[go: up one dir, main page]

JPS62103486A - Propulsion force generating device - Google Patents

Propulsion force generating device

Info

Publication number
JPS62103486A
JPS62103486A JP24473285A JP24473285A JPS62103486A JP S62103486 A JPS62103486 A JP S62103486A JP 24473285 A JP24473285 A JP 24473285A JP 24473285 A JP24473285 A JP 24473285A JP S62103486 A JPS62103486 A JP S62103486A
Authority
JP
Japan
Prior art keywords
force
axis
rotation
forces
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24473285A
Other languages
Japanese (ja)
Inventor
Takeshi Fumoto
麓 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24473285A priority Critical patent/JPS62103486A/en
Publication of JPS62103486A publication Critical patent/JPS62103486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structure Of Transmissions (AREA)

Abstract

PURPOSE:To obtain a propulsion force in a specified direction as the resultant force of centrifugal force and inertia force by fixing a weight to a place at an appropriate distance from the center of each of two shafts which rotate synchronously oppositely to each other, increasing the speed of rotation in a specified phase, while decelerating in the other phase. CONSTITUTION:Weights 11, 12 are synchronously rotated oppositely to each other by a prime mover 1, accelerated in a range between a point theta before X and a point thetaafter passing the X, while decelerated in a range between a point theta before X' and a point theta after passing the X', without being either accelerated or decelerated in other ranges. Accordingly, the centrifugal force of the weights 11, 12 are large in the vicinity of the X while it is small in the vicinity of the X'. Therefore, the resultant force of the centrifugal forces in one rotation is directed in the X direction on the X-X' axis. Although reactional forces accompanying this accelerating movement is very small in the direction of X-X' axis while it is large in the direction of Y-Y' axis, they are completely offset due to synchronized opposite rotation. Accordingly, all forces are generated in the direction of X-X' axis, being undulated larger in the X direction and smaller in the X' direction, but synthetically directed in the X direction. This force can be utilized as a general propulsion force device.

Description

【発明の詳細な説明】 3 発明の訂細tJ゛説明 ごの発明tJ:、lIいに同jυ1逆回転する重錘を支
持4”ろ輔の回転速度を同期的に特定の位相に於て増速
1減速4−ろことに、l−り特定方向に推進力を発生且
1.める装置に関4−ろものである。
[Detailed description of the invention] 3 Revision of the invention tJ゛ Invention per explanation tJ: , lI In the same jυ1 supporting a counter-rotating weight, the rotational speed of a 4" wheel is synchronously maintained at a specific phase. This relates to a device that generates a propulsive force in a specific direction, in addition to speed increase and deceleration.

ilC来、動力を用いろJfl進力発生の方法としては
1屯輪を回転i7.地而又(」軌道との厚擦力によるも
の1、 ブ「lベラ、スタリコーを回転して、気体、液体を移動
111.め、その反作用によるもの。
Since ilC, the method of generating propulsion using power is to rotate one tonne wheel i7. Due to the thick friction force with the earth's orbit 1. Due to the reaction of the rotation of the roller and stariko, moving gas and liquid 111.

O2 ンJツト、し1ヶノト、イオン「lケラトの々11<燃
焼k tJ市磁力に31、り加速された気体、化学物質
を噴出DI、め、その反作用によろムの等が知らイ1て
いるか、何1+、 1.推進力の発生に何等かの媒体を
必要と・1ろ。
O2 gas and chemicals are ejected due to the ions, ions, keratone, 11 < combustion k tJ city magnetic force, DI, and the reaction is known. Is it true? 1+, 1. Some kind of medium is required to generate propulsion.

こイ1に対し 、本発明に於て(」外部の媒体、外部と
の物(Iiの出入なく、装置そイ1自体の閉じた系内に
於−7r、、l述の機構にJ′、り推進力を発生4−ろ
ことを+’iJ能とづ゛る装置である。一般的な陸上、
水1−の1(1ノ14を装置として利用できるのは勿論
であるか、特に′j宙空間に於(jろ■1進方弁生装置
として大きな初点をfi’ 4−ろbのである。
In contrast to this 1, in the present invention ('J' is connected to the mechanism described above within the closed system of the device 1 itself, without the entry and exit of external media or external objects (Ii). It is a device that generates a propulsive force and uses a 4-rotated motor to perform a +'iJ function.General land,
It goes without saying that water 1-1 (1-14) can be used as a device, especially in the air space (fi' 4-lob), so it is possible to use a large initial point as a one-way valve generator. be.

