[go: up one dir, main page]

JPS62106843A - Catalyst for purifying exhaust gas and its preparation - Google Patents

Catalyst for purifying exhaust gas and its preparation

Info

Publication number
JPS62106843A
JPS62106843A JP60244193A JP24419385A JPS62106843A JP S62106843 A JPS62106843 A JP S62106843A JP 60244193 A JP60244193 A JP 60244193A JP 24419385 A JP24419385 A JP 24419385A JP S62106843 A JPS62106843 A JP S62106843A
Authority
JP
Japan
Prior art keywords
catalyst
refractory
dimensional structure
catalytically active
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60244193A
Other languages
Japanese (ja)
Other versions
JPH0568301B2 (en
Inventor
Koichi Saito
斉藤 皓一
Kenji Ueda
健次 植田
Yasuo Ikeda
池田 康生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60244193A priority Critical patent/JPS62106843A/en
Priority to CA000512739A priority patent/CA1260909A/en
Priority to EP86108950A priority patent/EP0211233B1/en
Priority to AT86108950T priority patent/ATE47533T1/en
Priority to DE8686108950T priority patent/DE3666536D1/en
Priority to US06/880,827 priority patent/US4749671A/en
Publication of JPS62106843A publication Critical patent/JPS62106843A/en
Publication of JPH0568301B2 publication Critical patent/JPH0568301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance catalytic effect and to improve catalytic activity, by applying a catalytically active substance containing at least one platinum group element selected from Pt, Rh and Pd to the gas contact surface or gas contact part of a refractory three-dimensional structure so as to form projections. CONSTITUTION:An activated alumina pellet is impregnated with an aqueous solution containing a water-soluble salt to one or more of a catalytically active component comprising a platinum group element selected from Pt, Rh and Pd to support said component and the impregnated pellet is dried, baked and subsequently ground by a hammer mill to obtain a catalytically active substance supported powder which is, in turn, thrown in an aqueous solution containing a dispersant to prepare a slurry under stirring. This slurry is infiltrated in a three-dimensional structure and the excessive slurry is subsequently removed from said three-dimensional structure to form a largely depressed and protruded projection-like catalyst coating layer to the internal wall surfaces of said struc ture or the surface of the skeletal thereof.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ディーゼルエンジン排ガスあるいは可燃性炭
素微粒子を含有する産業排ガスの浄化用触媒およびその
製法に関するものである。近年、ディーゼルエンジン排
ガス中の微粒子状物質(主として固体状炭素微粒子、硫
酸塩など硫黄系微粒子、そして液状ないし、固体状の高
分子量炭化水素微粒子などよりなる)が環境衛生上問題
化する傾向にある。これら微粒子はその粒子径がほとん
ど1ミクロン以下であり大気中に浮遊しやすく呼吸によ
り人体間に取り込まれやすいためである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a catalyst for purifying diesel engine exhaust gas or industrial exhaust gas containing combustible carbon particles, and a method for producing the same. In recent years, particulate matter (mainly composed of solid carbon particles, sulfur-based particles such as sulfates, and liquid or solid high-molecular-weight hydrocarbon particles) in diesel engine exhaust gas has become a problem in terms of environmental health. . This is because most of these fine particles have particle diameters of 1 micron or less and are easily suspended in the atmosphere and easily taken into the human body through breathing.

したがってこれら微粒子のディーゼルエンジンなどから
の排出規制を厳しくしていく方向で検問が進められてい
る。
Therefore, inspections are underway to tighten regulations on the emission of these particulates from diesel engines and other sources.

ところで、これら微粒子の除去方法としては、大別して
以下の2つの方法がある。1つは耐熱性ガスフィルター
(セラミックフオーム、ワイヤーメツシュ、金属発泡体
、ウォールフロータイプのセラミックハニカムなど)を
用いて排気ガスを、(勺過して微粒子を捕捉し、圧損が
上昇すればバーナーなどで蓄積した微粒子を燃焼せしめ
てフィルターを再生する方法と、他はこの耐熱性ガスフ
ィルの頻度を少なくするとか、再生の必要のないほどに
触媒の燃焼活性を高める方法である。
By the way, methods for removing these fine particles can be broadly classified into the following two methods. One is to filter exhaust gas using a heat-resistant gas filter (ceramic foam, wire mesh, metal foam, wall-flow type ceramic honeycomb, etc.) to capture fine particles, and if the pressure drop increases, the burner One method is to regenerate the filter by burning off the particulates accumulated in the filter, and the other is to reduce the frequency of this heat-resistant gas fill, or to increase the combustion activity of the catalyst to the point where regeneration is not necessary.

前者の場合、微粒子の除去効果を高めれば高めるほど圧
損上昇が早く再生頻度も多くなり煩瑣であり、経済的に
も著しく不利となるであろう。それにくらべ後者の方法
は、ディーゼルエンジン排気ガスの排出条件(ガス組成
および温度)において、触媒活性を有効に維持しつる触
媒物質が採用されるならばはるかに優れた方法と考えら
れる。
In the former case, the higher the particle removal effect, the faster the pressure drop increases and the frequency of regeneration increases, which is cumbersome and economically disadvantageous. In comparison, the latter method is considered to be a much better method if a catalytic material is employed that effectively maintains catalytic activity under the emission conditions (gas composition and temperature) of diesel engine exhaust gas.

しかし、ディーゼルエンジンの排気ガス温度はガソリン
エンジンの場合と比較して格段に低く、通常のエンジン
の走行条件下でえられる温度内で蓄積した微粒子を良好
に着火燃焼させる性能を有する上記排ガス浄化触媒が要
求されるにもかかわらず、今迄この条件に適合する触媒
は提案されていないのが現状である。
However, the exhaust gas temperature of diesel engines is much lower than that of gasoline engines, and the exhaust gas purification catalyst described above has the ability to successfully ignite and burn accumulated particulates within the temperature that can be obtained under normal engine running conditions. Despite this requirement, no catalyst has been proposed to date that meets this requirement.

(従来の技術) 従来よりカーボン質微粒子の捕捉効果を高める目的で種
々の提案がなされている。貫通孔を有する構造体の貫通
孔内壁に耐熱性無機質繊維を接着せしめ、カーボン質微
粒子の捕捉効果を高める試み(特開昭59142820
号公報)、あるいは貫通孔を有するセラミックハニカム
構造体の内壁に不規則な配列状態の突起を多数設けてカ
ーボン質微粒子を捕捉しようという試み(特開昭57−
99314号公報)またオーブンハニカムあるいはウオ
ールフローハニカムにセラミック粗大粒子を付着させる
かあるいは壁面を発泡させるかして突起を作製した後乾
燥、焼成を行なうことによりカーボン質111子の捕捉
効果を高める担体が提案されている(特開昭58−14
921号公報)。
(Prior Art) Various proposals have been made for the purpose of increasing the trapping effect of carbonaceous fine particles. Attempt to increase the trapping effect of carbonaceous particles by adhering heat-resistant inorganic fibers to the inner wall of the through-hole of a structure having through-holes (Japanese Patent Application Laid-Open No. 59142820
(Japanese Unexamined Patent Application Publication No. 1987-1999), or an attempt to capture carbonaceous particles by providing a large number of irregularly arranged projections on the inner wall of a ceramic honeycomb structure having through holes
99314) Furthermore, by attaching coarse ceramic particles to an oven honeycomb or wall flow honeycomb or foaming the wall surface to create protrusions, drying and firing can be performed to create a carrier that enhances the carbonaceous 111 trapping effect. It has been proposed (Japanese Unexamined Patent Publication No. 58-14
Publication No. 921).

