[go: up one dir, main page]

JPS6210156B2 - - Google Patents

Info

Publication number
JPS6210156B2
JPS6210156B2 JP57191519A JP19151982A JPS6210156B2 JP S6210156 B2 JPS6210156 B2 JP S6210156B2 JP 57191519 A JP57191519 A JP 57191519A JP 19151982 A JP19151982 A JP 19151982A JP S6210156 B2 JPS6210156 B2 JP S6210156B2
Authority
JP
Japan
Prior art keywords
electrode
output
circuit
detection
immobilized enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57191519A
Other languages
Japanese (ja)
Other versions
JPS5982082A (en
Inventor
Hiroshi Hagiwara
Fumio Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP57191519A priority Critical patent/JPS5982082A/en
Publication of JPS5982082A publication Critical patent/JPS5982082A/en
Publication of JPS6210156B2 publication Critical patent/JPS6210156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、固定化酵素電極を用いて生体液中の
成分を測定するグルコース濃度検出装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a glucose concentration detection device that measures components in a biological fluid using an immobilized enzyme electrode.

(背景技術) 近年、酵素電極の名称のもとに生体中の成分を
迅速簡便に測定のできる電極が広く用いられる様
になつてきた。この酵素電極は酵素の固定化技術
の進歩とイオン電極やガス感応電極の発展とが相
まつて出現したものである。その構造は特定の基
質と特異的に反応する酵素膜の部分と系の濃度変
化に応答する従来型の電極部分(下地電極)とか
ら成る二重構造の電極であり、かかる固定化酵素
電極を用いて生体液中の成分を迅速かつ簡便に測
定が可能となつた。
(Background Art) In recent years, electrodes that can quickly and easily measure components in living organisms have come into widespread use under the name of enzyme electrodes. This enzyme electrode emerged from the combination of advances in enzyme immobilization technology and developments in ion electrodes and gas-sensitive electrodes. Its structure is a double-structured electrode consisting of an enzyme membrane part that specifically reacts with a specific substrate and a conventional electrode part (substrate electrode) that responds to changes in the concentration of the system. Using this method, components in biological fluids can be measured quickly and easily.

第1図は従来のグルコース濃度検出装置を示す
模式図で、1は血液や尿素の測定溶液、2はグル
コースオキシダーゼ(GOD)を白金電極上に固
定化して成る固定化酵素電極で、試料極を構成す
る。3は白金電極で対極を構成する。4は電流
計、5は定電圧電源である。
Figure 1 is a schematic diagram showing a conventional glucose concentration detection device. 1 is a measurement solution for blood or urea, 2 is an immobilized enzyme electrode consisting of glucose oxidase (GOD) immobilized on a platinum electrode, and the sample electrode is Configure. 3 constitutes a counter electrode with a platinum electrode. 4 is an ammeter, and 5 is a constant voltage power supply.

而して、血液や尿中のグルコース濃度は下記の
反応式によつて測定する。
Therefore, the glucose concentration in blood or urine is measured using the following reaction formula.

即ち、グルコース(β−D−C6H12O6)は測定
溶液1中に存在する酸素(O2)と共にグルコース
オキシダーゼ(GOD)に特異的に反応してグル
コン酸(C6H12O6)と過酸化水素(H2O2)にな
る。この過酸化水素(H2O2)が下地電極である白
金電極により酸化され負の電子(e-)が生じ、か
かる電子により生ずる電流値を電流計4により測
定することによりグルコース濃度を測定する。
That is, glucose (β-D-C 6 H 12 O 6 ) reacts specifically with glucose oxidase (GOD) together with oxygen (O 2 ) present in the measurement solution 1 to form gluconic acid (C 6 H 12 O 6 ) and hydrogen peroxide (H 2 O 2 ). This hydrogen peroxide (H 2 O 2 ) is oxidized by the platinum electrode serving as the base electrode to generate negative electrons (e - ), and the glucose concentration is measured by measuring the current value generated by these electrons with an ammeter 4. .

しかしながら、血液や尿中にはアスコルビン酸
(C6H8O6)や尿素のように酸化されやすい物質が
存在し、これが下地電極により酸化され下記の如
く反応し、妨害電流を発生させ、正確なグルコー
ス濃度が測定できない事態がおこる欠点があつ
た。
However, there are substances that are easily oxidized such as ascorbic acid (C 6 H 8 O 6 ) and urea in blood and urine, and these are oxidized by the base electrode and react as shown below, generating interference current and making accurate However, there was a drawback that the glucose concentration could not be measured.

C6H8O6→C6H6O6+2H+2e- (発明の目的) 本発明は上記欠点に鑑みなされたもので、その
目的とするところは、妨害電流に影響されること
なくグルコースの濃度のみを正確に検出できるグ
ルコース濃度検出装置を提供するにある。
C 6 H 8 O 6 →C 6 H 6 O 6 +2H + 2e - (Objective of the Invention) The present invention has been made in view of the above drawbacks, and its object is to An object of the present invention is to provide a glucose concentration detection device that can accurately detect only the concentration of glucose.