第1図(」本装置の側断面図1第2図は平面図で’ t
j 14ii動機、2(」その原動機軸、3はその原動
機軸に固定さA]、 /−傘南屯、4,7はそれと噛合
う傘山東、5(Jこの傘南小4を一端に固定された回転
軸て、その他端に固定された支持腕10を介して、重錘
I2を保持する。
Figure 1 is a side sectional view of the device. Figure 2 is a plan view.
j 14ii motor, 2 (' its prime mover shaft, 3 fixed to its prime mover shaft A], /-Kanantun, 4, 7 meshing with it Kasha Shan East, 5 (J this Kasha Nan 4 fixed to one end) A weight I2 is held by a support arm 10 fixed to the other end of the rotating shaft.

8(」全歯11(7を一端に固定された中空回転軸でN
o、3 その他端に、固定された支持腕9を介して1重錘11を
保持する。全ての回転軸は回転l\アリノゲにより支持
さイ1ている。、(iは以りの各部を収納。
8 ('' full teeth 11 (7) with a hollow rotating shaft fixed at one end
o, 3 A single weight 11 is held at the other end via a fixed support arm 9. All rotational axes are supported by rotational axes. , (i stores the following parts.

固定する機体である。It is a fixed aircraft.

この様な配置に於て 1lii動機lを回転且1.むれ
傘歯車3,4.7の作用により回転軸5.中空回転軸8
は互いに反対力向に回転する。7.7.’IJ回転軸の
中心軸)j向を示す記号と4“ろ。
In this arrangement, 1lii the motive 1 is rotated and 1. The rotating shaft 5. Hollow rotating shaft 8
rotate in opposite directions. 7.7. 'Center axis of IJ rotation axis) The symbol indicating the j direction and 4".

第2図に於てX−X’  、 Y −Y’ は、支t!
f腕9.10間の中央を通り1回転軸5,8に垂直な)
ト面上の回転中心を通るhoいに直角な2軸方向を示す
記号とずろ。この図の場合、x−x’ は原動機M2に
平行である。
In Figure 2, X-X' and Y-Y' are supports t!
f passing through the center between arms 9 and 10 and perpendicular to the axes of rotation 5 and 8)
Symbols and offsets indicating the two axis directions perpendicular to the axis passing through the center of rotation on the top surface. In this figure, x-x' is parallel to prime mover M2.

支持腕9と重錘11.支持腕IOと重錘12の綜合の重
心点13は同一円周I−に存在しx−x’軸−にに於て
一致ケる様配列4−る。
Support arm 9 and weight 11. The combined center of gravity 13 of the support arm IO and the weight 12 is arranged on the same circumference I- and coincides with the x-x' axis.

第3図は原動+IIによる重錘II、12の加速、減速
の位相を示す図で、重錘11,12は原、I’llJ機
1によりXの手前θ1通過後0の範囲を加速さ41、 
X ’ の手前0 、通過後0の範囲を71表速さ)l
]ろ。
Figure 3 is a diagram showing the phases of acceleration and deceleration of the weights II and 12 by the prime mover +II, where the weights 11 and 12 are accelerated in the range of 0 after passing θ1 in front of X by the I'llJ machine 1. ,
The range of 0 before X' and 0 after passing is 71 table speed) l
]reactor.

、−〇)−成■士(」重錘II、+2の運動か停止しl
」い範囲j・し、そり)他θ)・範囲て(」加減速(」
ないと4“ろ。
, -〇) - Sei ■shi (''Weight II, +2 movement or stop l
"Range j・shi, warping) other θ)・range ("acceleration/deceleration (")
If not, it's 4".