また白金族金層をカーボン質微粒子燃焼用触媒として使
用している例としては、ロジウム7.5%/白金合金と
か、P[/ Pd =50150の混合物とか、酸化タ
ンタルまたは酸化セリウム上に担持したパラジウムある
いはパラジウムと75重最%以下の白金からなる合金等
が、30 F (5olubleOrlJaniCfr
action)に対して効果があることが提案されてい
る〈特開昭55−24597号公報)。
Further, examples of using platinum group gold layers as carbonaceous particulate combustion catalysts include rhodium 7.5%/platinum alloys, P[/Pd = 50150 mixtures, and catalysts supported on tantalum oxide or cerium oxide. Palladium or an alloy consisting of palladium and platinum with a maximum weight of 75% or less is
It has been proposed that this method is effective against (Japanese Unexamined Patent Publication No. 55-24597).

その他、貴金属、クロムおよびこれらのものの触媒的に
活性な化合物からなる群から選ばれた少なくとも1種の
担持された材料および第1遷移系列の元素、銀、ハフニ
ウムおよびこれらのものの触媒的に活性な化合物から成
る群から選ばれた少くとも1種のバルク材料の、触媒的
に有効な漬の混合物から成り、担持された該材料が多孔
性耐火無機酸化物に担持されていることから成る組成物
(特開昭57−24640号公報)、 バナジウムまたはバナジウム化合物にアンチモン、アル
カリ金属、モリブデン、白金、ランタンなどを組合わせ
た炭素系微粒子浄化用触*(特開昭58−174236
号公報)、 銅または銅化合物にモリブデンまたはバナジウムを組合
せ、さらに白金、ロジウムなどをも組合せてなる炭素系
微粒子浄化用触媒(特開昭59−82944)、 白金を担持して700〜i ooo℃で熱処理してサル
フエートの生成能を抑制した炭素系微粒子浄化用触媒(
特開昭59−36543号公報)、パラジウムとロジウ
ム、ルテニウム、ニッケル、亜鉛およびチタニウムの少
なくとも1種とを組合せてなる炭素系微粒子浄化用触媒
(特開昭59−80330号公報)等の提案がなされて
いる。
In addition, at least one supported material selected from the group consisting of noble metals, chromium and catalytically active compounds of these and elements of the first transition series, silver, hafnium and catalytically active compounds of these A composition comprising a catalytically effective mixture of at least one bulk material selected from the group consisting of compounds, the supported material being supported on a porous refractory inorganic oxide. (Japanese Unexamined Patent Publication No. 57-24640), carbon-based particulate purification catalyst* containing vanadium or a vanadium compound in combination with antimony, alkali metals, molybdenum, platinum, lanthanum, etc.
(Japanese Unexamined Patent Publication No. 1982-82944), carbon-based particulate purification catalyst consisting of a combination of copper or copper compound with molybdenum or vanadium, and further with platinum, rhodium, etc. Carbon-based particulate purification catalyst whose ability to generate sulfate was suppressed by heat treatment with
JP-A-59-36543), carbon-based particulate purification catalyst comprising a combination of palladium and at least one of rhodium, ruthenium, nickel, zinc and titanium (JP-A-59-80330), etc. being done.

しかしながら、本発明者らは、白金族元素を炭素系微粒
子の燃焼用触媒として使用する場合、これらに開示され
ている触媒では、白金族元素の有する炭素系微粒子の低
温着火性を充分に引き出すことは困難であることを見い
出した。
However, the present inventors have found that when platinum group elements are used as combustion catalysts for carbon-based fine particles, the catalysts disclosed in these documents do not fully bring out the low-temperature ignitability of carbon-based fine particles possessed by platinum group elements. found it difficult.

すなわち、白金族元素の有する炭素系微粒子の低温着火
性を引き出すには、排ガスのガス接触面あるいは接触部
において、層状に蓄積する炭素系微粒子に対して、接触
効率を高めるように、接触担持層を突起状に担持せしめ
る必要があり、さらにその形状に門械的強度を与えるこ
とにより、かくして低温着火性能を有する実用的触媒を
提案しうろことを見出したものである。
In other words, in order to bring out the low-temperature ignitability of carbon-based fine particles possessed by platinum group elements, a contact support layer is required to increase the contact efficiency with respect to the carbon-based fine particles that accumulate in a layer at the gas contact surface or contact portion of exhaust gas. The inventors have discovered that it is possible to propose a practical catalyst that has low-temperature ignition performance by supporting the catalyst in the form of protrusions, and by imparting mechanical strength to the shape.

[発明が解決しようとする問題点] 本発明者らは、ここに特にディーゼルエンジンからの排
ガス中に含まれるカーボン質微粒子を、より低温から燃
焼させうる触媒およびその調整法を提案する。
[Problems to be Solved by the Invention] The present inventors hereby propose a catalyst that can burn carbonaceous particles contained in exhaust gas from a diesel engine at a lower temperature, and a method for adjusting the catalyst.

本発明にかかる触媒は以下の如き点で高い評価が与えら
れる。上述のようにディーゼルエンジンからの排ガス温
度は、ガソリン車に比べて格段、に低く市中走行時排ガ
ス温度は、マニホールド出口でも450℃に達しないこ
とから、300’C以下でもカーボン質微粒子の燃焼性
能が良好な触媒が要求される。
The catalyst according to the present invention is highly evaluated for the following points. As mentioned above, the exhaust gas temperature from a diesel engine is much lower than that of a gasoline car, and the exhaust gas temperature during city driving does not reach 450°C even at the manifold outlet, so even below 300'C, combustion of carbonaceous particles is possible. Catalysts with good performance are required.

しかし従来提案されている白金族を含有する触媒は三次
元構造体のガス接触部に微細粒子で層状に触媒成分が担
持されているか、あるいは骨材の内部細孔内壁面に担持
されていて、捕捉されたカーボン質微粒子との接触効率
が悪く、白金族を含有する触媒活性物質から充分な燃焼
性能を引き出せていないのが現状である。
However, in the catalysts containing platinum group that have been proposed so far, catalyst components are supported in a layered manner with fine particles in the gas contacting part of a three-dimensional structure, or supported on the inner wall surface of the internal pores of the aggregate. At present, sufficient combustion performance cannot be extracted from the catalytically active material containing the platinum group due to poor contact efficiency with captured carbonaceous fine particles.