(発明の開示) 第2図は本発明に係るグルコース濃度検出装置
の原理図で、固定化酵素電極2と対極3とにより
構成される従来と同様の検出回路Aに、固定化酵
素電極2の下地電極と同一種の材質より構成され
る電極6と対極3より構成される妨害物質濃度検
出回路Bを加え、両検出回路A,Bの出力を相殺
回路Cに入力することにより固定化酵素に特異的
に反応するグルコースの濃度のみを検出するよう
にしたものである。尚、第3図a〜cは上記各検
出回路A,B,Cの出力レベルを示す特性図で、
同図aは検出回路Aの出力を示し、グルコース濃
度と妨害物質濃度が足された出力レベルを示す。
同図bは検出回路Bの出力を示し、妨害物質濃度
を示す。同図cは相殺回路Cの出力を示し、グル
コース濃度のみを示す。
(Disclosure of the Invention) FIG. 2 is a principle diagram of the glucose concentration detection device according to the present invention. By adding an interfering substance concentration detection circuit B consisting of an electrode 6 made of the same material as the base electrode and a counter electrode 3, and inputting the outputs of both detection circuits A and B to a cancellation circuit C, the immobilized enzyme can be detected. It is designed to detect only the concentration of glucose that specifically reacts. Incidentally, FIGS. 3 a to 3 c are characteristic diagrams showing the output levels of each of the above-mentioned detection circuits A, B, and C.
Figure a shows the output of the detection circuit A, and shows the output level that is the sum of the glucose concentration and the interfering substance concentration.
Figure b shows the output of detection circuit B, indicating the interfering substance concentration. Figure c shows the output of the cancellation circuit C, and shows only the glucose concentration.

第4図は本発明の一実施例を示す回路図であ
る。図中5は定電圧回路で、オペアンプOP1の
正端子に定電圧を与えてオペアンプOP1の出力
電圧を一定とするため、抵抗R1、電界効果型ト
ランジスタFET、ツエナーダイオードZDから成
る直列回路と、オペアンプOP1の出力電圧を決
める。抵抗R2,R3と、出力電圧を更に分圧する
抵抗R4,R5とより成る。そして、この定電圧回
路5の出力を対極3に印加している。7は前記検
出回路Aで、オペアンプOP2と抵抗R6とからな
り抵抗R6に流れる電流の大きさに応じた出力電
圧を出力端より出力する。8は前記検出回路B
で、オペアンプOP3と抵抗R7とからなり抵抗R7
に流れる電流の大きさに応じた出力電圧を出力端
より出力する。9は前記相殺回路で、オペアンプ
OP4と抵抗R8,R9,R10,R11とからなり、前記
両検出回路7,8の出力電圧の差を出力端より出
力する。
FIG. 4 is a circuit diagram showing one embodiment of the present invention. 5 in the figure is a constant voltage circuit, in order to apply a constant voltage to the positive terminal of the operational amplifier OP1 and keep the output voltage of the operational amplifier OP1 constant, a series circuit consisting of a resistor R 1 , a field effect transistor FET, and a Zener diode ZD; Determine the output voltage of operational amplifier OP1. It consists of resistors R 2 and R 3 and resistors R 4 and R 5 that further divide the output voltage. The output of this constant voltage circuit 5 is applied to the counter electrode 3. 7 is the detection circuit A, which is composed of an operational amplifier OP2 and a resistor R6 , and outputs an output voltage from an output terminal according to the magnitude of the current flowing through the resistor R6 . 8 is the detection circuit B
The resistor R7 consists of the operational amplifier OP3 and the resistor R7 .
The output terminal outputs an output voltage according to the magnitude of the current flowing through the output terminal. 9 is the above-mentioned cancellation circuit, which is an operational amplifier.
It consists of OP4 and resistors R 8 , R 9 , R 10 , and R 11 , and outputs the difference between the output voltages of both the detection circuits 7 and 8 from the output terminal.