、二〇)+111減速に41″り重錘11.+2の速度
(」X近(カ(′重速にX′近傍で(」低油になる。従
−)てごの重錘(ハ回1)!、連動にj二)て生オろ遠
心力tJ:、X近傍で(1)、1¥く、X°近(ヅfで
(」小さくso故に1回転中の、・ド心力U)合成力t
JXX’ 軸IX方向に向く。
, 20) 41" to +111 deceleration, weight 11. +2 speed (" 1)!, interlocking j 2) centrifugal force tJ:, in the vicinity of ) resultant force t
JXX' Direction towards axis IX.

、−の加曲度運動に伴ろ反力はX X′軸方向に(J(
1)jIめて小さく、YY’ 軸方向には比較的太きい
か、Y−Y’ 軸方向の分力(」全て重錘II、12が
同1[11iφ回転1.て1)ろ鳥、完全に相殺ざ、h
ろ。従、(二、−゛の連動に上り発)14゛ろ力(」全
−CX−X’ 輔)J向にノl +r 、  一回転中
にX方向に大きく、X′ ツノ向に小さぐ、波状的にな
るか、/f:体を綜合4−ればX ツノ向に向く勾を発
′1.]“ろことになろ。
, -The reaction force is generated in the direction of the X X' axis (J(
1) jI is very small and relatively thick in the YY' axis direction, or the component force in the YY' axis direction (all weights II, 12 are the same 1 [11iφ rotation 1. and 1) rotor, Completely cancel out, h
reactor. Accordingly, (starting from the upward movement of 2, -゛) 14゛ force (''all-CX-X' 輔) Nol +r in the J direction, large in the X direction and small in the X' horn direction during one rotation. , it becomes wavy, /f: If the body is integrated 4-, it emits a slope pointing towards the X'1. ] “Be polite.

勾())発生か波状(振動的)であることか不都合の]
]II(」、こり)加速(1゛I川を異に4=ろ(lT
組かの本装置を組、21合わtlろ二とにより平滑化4
〜ろことが可能でN (1,5 ある。
It is inconvenient that gradient () occurs or it is wavy (oscillatory).
] II ('', stiff) acceleration (1゛I river different 4=ro (lT
Assemble this device and smooth with 21 tl filter 4
It is possible to do ~N (1,5).

上述のIJI+減速パターン(」説明の簡便の7モ、最
も簡単な形を述へたか、他のパターン(加減速反力をも
利用4−ろ7?)6勿論可能である3゜原動機と+7て
は回転中に正確に加減速の制御可能な装置であイ]ば、
との様な種類でも良いが、後述の理由により直流モータ
ーが適1.ている。加減速の速度1位相を11.確に制
御するには、直流モーターを電子制御(位相、速度の検
出制御に於て「ノータリーエンコータを利用等既知技術
の適用)4′るのが最適であり、叉減速の方法と1.て
回生制動を利用ずれば1回転部分の運動エネルギーを1
1気エネルギーに変え、電6目こ返j7てエネルギー効
率を高めるごとかできろ。史に上ネルギー11;(と1
.て太陽電池を利用できろごと、燃事1.J)l気ガス
が無いことを考えイ1げ、Tm空間に於+する使用にも
、J−く適合している。
The above IJI + deceleration pattern (7) is a simple explanation. Did I mention the simplest form? Other patterns (also using acceleration/deceleration reaction force 4-7?) 6 Of course are possible 3゜ prime mover and +7 If it is a device that can accurately control acceleration and deceleration during rotation,
Although a type such as 1. ing. Set the acceleration/deceleration speed 1 phase to 11. For accurate control, it is best to electronically control the DC motor (application of known technology such as using a notary encoder in phase and speed detection control), and the method of 1. If you use regenerative braking, the kinetic energy of one rotation can be reduced to 1
You could change it to 1 ki energy and increase the energy efficiency by increasing the energy efficiency. Energy in history 11; (and 1
.. If solar cells can be used, fuel consumption 1. J) Considering the fact that there is no gas, it is also suitable for use in the Tm space.