従って、本発明者らは、カーボン質微粒子がガス接触部
壁面あるいはガス接触部に層状に蓄積することに注目し
、該蓄積層に触媒活性成分の粗粒状物を突起状に担持さ
せ、触媒とカーボン質微粒子の接触効率を上げることに
より著しく、触媒性能を高めることを見い出し本発明を
完成したものである。
Therefore, the present inventors focused on the fact that carbonaceous fine particles accumulate in a layer on the wall surface of the gas contacting part or the gas contacting part. The present invention has been completed by discovering that the catalyst performance can be significantly improved by increasing the contact efficiency of carbonaceous fine particles.

[問題点を解決するための手段] 本発明は以下の如く特定される。[Means for solving problems] The present invention is specified as follows.

(1)耐火性三次元構造体のガス接触面あるいはガス接
触部に白金、ロジウム、パラジウムよりなる白金族元素
の少くとも1種を含有してなる触媒活性物質を突起状に
形成されてなる耐火性無機質基材上に担持せしめてなる
ことを特徴とする排ガス浄化用触媒。
(1) A refractory structure in which a catalytically active substance containing at least one platinum group element consisting of platinum, rhodium, and palladium is formed in the shape of a protrusion on the gas contacting surface or gas contacting part of the refractory three-dimensional structure. A catalyst for purifying exhaust gas, characterized in that it is supported on an organic inorganic base material.

(2)  耐火性三次元構造体のガス接触面あるいはガ
ス接触部に白金、ロジウム、パラジウムよりなる白金族
元素の少なくとも1種と鉄、コバルト、ニッケル、モリ
ブデン、タングステン、ニオブ、リン、鉛、亜鉛、錫、
銅、マンガン、セリウム、ランタン、銀、バリウム、マ
グネシウム、カルシウム、ストロンチウムよりなるアル
カリ土類金属、カリウム、ナトリウム、セシウム、ルビ
ジウムよりなるアルカリ金属よりなる群から選ばれた少
くとも1種を含有してなる触媒活性物質を突起状に形成
されてなる耐火性無機質基材上に担持せしめてなること
を特徴とする排ガス浄化用触媒。
(2) At least one platinum group element consisting of platinum, rhodium, and palladium and iron, cobalt, nickel, molybdenum, tungsten, niobium, phosphorus, lead, and zinc on the gas contact surface or gas contact part of the refractory three-dimensional structure. ,tin,
Contains at least one selected from the group consisting of alkaline earth metals such as copper, manganese, cerium, lanthanum, silver, barium, magnesium, calcium, and strontium, and alkali metals such as potassium, sodium, cesium, and rubidium. 1. A catalyst for purifying exhaust gas, comprising a catalytically active substance supported on a refractory inorganic base material formed into protrusions.

(3)  耐火性三次元構造体が、セラミックフォーム
、セラミックハニカム、ウォールフロータイプのハニカ
ムモノリス、メタルハニカムまたは金属発泡体であるこ
とを特徴とする上記(1)または(2記載の触媒。
(3) The catalyst according to (1) or (2) above, wherein the refractory three-dimensional structure is a ceramic foam, a ceramic honeycomb, a wall-flow type honeycomb monolith, a metal honeycomb, or a metal foam.

(4)耐火性無機質基材が、活性アルミナ、シリカ、チ
タニア、ジルコニア、シリカ−アルミナ、アルミナ−ジ
ルコニア、アルミナ−チタニア、シリカ−チタニア、シ
リカ−ジルコニア、チタニア−ジルコニアおよびゼオラ
イトよりなる群から選ばれた少くとも1種であることを
特徴とする上記(1)、(2)または(3)記載の触媒
(4) The refractory inorganic base material is selected from the group consisting of activated alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia, and zeolite. The catalyst according to (1), (2) or (3) above, characterized in that it is at least one type of catalyst.

(5)触媒活性物質を担持せしめた耐火性態R質基材よ
りなる粗粒状物を、アルミナゾル、チタニアゾル、ジル
コニアゾル、シリカゾル、可溶性ベーマイト、可溶性有
機高分子化合物よりなる群から選ばれた少くとも1種の
分散剤とともに水性スラリー化し、えられたスラリーを
用いて耐火性三次元構造体のガス接触面あるいはガス接
触部に該粗粒状物を突起状■に担持せしめることを特徴
とする排ガス浄化用触媒の製法。
(5) Coarse particles made of a fire-resistant type R base material supporting a catalytically active substance are at least selected from the group consisting of alumina sol, titania sol, zirconia sol, silica sol, soluble boehmite, and soluble organic polymer compound. Exhaust gas purification characterized by forming an aqueous slurry with one type of dispersant and using the slurry obtained to support the coarse particles in the form of protrusions on the gas contacting surface or gas contacting part of a refractory three-dimensional structure. Production method of catalyst for use.

(6)  耐火性三次元構造体が、セラミックフオーム
、セラミックハニカム、ウォールフロータイプのハニカ
ムモノリス、メタルハニカムまたは金属発泡体であるこ
とを特徴とする上記(5)記載の触媒。
(6) The catalyst according to (5) above, wherein the refractory three-dimensional structure is a ceramic foam, a ceramic honeycomb, a wall-flow type honeycomb monolith, a metal honeycomb, or a metal foam.

炭素系微粒子は三次元構造体のガス接触部に層状に蓄積
し、例えば、ウォールフロータイプのハニカム(ガス流
れ方向に、多数の流通管よりなり該流通管は交互に、入
口部が開口し、出口部で閉塞されている流通管と、入口
部が閉塞され出口部で開口されている流通管とから構成
され、その流通管壁がガスフィルター機構を有する多孔
性隔壁で構成されているセラミックモノリスハニカム)
の隔壁には多数の細孔が存在し、この細孔を通してガス
が通過する際、炭素系微粒子は濾過されるが細孔の平均
径が炭素系微粒子の直径よりもかなり大きいにもかかわ
らず炭素系微粒子は、細孔入口側壁面にブリッジを形成
し、ガス人口側隔壁面に層状に累積する。仮に白金族元
素含有触媒がこの隔壁面あるいは隔壁細孔内骨材上に、
突起を形成することなく層状に担持されている場合は、
該炭素系微粒子の蓄積物に対する触媒活性成分の接触効
率は悪く好ましい触媒作用は見られない。
Carbon-based fine particles accumulate in a layered manner in the gas-contacting part of a three-dimensional structure, such as a wall-flow type honeycomb (consisting of a large number of flow pipes in the gas flow direction, the flow pipes having alternately open inlets, A ceramic monolith consisting of a flow pipe that is closed at the outlet and a flow pipe that is closed at the inlet and open at the outlet, and the wall of the flow pipe is composed of a porous partition wall that has a gas filter mechanism. honeycomb)
There are many pores in the partition walls of the pores, and when gas passes through these pores, carbon-based fine particles are filtered out, but even though the average diameter of the pores is much larger than the diameter of the carbon-based fine particles, The system fine particles form a bridge on the pore entrance side wall surface and accumulate in a layer on the gas population side partition wall surface. If a platinum group element-containing catalyst is placed on the partition wall surface or the aggregate in the partition wall pores,
When supported in layers without forming protrusions,
The contact efficiency of the catalytically active component with the accumulated carbon-based fine particles is poor, and no favorable catalytic action is observed.

