconducting coil
JPH0320078B2 (en)
JPS60173807A (en) Superconducting coil manufacturing method
SU132698A1 (en) Electromagnetic coil
JP2010016094A (en) Superconducting coil apparatus
JPS60180105A (en) Superconductive magnet
US3030697A (en) Method of forming magnetic core elements
JPH04359406A (en) Superconducting coil
JP3322981B2 (en) Permanent current switch
JPS6238843B2 (en)
JPH03240206A (en) Quench prevention of superconductive coil and applicable bobbin to the prevention
JPH05144637A (en) Superconducting coil