本装置の基本的ji h■成と1.て(」、上述の如く
であるか、その原理を変更1.ない範囲の構成1機構N
o、6 的配列の変形は勿論あり得る。例えば、互いに逆回転4
−ろ2輔(」空間的に分離しても、機械的、電気的に連
結され、同11JIが正確であれば、同様の効果を発揮
できる3、 又逆回転4゛る2軸をそれぞれ独立した原動機で駆動1
”ることも可能である。例えば、第1図に於て、傘歯車
4を除去し1回転軸5を下方に延長し、その一端に原動
機1ど同種の原動機を取り付1」同ルI逆回転9加誠速
の位相制御は電子的制御に依るらのとする。この場合、
原動機としては直流モーターか適I7ていること(J」
−述の通りである。この配置に於ては、同期の位相は電
子的に制御ずろもの故、自由に変り!可能で従って重錘
11.+2が合致1= 、加減速する範囲も自由に設定
可能となり、推進力発生の方向をX−Y平面内の全方向
中の任きの・方向に自由に設定できる大きな利点を生し
る。。
Basic configuration of this device and 1. ('', as described above or change its principle 1. No range of configuration 1 mechanism N
Of course, variations in the 6-dimensional arrangement are possible. For example, 4
-ro2suke('Even if they are separated spatially, they are mechanically and electrically connected, and if the same 11JI is accurate, the same effect can be achieved. 3. Also, the two axes that rotate in the opposite direction 4' can be independent of each other. Driven by the prime mover 1
For example, in Fig. 1, the bevel gear 4 can be removed, the one-rotation shaft 5 can be extended downward, and a motor of the same type as the prime mover 1 can be attached to one end of the shaft. The phase control of reverse rotation and acceleration speed is based on electronic control. in this case,
The prime mover must be a DC motor or a suitable I7 (J)
-As stated. In this arrangement, the synchronization phase can be changed freely because it is electronically controlled! Possible and therefore weight 11. +2 matches 1 = The range of acceleration and deceleration can be freely set, and the direction of generation of propulsive force can be freely set in any direction in the X-Y plane, which is a great advantage. .

ごのモーターの一方を止め他方を回転さすと推進力は生
じないが1回転力の反作用としてz −z’N07 軸周りの回転トルクを生じる。
When one of the motors is stopped and the other is rotated, no propulsive force is generated, but rotational torque around the z-z'N07 axis is generated as a reaction to one rotational force.

この様に1この装置は、その回転制御の組み合わせによ
り、X−Y平面の全方向に対オろ■(−進方の発生と、
X−Y平面に直角な7.−7. ’ 輔周りの回転トル
クを選択的に発生さ4ことかできる。
In this way, 1. This device can rotate in all directions on the X-Y plane by combining its rotation control.
7. Perpendicular to the X-Y plane. -7. ' It is possible to selectively generate rotational torque around the shaft.

この装置を史に一台、その回転軸を元の−・台に対し直
角に、即し第1図に於て、x−x’ 軸に平行に1重錘
がqいに干渉しない位置に設置L 、この二台を−・組
の装置とすれば、この新しい装置はその回転制御の組合
わ■により、原点0を中心とし、三次元空間の全方向に
任eに推進力を発生させ、Z−Z’ 軸、x−x’ 軸
周りに回転力を発生さすことかできる。これにY−Y軸
周りの回転Y・ルク発生装置(簡単な回転反力利用、又
は回転体の軸を傾Hる際に発生ずる歳差運動力の利用等
)を追加すれば、全体として三次元全方向への推進力の
発生、X、Y、Z、三軸周りの回転を自由に選択制御で
きる極めて利用効果の大きい有効な装置となる。
This device was installed once in history, and its rotation axis was set at right angles to the original -, in other words, in a position parallel to the Installation L, if these two devices are considered as a set of devices, this new device can generate propulsive force in all directions in three-dimensional space, centering on the origin 0, by the combination of its rotation control. , the Z-Z' axis, and the x-x' axis. If you add a rotational Y/lux generator around the Y-Y axis (using simple rotational reaction force, or using precession force generated when tilting the axis of a rotating body, etc.) to this, the entire It is an extremely effective device that can freely select and control the generation of propulsive force in all three-dimensional directions and rotation around the three axes of X, Y, and Z.