従って本発明においては、三次元構造体のガス接触部に
白金族元素含有の触媒組成物を突起状に担持せしめ接触
効率を高め炭素系微粒子の燃焼効率を著しく向上させた
ことを特徴としている。
Therefore, the present invention is characterized in that a catalyst composition containing a platinum group element is supported in the gas contacting part of the three-dimensional structure in the form of protrusions to increase the contact efficiency and to significantly improve the combustion efficiency of carbon-based fine particles.

三次元構造体としては、セラミックフオーム、セラミッ
クハニカム、ウォールフロータイプのハニカムモノリス
、メタルハニカム、金属発泡体等が好適に用いられる。
As the three-dimensional structure, ceramic foam, ceramic honeycomb, wall flow type honeycomb monolith, metal honeycomb, metal foam, etc. are suitably used.

白金族元素などの触媒成分を担持する耐火性無機質基材
としては、活性アルミナ、シリカ、チタニア、ジルコニ
ア、シリカ−アルミナ、アルミナ−ジルコニア、アルミ
ナ−チタニア、シリカ−チタニア、シリカ−ジルコニア
、チタニア−ジルコニア、ゼオライト等が好適である。
Examples of refractory inorganic base materials supporting catalyst components such as platinum group elements include activated alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, and titania-zirconia. , zeolite, etc. are suitable.

本発明にかかる触媒調製法は、特定されないが、好まし
いものとしては以下の方法が一例としてあげられる。
Although the method for preparing the catalyst according to the present invention is not specified, the following method is preferred as an example.

すなわち、活性アルミナペレットに触媒活性成分の水可
溶性塩の水溶液で含浸担持し、乾燥焼成する。次いでハ
ンマーミル(例えば細川ミクロン社製、PLILVER
IXER)で粉砕し、粉砕品を分級機(例えば細川ミク
ロン社製、 MICRON  5EPARATOR,MS−0型)に
て分級し、5μI11〜300uIllの範囲の粒径に
実質的に分布する稈度の耐火性無機質粗粒子に白金族元
素などの触媒成分を担持した触媒活性物質ふ えばCoNDEA社製、DISPURAL>をアルミナ
(Al2O2)換算で1〜20重量%重量%含水溶液に
投入し攪拌する。分散剤としてのベーマイトの増粘効果
により攪拌中はもちろんのこと、攪拌を止めても粒状活
性物質は沈降せずに安定なスラリーがえられる。
That is, activated alumina pellets are impregnated with an aqueous solution of a water-soluble salt of a catalytically active component, and then dried and fired. Next, a hammer mill (for example, PLILVER manufactured by Hosokawa Micron Co., Ltd.
IXER), and the crushed product is classified using a classifier (for example, MICRON 5EPARATOR, MS-0 type, manufactured by Hosokawa Micron Co., Ltd.), and the fire resistance of the culm is substantially distributed in the particle size range of 5μI11 to 300μIll. A catalytically active material, DISPURAL manufactured by Fuba-Condea Co., Ltd., in which a catalyst component such as a platinum group element is supported on inorganic coarse particles, is added to an aqueous solution containing 1 to 20% by weight in terms of alumina (Al2O2) and stirred. Due to the thickening effect of boehmite as a dispersant, the particulate active substance does not settle and a stable slurry can be obtained not only during stirring but even after stirring is stopped.

該スラリーを用いて三次元構造体に担持し、余分なスラ
リーを取除くことにより、v4m体内体内面壁面いは骨
格表面に凹凸の大きい突起状の触媒被覆層を形成するこ
とが出来る。次いで乾燥し200〜800℃とくに30
0℃〜700℃の温−化する際粗粒子が沈降しないよう
に増粘効果を有するアルミナ、チタニア、ジルコニア、
シリカなどのゾルや可溶性ベーマイト、可溶性有機高分
子化合物よりなる群から選ばれた少なくとも1種の分散
剤とともに水性スラリー化せしめて使用しうるが、該可
溶性有機高分子化合物としては、ポリアクリル酸ナトリ
ウム、ポリアクリル酸アンモニウム、アクリル酸−マレ
イン酸共重合体のナトリウム塩またはアンモニウム塩、
ポリエチレンオキサイド、ポリビニルアルコール、カル
ボキシメチルセルロース、メチルセルロース、ヒドロキ
シエチルセルロース、でんぷん、アラビアゴム、グアー
ガム、にかわ等が好適に用いられる。また粗粒子状触媒
活性成分の相持強度を向上させる目的でスラリー中に無
機質繊維状物質、例えばガラス繊維、アルミナ繊維、窒
化ケイ素(Si 3 N4 )、シリコンカーバイド(
SiC)、チタン酸カリウム、ロックウール等を分散さ
せても良い。
By supporting the slurry on a three-dimensional structure and removing excess slurry, a protruding catalyst coating layer with large irregularities can be formed on the inner wall surface of the v4m body or on the skeleton surface. Next, dry at 200-800℃, especially at 30℃.
Alumina, titania, zirconia, which have a thickening effect to prevent coarse particles from settling when heated from 0°C to 700°C.
It can be used by forming an aqueous slurry together with a sol such as silica, soluble boehmite, and at least one dispersant selected from the group consisting of soluble organic polymer compounds. , ammonium polyacrylate, sodium salt or ammonium salt of acrylic acid-maleic acid copolymer,
Polyethylene oxide, polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, starch, gum arabic, guar gum, glue and the like are preferably used. In addition, inorganic fibrous substances such as glass fiber, alumina fiber, silicon nitride (Si 3 N 4 ), silicon carbide (
SiC), potassium titanate, rock wool, etc. may be dispersed.

また触媒コート層をさらに多孔性にするためにスラリー
中にポリエチレングリコールなどの可溶性有機高分子化
合物を添加して焼成により除去する方法を併用しても良
い。
Further, in order to make the catalyst coat layer more porous, a method of adding a soluble organic polymer compound such as polyethylene glycol to the slurry and removing it by baking may be used in combination.

その他、本発明に好適な調製法としては、あらかじめ耐
熱性無機物質の粒状物く上記と同じ分級した粒度のもの
)を三次元構造体に担持しておき、触媒活性成分の水溶
液あるいは有機溶媒可溶性塩の溶液を含浸担持して触媒
化しても良い。
In addition, as a preparation method suitable for the present invention, a granular heat-resistant inorganic substance (having the same particle size as above) is supported on a three-dimensional structure, and an aqueous solution or an organic solvent soluble solution of the catalytically active component is prepared. A salt solution may be impregnated and supported to become a catalyst.