(発明の効果) 本発明は上記のように、試料極としてグルコー
ス濃度を測定する固定化酵素電極を用い、前記固
定化酵素電極を構成する下地電極と同一種類の妨
害物質濃度検出電極を配し、前記固定化酵素電極
と妨害物質濃度検出電極の各出力をそれぞれの検
出回路に入力し、その両検出回路の出力を相殺回
路に入力して両検出回路出力の差を出力し、その
出力により濃度を測定したので、妨害物質による
影響のない固定化酵素に反応するグルコース濃度
のみを正確に検出することができるグルコース濃
度検出装置を提供できた。
(Effects of the Invention) As described above, the present invention uses an immobilized enzyme electrode for measuring glucose concentration as a sample electrode, and arranges an interfering substance concentration detection electrode of the same type as the base electrode constituting the immobilized enzyme electrode. , input the respective outputs of the immobilized enzyme electrode and the interfering substance concentration detection electrode to their respective detection circuits, input the outputs of both detection circuits to a canceling circuit, output the difference between the outputs of both detection circuits, and use the outputs to Since the concentration was measured, it was possible to provide a glucose concentration detection device that can accurately detect only the glucose concentration that reacts with the immobilized enzyme without being affected by interfering substances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の模式図、第2図は本発明に係
る原理図、第3図a〜cは各検出回路の出力特性
図、第4図は本発明の一実施例を示す回路図であ
る。
Fig. 1 is a schematic diagram of a conventional example, Fig. 2 is a principle diagram according to the present invention, Figs. 3 a to c are output characteristic diagrams of each detection circuit, and Fig. 4 is a circuit diagram showing an embodiment of the present invention. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 グルコース濃度を測定する固定化酵素電極
と、前記固定化酵素電極を構成する下地電極と同
一種類の妨害物質濃度検出電極とを配し、前記固
定化酵素電極と妨害物質濃度検出電極の各出力を
それぞれの検出回路に入力し、その両検出回路の
出力差を相殺回路を介して検出して成るグルコー
ス濃度検出装置。
1. An immobilized enzyme electrode for measuring glucose concentration and an interfering substance concentration detection electrode of the same type as the base electrode constituting the immobilized enzyme electrode are arranged, and each output of the immobilized enzyme electrode and interfering substance concentration detection electrode is arranged. is input into each detection circuit, and the difference in output between the two detection circuits is detected via a canceling circuit.
JP57191519A 1982-10-29 1982-10-29 Apparatus for determining glucose concentration Granted JPS5982082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191519A JPS5982082A (en) 1982-10-29 1982-10-29 Apparatus for determining glucose concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191519A JPS5982082A (en) 1982-10-29 1982-10-29 Apparatus for determining glucose concentration

Publications (2)

Publication Number Publication Date
JPS5982082A JPS5982082A (en) 1984-05-11
JPS6210156B2 true JPS6210156B2 (en) 1987-03-04

Family

ID=16276001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191519A Granted JPS5982082A (en) 1982-10-29 1982-10-29 Apparatus for determining glucose concentration

Country Status (1)

Country Link
JP (1) JPS5982082A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8508677D0 (en) * 1985-04-03 1985-05-09 Genetics Int Inc Assay for salicylate
JPS6222552U (en) * 1985-07-25 1987-02-10
JP2678348B2 (en) * 1994-11-07 1997-11-17 全国学校用品株式会社 Writing brush case
PT1077634E (en) 1998-05-13 2003-12-31 Cygnus Therapeutic Systems MONITORING OF PHYSIOLOGICAL SUBSTANCES TO BE ANALYZED

Also Published As

Publication number Publication date
JPS5982082A (en) 1984-05-11

Similar Documents

Publication Publication Date Title
CN1867826B (en) Method and apparatus for assay of electrochemical properties
US6251260B1 (en) Potentiometric sensors for analytic determination
Harrison et al. Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood
US6645368B1 (en) Meter and method of using the meter for determining the concentration of a component of a fluid
US4655880A (en) Apparatus and method for sensing species, substances and substrates using oxidase
US5030333A (en) Polarographic method for measuring both analyte and oxygen with the same detecting electrode of an electroenzymatic sensor
Soldatkin et al. Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane
KR100340173B1 (en) Electrochemical Biosensor Readout Meter
ATE207113T1 (en) METHOD AND DEVICE FOR REDUCING ASYMETRIC ERRORS IN AMPEROMETRIC SENSORS
US4400242A (en) Electrochemical method of determining oxygen, halothane and nitrous oxide
SE434888B (en) APPARATUS FOR DETERMINING THE CONCENTRATION OF GLUCOSE IN BIOLOGICAL FLUIDS AND PROCEDURE FOR DETERMINING SUCH CONCENTRATIONS
JPS59166852A (en) Biosensor
JPS6210156B2 (en)
Fisicaro et al. Assessment of the uncertainty budget for the amperometric measurement of dissolved oxygen
Chou et al. All solid-state potentiometric biosensors for creatinine determination based on pH and ammonium electrodes
Nosrati et al. Modified Clark microsensors with enhanced sensing current
US6596154B1 (en) Method for regulating the sensitivity of a microsensor, and a microsensor that makes use of this method
JP2945082B2 (en) Oxygen concentration measuring device and measuring method
SU600427A1 (en) Method of electrochemical analysis of substances
JPS59231440A (en) Electrode and apparatus for detecting glucose concentration
US5921922A (en) Measuring of bloodgases
RU2682568C1 (en) Method for determining concentration of hydrogen peroxide in solution
Hedayatipour et al. Low cost paper based electrochemical sensing system
JPS59147249A (en) Measuring instrument using bio-sensor
SU828055A1 (en) Device for electrochemical measurements