4 図面のffti単tJ゛説明 第1図(J1本発明装置の側断面図、第2図はその1へ
面図、第3図(j本発明の重錘の加減速の位相4小1−
図である3゜
4 Explanation of the ffti unit of the drawings Figure 1 (J1) A side sectional view of the apparatus of the present invention, Figure 2 is a side view of the apparatus of the present invention, Figure 3 (j Phase 4 of acceleration/deceleration of the weight of the present invention
Figure 3゜

Claims (1)

【特許請求の範囲】[Claims] 適当な動力により、互いに同期して逆回転する2つの軸
の各々に、回転中心より適当の距離を以て、1個ずつの
重錘を固定し、その軸の回転速度を特定の位相に於て増
速し、他の特定の位相に於て減速することにより生じる
遠心力、慣性力の合成力として、特定の方向への推進力
を発生せしめることを特徴とする推進力発生装置。
Using appropriate power, one weight is fixed to each of two shafts that rotate in opposite directions in synchronization with each other at an appropriate distance from the center of rotation, and the rotational speed of the shafts is increased in a specific phase. A propulsive force generating device that generates propulsive force in a specific direction as a composite force of centrifugal force and inertial force generated by speeding up and decelerating in another specific phase.
JP24473285A 1985-10-31 1985-10-31 Propulsion force generating device Pending JPS62103486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24473285A JPS62103486A (en) 1985-10-31 1985-10-31 Propulsion force generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24473285A JPS62103486A (en) 1985-10-31 1985-10-31 Propulsion force generating device

Publications (1)

Publication Number Publication Date
JPS62103486A true JPS62103486A (en) 1987-05-13

Family

ID=17123067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24473285A Pending JPS62103486A (en) 1985-10-31 1985-10-31 Propulsion force generating device

Country Status (1)

Country Link
JP (1) JPS62103486A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050414A1 (en) * 2001-11-29 2003-06-19 Pauli Partanen Method for moving massas and apparatus for its implementation
WO2003087573A1 (en) * 2002-04-11 2003-10-23 Btt Co., Ltd. A method generating coriolis force of noninertial force and inner propulsion method of the closed system using the coriolis force
WO2003104650A1 (en) * 2002-06-07 2003-12-18 Btt Co., Ltd A method generating angular acceleration force of noninertial force and inner propulsion method of a closed system using thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050414A1 (en) * 2001-11-29 2003-06-19 Pauli Partanen Method for moving massas and apparatus for its implementation
WO2003087573A1 (en) * 2002-04-11 2003-10-23 Btt Co., Ltd. A method generating coriolis force of noninertial force and inner propulsion method of the closed system using the coriolis force
WO2003104650A1 (en) * 2002-06-07 2003-12-18 Btt Co., Ltd A method generating angular acceleration force of noninertial force and inner propulsion method of a closed system using thereof

Similar Documents

Publication Publication Date Title
US4631971A (en) Apparatus for developing a propulsion force
JP4184803B2 (en) Gyro wave power generator and wave-dissipating device using the same
US20100307290A1 (en) Apparatus, system and method for gyroscopic propulsion and/or steering
KR101837944B1 (en) Turbine apparatus for generator
JPS62103486A (en) Propulsion force generating device
US5673872A (en) Apparatus for energy transformation and conservation
US20120024633A1 (en) Gyromotor
US20040103729A1 (en) Dual-axis centrifugal propulsion system
CN201856895U (en) Device for generating radial push force by utilizing centrifugal force
US20060070488A1 (en) Propellantless propulsion engine
KR20110104835A (en) Propulsion generating unit and propulsion generating device including the same
JPH1122626A (en) Vertical shaft windmill effectively utilizing energy of wind by autorotation of blade
JPH0861214A (en) Permanent engine
CN107002640A (en) Propulsion system
WO2023007579A1 (en) Propulsive-force generating device
CN101927830A (en) Method for generating radial thrust by using centrifugal force
JPS59577A (en) Inertial propulsion engine and inertial motor
JP2021173215A (en) Propulsion device and aircraft with propulsion device
WO2010116384A1 (en) Thrust and torque generator without reaction mass
JP2000220562A (en) Driving force generator using centrifugal force
JPH02184278A (en) Thrust device
JPH074349A (en) Thrust engine by acceleration reaction
JPH03273883A (en) Thrust generating method and device by magnetic force and power energy generator using this device
JPS6226121A (en) Thrust generator
KR20180116331A (en) Machines with Platen rotor and work methods for this machine