本発明にかかる触媒においては、触媒活性成分担持】は
とくに限定されるものではないが本発明が規定する粗粒
状物として触媒1Jl当り10〜200g、好ましくは
20〜150gの範囲である。そして、耐熱性無機質基
材としては触媒1Jl当り5〜150(I好ましくは1
0〜120gの範囲、触媒活性成分は酸化物あるいは金
属として触媒1Jl当り 0.01〜50g、好ましく
は0.05〜30gの範囲である。
In the catalyst according to the present invention, the catalytically active component supported is not particularly limited, but is in the range of 10 to 200 g, preferably 20 to 150 g, per 1 Jl of catalyst as coarse particles defined by the present invention. As the heat-resistant inorganic base material, 5 to 150 (I preferably 1
The amount of the catalytically active component as an oxide or metal is in the range of 0.01 to 50 g, preferably 0.05 to 30 g, per 1 Jl of catalyst.

し作 用] カーボン質微粒子の燃焼反応は固体一固体の反応であり
、触媒活性物質とカーボン質微粒子の接触効率が非常に
重要な要因である。
Effect] The combustion reaction of carbonaceous particles is a solid-solid reaction, and the contact efficiency between the catalytically active substance and the carbonaceous particles is a very important factor.

本発明はこの点に鑑み、触媒粒状物質をガス入口側壁面
に突起状に担持し、接触効率を積極的に高めたことによ
り著しく活性を向上させたことに本発明の作用効果があ
る。
In view of this point, the present invention has an effect in that the activity is significantly improved by supporting the catalyst particulate material in a protruding manner on the side wall surface of the gas inlet and actively increasing the contact efficiency.

以下本発明の実施例と比較例とを示し、本発明を具体的
に説明する。
EXAMPLES The present invention will be specifically explained below by showing examples and comparative examples of the present invention.

実施例1 市販の活性アルミナベレット(3〜5IIIllφ、表
面積150尻/g)lKyを量りとり、白金(Pt )
として20g含有するジニトロジアンミン白金の硝酸溶
液の水溶液750mに浸漬担持し、150℃で3時間乾
燥し、500℃で2時間焼成した。
Example 1 A commercially available activated alumina pellet (3 to 5IIIllφ, surface area 150 butts/g) was weighed out, and platinum (Pt)
The sample was supported by immersion in 750 m of an aqueous solution of dinitrodiammine platinum in nitric acid containing 20 g of dinitrodiammine platinum, dried at 150°C for 3 hours, and calcined at 500°C for 2 hours.

該焼成ベレットを、ハンマーミルで粉砕し2分級装置で
5μm以下の粒径をカットし、また300μm以上の程
度のものは篩を用いて取り除いた。
The fired pellets were pulverized with a hammer mill, and particles with a size of 5 μm or less were cut with a 2-classifier, and particles with a size of 300 μm or more were removed using a sieve.

えられた粉末触媒の粒度分布は5〜30μm11重盪%
、30〜45μm14重1%、45〜740m  20
重11%、74〜105μm  241ffi%、10
5〜149μm15重憬%、149〜30重量m16重
量%の粒度分布を有しており平均粒子径81μmであっ
た。
The particle size distribution of the obtained powder catalyst was 5 to 30 μm and 11% by weight.
, 30-45 μm 14 weight 1%, 45-740 m 20
Weight 11%, 74-105μm 241ffi%, 10
It had a particle size distribution of 5 to 149 m, 15% by weight, 149 to 30 m, 16% by weight, and an average particle diameter of 81 m.

あらかじめ可溶性ベーマイト15g (Af203換算
11.2!M)を溶解させてえた水溶液に該分級粉末触
媒150gを分散させ安定したスラリー520mをえた
150 g of the classified powder catalyst was dispersed in an aqueous solution prepared by dissolving 15 g of soluble boehmite (11.2!M in terms of Af203) to obtain 520 m of stable slurry.

このスラリーの粘度は22cps(’!温)であった。The viscosity of this slurry was 22 cps ('! temperature).

担体として、市販のプラグハニカム(材質:コージェラ
イト)5.66インチ径X6.Oインチ長さ、100セ
ル/平方インチ、壁厚17ミルのものを用いた。該担体
の隔壁の有する平均細孔径は、28μmであった。該担
体のガス入口部側面から上記スラリー520dを注ぎ、
余分なスラリーを反対側からの空気ブローで取り除いた
。ついで150℃で3時間乾燥し、空気中500℃で2
時間焼成し、完全触媒をえた。
As a carrier, a commercially available plug honeycomb (material: cordierite) 5.66 inch diameter x 6. 0 inch length, 100 cells/inch square, and 17 mil wall thickness. The average pore diameter of the partition walls of the carrier was 28 μm. Pour the slurry 520d from the side of the gas inlet of the carrier,
Excess slurry was removed by air blowing from the opposite side. Then, it was dried at 150℃ for 3 hours, and then dried in air at 500℃ for 2 hours.
A complete catalyst was obtained by calcination for several hours.

出来上りの各成分の担持猷は、Al2O250Q/Jl
−担体、Pt 1. O(J /i、−担体、であった
The finished carrier of each component is Al2O250Q/Jl
-Support, Pt 1. O(J/i, -carrier).

この触媒は担体壁面上にその細孔を閉塞することなく粗
粒子の突起を形成しているのが観察された。
It was observed that this catalyst formed protrusions of coarse particles on the wall surface of the carrier without clogging the pores.

実施例2 15(J含有するジニトロジメイン白金の硝酸溶液と、
ロジウム(Rh )として1.670含有する硝酸ロジ
ウム水溶液の混合溶液1.41に浸漬担持し、150℃
で3時間乾燥し500℃で2時間焼成した。
Example 2 A nitric acid solution of dinitrodimain platinum containing 15 (J)
Supported by immersion in a mixed solution of rhodium nitrate aqueous solution containing 1.670% as rhodium (Rh), and heated to 150°C.
The mixture was dried for 3 hours and fired at 500°C for 2 hours.

実施例1におけると同様に粉砕、分級して、平均粒子径
78μmのPt;Rh担持した粉末触媒をえた。あらか
じめ可溶性ベーマイ1〜100a(AJ!、203換算
75g)を、溶解させてえた水溶液に該分級粉末触媒1
 Klを分散させ安定したスラリー2Jlをえた。
The powder was pulverized and classified in the same manner as in Example 1 to obtain a Pt;Rh supported powder catalyst having an average particle size of 78 μm. The classified powder catalyst 1 was added to an aqueous solution prepared by dissolving soluble boehmy 1 to 100a (AJ!, 75 g in terms of 203) in advance.
A stable slurry of 2 Jl was obtained by dispersing Kl.

このスラリーの粘度は72cps(室温)であった。担
体として、市販のオーブンハニカムモノリス(材質コー
ジェライト)5.66インチ径×6.0インチ長さ、3
00セル/平方インチ、壁厚6ミルのものを用いた。
The viscosity of this slurry was 72 cps (room temperature). As a carrier, a commercially available oven honeycomb monolith (material: cordierite), 5.66 inch diameter x 6.0 inch length, 3
00 cells/in² and a wall thickness of 6 mils.

該担体をスラリーに浸漬し引上げて余分なスラリーをエ
アーブローで取除いた。ついで150℃で3時間乾燥し
空気中500℃で2時間焼成し完成触媒をえた。出来上
りの各成分の担持量はA1203 120(J /L−
担体、Pt 0.9Q /f−担体、Rh 0.1(1
/J−一担体であった。
The carrier was immersed in the slurry, pulled out, and excess slurry was removed by air blowing. The catalyst was then dried at 150°C for 3 hours and calcined in air at 500°C for 2 hours to obtain a finished catalyst. The amount of each component supported in the finished product is A1203 120 (J/L-
Support, Pt 0.9Q/f-support, Rh 0.1(1
/J-1 carrier.

実施例3 市販の活性アルミナベレット(3〜5 mmφ、表面積
150Trt/g)1Kgに硝酸セリウム<Ce (N
Oa >3 ・6H20) 630.7gを溶解した水
溶液ア50Ai!に含浸した。150’03時間乾燥し
500℃2時間焼成した。ついで、4?、 P[として、25a含有するジニトロシアζ)白金の硝
酸溶液750.d、に含浸した。150’03時間乾燥
し、500℃2時間焼成した。
Example 3 Cerium nitrate<Ce (N
Oa > 3 ・6H20) 630.7g of aqueous solution a50Ai! Impregnated with. It was dried for 150'03 hours and fired at 500°C for 2 hours. Next, 4? , P [as dinitrosia ζ containing 25a) Platinum in nitric acid solution 750. d. It was dried for 150'03 hours and fired at 500°C for 2 hours.

実施例1におけると同じように粉砕分級して平均粒径7
9μmの触媒含有粉末触媒をえた。あらかじめシリカゾ
ル(スノーテックス−O口座化学製)を5iOz換算で
15g含有する水溶液に該分級粉末触媒150i11を
分散させ安定したスラリー520dをえた。実施例1に
おけると同様な担体を用いて触媒化した。出来上りの各
成分の担体1HtA、l、20340a /1−111
体、CeO210g/f−担体、Pt1.Oa/ヱー担
体であった。
Pulverize and classify in the same manner as in Example 1 to obtain an average particle size of 7.
A powder catalyst containing a catalyst of 9 μm was obtained. The classified powder catalyst 150i11 was dispersed in advance in an aqueous solution containing 15 g of silica sol (manufactured by Snowtex-O Kabuto Kagaku) in terms of 5 iOz to obtain a stable slurry 520d. A support similar to that in Example 1 was used for catalysis. Finished carrier for each component 1HtA, 1, 20340a /1-111
body, CeO210g/f-support, Pt1. It was an Oa/E carrier.

実施例4 実施例2において、担体としてオーブンハニカムモノリ
スのかわりに、市販のセラミックフオーム(嵩密度0.
35a /cm3.空孔率87.5%、容積1.71)
を用いる以外は全て同じ方法で触媒を調整した。出来上
りの各成分・の担持量はAf203120(1/、!、
−担体、Pt O,9g/l−担体、ri’h O,l
a /1−担体であった。
Example 4 In Example 2, instead of the oven honeycomb monolith as a carrier, a commercially available ceramic foam (with a bulk density of 0.
35a/cm3. Porosity 87.5%, volume 1.71)
All catalysts were prepared in the same manner except that The amount of each component supported in the finished product is Af203120 (1/,!,
-Support, Pt O, 9g/l -Support, ri'h O,l
a/1-carrier.

実施例5 実施例1〜4におけると同じ方法で、下記表1に示す触
媒組成の触媒をえた。
Example 5 A catalyst having the catalyst composition shown in Table 1 below was obtained in the same manner as in Examples 1 to 4.

ここでモリブデンはバラモリブデン酸アンモニウム、リ
ンはリン酸二水素アンモニウム、タングステンはパラタ
ングステン酸アンモン、ニオブは五塩化ニオブ、他はす
べて硝酸塩を用いた。
Here, ammonium baramolybdate was used for molybdenum, ammonium dihydrogen phosphate was used for phosphorus, ammonium paratungstate was used for tungsten, niobium pentachloride was used for niobium, and nitrate was used for all others.

実施例6 実施例1で1qられたPt担持アルミナの粉末触媒15
(Mと市販のSiCウィスカー10gとを、実施例1と
同様にあらかじめ可溶性ベーマイト15(J  (Af
203換算11.25a)を溶解させてえた水溶液に分
散させ安定したスラリー520雁をえて、触媒化した。
Example 6 Pt-supported alumina powder catalyst 15 prepared in Example 1
(Af
203 equivalent 11.25a) was dissolved in an aqueous solution to obtain a stable slurry 520, which was catalyzed.

出来上りの各成分の担持量はAf2035007・′℃
−担体、Pt 1.Og/l−担体、SiCウィスカー
3.31J/4−担体であった。
The amount of each component supported in the finished product is Af2035007・'℃
-Support, Pt 1. Og/l-carrier, SiC whisker 3.31 J/4-carrier.

比較例1 実施例1におけると同様に調製したpt担持アルミナベ
レットを粉砕し、その後湿式ミルで通常のつ4ツシユコ
ートを行なう程度まで湿式粉砕し、平均粒子径を1.1
μmとしたスラリーを調製し、520dのスラリーをえ
た。実施例1においてこれを用いる以外は、すべて同じ
方法で触媒を調製し、△7色20350111 /、1
.−担体、pt i、OQ/′1−担体、担持の触媒を
えた。
Comparative Example 1 A PT-supported alumina pellet prepared in the same manner as in Example 1 was pulverized, and then wet pulverized in a wet mill to the extent that a conventional 4-tooth coating was applied to obtain an average particle size of 1.1.
A slurry with a diameter of 520 µm was prepared. The catalyst was prepared in the same manner except that it was used in Example 1, and Δ7 color 20350111/, 1
.. -Support, pt i, OQ/'1-Support, supported catalyst was obtained.

比較例2 実施例2におけると同様に、調製したpt、F?h担持
アルミナベレットを粉砕し、その後湿式ミルで通常のウ
ォッシュコートを行なう程度まで湿式粉砕し、平均粒子
径を1.0μmとしたスラリーを調製した。該スラリー
を用いてオープンハニカムモノリス担持触媒をえた。出
来上りの各成分の担持量は、Afz 031200 /
−色一担体、P[0,9g/l−担体、I?hO,i/
、色−担体であった。
Comparative Example 2 In the same manner as in Example 2, pt, F? The h-supported alumina pellets were pulverized, and then wet pulverized in a wet mill to the extent that a normal wash coat could be applied to prepare a slurry having an average particle size of 1.0 μm. An open honeycomb monolith supported catalyst was obtained using the slurry. The amount of each component supported in the finished product is Afz 031200/
- Color carrier, P [0,9 g/l - carrier, I? hO,i/
, color-carrier.

比較例3 実施例2において、Pt 、Rhを使用しない以外はす
べて同じ方法で触媒を調製し、へ1203担持オーブン
ハニカムモノリスを調製した。
Comparative Example 3 A catalyst was prepared in the same manner as in Example 2 except that Pt and Rh were not used, and a He1203 supported oven honeycomb monolith was prepared.

比較例4 実施例3において、硝酸セリウムの630.79を用い
るかわりに硝酸クロム[Cr(NOg)3・91−12
01を1316(lを用いる以外は同じ方法で触媒を調
製し出来上りの各成分の担持量はAJ!、20340(
1/J!、−担体、Cr20310g/J!、−担体、
Pt 1 、Og、/1−113体であった。
Comparative Example 4 In Example 3, instead of using 630.79 of cerium nitrate, chromium nitrate [Cr(NOg)3.91-12
The catalyst was prepared in the same manner except that 01 was used as 1316(l), and the amount of each component supported was AJ!, 20340(
1/J! , - carrier, Cr20310g/J! , - carrier,
It was Pt 1 , Og, /1-113 body.

実施側層 実施例1〜6、比較例1〜4でえられた触媒について、
排気ff12300cc、4気筒デイーゼルエンジンを
用いて、触媒の評価試験を行なった。エンジン回転数2
50Orpm、トルク4.0に9−mの条件で微粒子の
捕捉約2時間を行ない、次いでトルクを0.57rg・
m間隔で5分毎に上昇させて、触媒層の圧損変化を連続
的に記録し、微粒子が触媒上で排ガス温度上昇に伴ない
、微粒子の蓄積による圧力−に昇と微粒子の燃焼による
圧力降下とが等しくなる温度<Te )と着火燃焼し、
圧損が忠激に降下する温fff(Ti)を求めた。また
2500ppm 、 l〜シルク、OKg・mで微粒子
を補足する場合の圧損の経時変化を1時間あたりの圧損
変化量をチャートから計算してΔP (sH(+ /H
r )の(直を求めた。
Regarding the catalysts obtained in practical side layer Examples 1 to 6 and Comparative Examples 1 to 4,
A catalyst evaluation test was conducted using a 4-cylinder diesel engine with an exhaust capacity of 12,300 cc. Engine speed 2
Particles were captured for about 2 hours under the conditions of 50 rpm, torque 4.0, and 9 m, and then the torque was increased to 0.57 rg.
The change in pressure drop in the catalyst layer was continuously recorded by raising the pressure every 5 minutes at m intervals, and as the exhaust gas temperature rose on the catalyst, the pressure increased due to accumulation of fine particles and the pressure decreased due to combustion of fine particles. When the temperature becomes equal to <Te), ignition and combustion occur,
The temperature fff(Ti) at which the pressure drop drops sharply was determined. In addition, when capturing fine particles with 2500 ppm, l~silk, OKg・m, the change in pressure drop over time is calculated from the chart by the amount of change in pressure drop per hour, and ΔP (sH(+ /H
I found the (direct) of r ).

また、250Orpm、t−ルク4.OKg−TrLの
微粒子捕捉条件下でダイリューショントンネルを用いて
、微粒子の触媒入口、および出口の微粒子の母を測定し
微粒子の捕捉率(%)を求めた。これらの結果を表2に
示した。
Also, 250Orpm, t-lux 4. Using a dilution tunnel under OKg-TrL fine particle trapping conditions, the fine particle matrix at the catalyst inlet and outlet was measured to determine the fine particle capture rate (%). These results are shown in Table 2.

表        2Table 2

Claims (7)

【特許請求の範囲】[Claims] (1)耐火性三次元構造体のガス接触面あるいはガス接
触部に白金、ロジウム、パラジウムよりなる白金族元素
の少くとも1種を含有してなる触媒活性物質を突起状に
形成されてなる耐火性無機質基材上に担持せしめてなる
ことを特徴とする排ガス浄化用触媒。
(1) A refractory structure in which a catalytically active substance containing at least one platinum group element consisting of platinum, rhodium, and palladium is formed in the shape of a protrusion on the gas contacting surface or gas contacting part of the refractory three-dimensional structure. A catalyst for purifying exhaust gas, characterized in that it is supported on an organic inorganic base material.
(2)耐火性三次元構造体のガス接触面あるいはガス接
触部に白金、ロジウム、パラジウムよりなる白金族元素
の少なくとも1種と鉄、コバルト、ニッケル、モリブデ
ン、タングステン、ニオブ、リン、鉛、亜鉛、錫、銅、
マンガン、セリウム、ランタン、銀、バリウム、マグネ
シウム、カルシウム、ストロンチウムよりなるアルカリ
土類金属、カリウム、ナトリウム、セシウム、ルビジウ
ムよりなるアルカリ金属よりなる群から選ばれた少くと
も1種を含有してなる触媒活性物資を突起状に形成され
てなる耐火性無機質基材上に担持せしめてなることを特
徴とする排ガス浄化用触媒。
(2) At least one platinum group element consisting of platinum, rhodium, and palladium and iron, cobalt, nickel, molybdenum, tungsten, niobium, phosphorus, lead, and zinc on the gas contact surface or gas contact part of the refractory three-dimensional structure. , tin, copper,
A catalyst containing at least one selected from the group consisting of an alkaline earth metal consisting of manganese, cerium, lanthanum, silver, barium, magnesium, calcium, and strontium, and an alkali metal consisting of potassium, sodium, cesium, and rubidium. A catalyst for purifying exhaust gas, characterized in that an active material is supported on a refractory inorganic base material formed into protrusions.
(3)耐火性三次元構造体が、セラミックフォーム、セ
ラミックハニカム、ウォールフロータイプのハニカムモ
ノリス、メタルハニカムまたは金属発泡体であることを
特徴とする特許請求の範囲第(1)または(2)記載の
触媒。
(3) Claim (1) or (2), wherein the fire-resistant three-dimensional structure is a ceramic foam, a ceramic honeycomb, a wall-flow type honeycomb monolith, a metal honeycomb, or a metal foam. catalyst.
(4)耐火性無機質基材が、活性アルミナ、シリカ、チ
タニア、ジルコニア、シリカ−アルミナ、アルミナ−ジ
ルコニア、アルミナ−チタニア、シリカ−チタニア、シ
リカ−ジルコニア、チタニア−ジルコニアおよびゼオラ
イトよりなる群から選ばれた少くとも1種であることを
特徴とする特許請求の範囲(1)、(2)または(3)
記載の触媒。
(4) The refractory inorganic base material is selected from the group consisting of activated alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia, and zeolite. Claims (1), (2) or (3) characterized in that at least one type
Catalysts as described.
(5)触媒活性物質を担持せしめた耐火性無機質基材よ
りなる粗粒状物を、アルミナゾル、チタニアゾル、ジル
コニアゾル、シリカゾル、可溶性ベーマイト、可溶性有
機高分子化合物よりなる群から選ばれた少くとも1種の
分散剤とともに水性スラリー化し、えられたスラリーを
用いて耐火性三次元構造体のガス接触面あるいはガス接
触部に該粗粒状物を突起状に担持せしめることを特徴と
する排ガス浄化用触媒の製法。
(5) Coarse particles made of a refractory inorganic base material supporting a catalytically active substance are at least one type selected from the group consisting of alumina sol, titania sol, zirconia sol, silica sol, soluble boehmite, and soluble organic polymer compound. A catalyst for exhaust gas purification, characterized in that the coarse particles are formed into an aqueous slurry with a dispersant, and the resulting slurry is used to support the coarse particles in the form of protrusions on the gas contact surface or gas contact portion of a refractory three-dimensional structure. Manufacturing method.
(6)耐火性三次元構造体が、セラミックフォーム、セ
ラミックハニカム、ウォールフロータイプのハニカムモ
ノリス、メタルハニカムまたは金属発泡体であることを
特徴とする特許請求の範囲第(5)記載の触媒。
(6) The catalyst according to claim (5), wherein the refractory three-dimensional structure is a ceramic foam, a ceramic honeycomb, a wall-flow type honeycomb monolith, a metal honeycomb, or a metal foam.
(7)触媒活性物質を担持せしめた耐火性無機質基材よ
りなる粗粒状物に無機質繊維状物質を混合してスラリー
化することを特徴とする特許請求の範囲(5)または(
6)記載の方法。
(7) Claim (5) or (7) characterized in that an inorganic fibrous material is mixed into coarse particles made of a refractory inorganic base material supporting a catalytically active material to form a slurry.
6) Method described.
JP60244193A 1985-07-02 1985-11-01 Catalyst for purifying exhaust gas and its preparation Granted JPS62106843A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60244193A JPS62106843A (en) 1985-11-01 1985-11-01 Catalyst for purifying exhaust gas and its preparation
CA000512739A CA1260909A (en) 1985-07-02 1986-06-30 Exhaust gas cleaning catalyst and process for production thereof
EP86108950A EP0211233B1 (en) 1985-07-02 1986-07-01 Exhaust gas cleaning catalyst and process for production thereof
AT86108950T ATE47533T1 (en) 1985-07-02 1986-07-01 EXHAUST GAS PURIFICATION CATALYST AND PROCESS OF PRODUCTION.
DE8686108950T DE3666536D1 (en) 1985-07-02 1986-07-01 Exhaust gas cleaning catalyst and process for production thereof
US06/880,827 US4749671A (en) 1985-07-02 1986-07-01 Exhaust gas cleaning catalyst and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60244193A JPS62106843A (en) 1985-11-01 1985-11-01 Catalyst for purifying exhaust gas and its preparation

Publications (2)

Publication Number Publication Date
JPS62106843A true JPS62106843A (en) 1987-05-18
JPH0568301B2 JPH0568301B2 (en) 1993-09-28

Family

ID=17115156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60244193A Granted JPS62106843A (en) 1985-07-02 1985-11-01 Catalyst for purifying exhaust gas and its preparation

Country Status (1)

Country Link
JP (1) JPS62106843A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250848A (en) * 1990-12-27 1992-09-07 Toyota Motor Corp Catalyst to decrease diesel particulate
JP2001073742A (en) * 1999-06-29 2001-03-21 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JPWO2003068394A1 (en) * 2002-02-15 2005-06-02 株式会社アイシーティー Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method
JP2009513335A (en) * 2005-10-28 2009-04-02 エスケー エナジー シーオー., エルティーディー. Diesel engine exhaust gas purification system
CN109954491A (en) * 2017-12-26 2019-07-02 丰田自动车株式会社 Manufacturing method of catalyst for purification of exhaust gas, and catalyst for purification of exhaust gas
JP2021137764A (en) * 2020-03-09 2021-09-16 株式会社Subaru Method of manufacturing filter, and filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2546234A1 (en) * 2003-11-24 2005-06-09 Dow Global Technologies Inc. Catalyst for a diesel particulate filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250848A (en) * 1990-12-27 1992-09-07 Toyota Motor Corp Catalyst to decrease diesel particulate
JP2001073742A (en) * 1999-06-29 2001-03-21 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JPWO2003068394A1 (en) * 2002-02-15 2005-06-02 株式会社アイシーティー Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method
JP4628676B2 (en) * 2002-02-15 2011-02-09 株式会社アイシーティー Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method
JP2009513335A (en) * 2005-10-28 2009-04-02 エスケー エナジー シーオー., エルティーディー. Diesel engine exhaust gas purification system
CN109954491A (en) * 2017-12-26 2019-07-02 丰田自动车株式会社 Manufacturing method of catalyst for purification of exhaust gas, and catalyst for purification of exhaust gas
JP2021137764A (en) * 2020-03-09 2021-09-16 株式会社Subaru Method of manufacturing filter, and filter

Also Published As

Publication number Publication date
JPH0568301B2 (en) 1993-09-28

Similar Documents

Publication Publication Date Title
US4749671A (en) Exhaust gas cleaning catalyst and process for production thereof
KR950002223B1 (en) Catalyst for purification of exhausted gas from diesel engine
JP4628676B2 (en) Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method
JP4165400B2 (en) Diesel particulate matter exhaust filter carrying catalyst
JP2009525161A (en) Diesel exhaust system and catalyst composition therefor
KR101457238B1 (en) Improved Soot Filters
JP2007296518A (en) Catalyst and device for cleaning exhaust gas
JP2001327818A (en) Ceramic filter and filtration device
JPS62129146A (en) Catalyst for purifying exhaust gas and its preparation
JP2003334457A (en) Catalyst body and method for producing catalyst body
JP2003230838A (en) Ceramic catalyst body
JPH09158710A (en) Diesel exhaust gas purifying filter
JP2004058013A (en) Purification catalyst for exhaust gas
JPH09276708A (en) Catalyst for cleaning of exhaust gas from diesel engine
JP2004330118A (en) Filter for clarifying exhaust gas
JPS62106843A (en) Catalyst for purifying exhaust gas and its preparation
JP2003080031A (en) Filter element and filter for purification of exhaust gas
JP2011507688A (en) Improved catalyzed soot filters and methods for producing them
EP1979070A1 (en) Exhaust gas-purifying catalyst
JPS627448A (en) Catalyst for purifying exhaust gas and its preparation
JP3823528B2 (en) Exhaust gas purification material and exhaust gas purification apparatus using the same
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JP2006525866A (en) Exhaust gas aftertreatment device
JPS6146246A (en) Catalyst for purifying exhaust gas
JP2005040646A (en) Filtering member for collecting dust