JPS62101081A - Tandem structure solar cell - Google Patents
Tandem structure solar cellInfo
- Publication number
- JPS62101081A JPS62101081A JP60241817A JP24181785A JPS62101081A JP S62101081 A JPS62101081 A JP S62101081A JP 60241817 A JP60241817 A JP 60241817A JP 24181785 A JP24181785 A JP 24181785A JP S62101081 A JPS62101081 A JP S62101081A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- solar cell
- tandem structure
- junction surface
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
- H10F10/172—Photovoltaic cells having only PIN junction potential barriers comprising multiple PIN junctions, e.g. tandem cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は太陽エネルギーの光変換効率を高めたタンデ
ム構造太陽電池に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a tandem structure solar cell with improved light conversion efficiency of solar energy.
〈従来の技術とその問題点〉
アモルファスシリコン(a−si )を用いた太陽電池
の4t4造としては、第4図のような1つのa−3L単
層セル構造のもの、およびざらに高効率化をはかったも
のとして例えば第5図のようなa−si単位セルが2つ
の場合のタンデム構造のものが知られている。<Conventional technology and its problems> The 4T4 structure of solar cells using amorphous silicon (A-SI) includes one A-3L single-layer cell structure as shown in Figure 4, and a highly efficient solar cell. For example, a tandem structure with two a-si unit cells as shown in FIG. 5 is known.
ところが第5図のようなタンデム構造セルにおいては、
従来の第4図の如ぎpin構造の単層セルでは考えられ
なかったn−p接合面が必要となり、タンデム構造セル
特有の構造についての改良が必要である。However, in a tandem structure cell as shown in Figure 5,
An n-p junction surface is required, which was not possible in the conventional single-layer cell with a pin structure as shown in FIG. 4, and it is necessary to improve the structure peculiar to the tandem structure cell.
即ち、従来第5図の如きpl 11n1、p2!2n2
の2層構造のセルを作成しても、該セル作成時に必要と
なるnl p2接合面において整流特性が生じ、pl
11n1セルで発生した電流と”2’2n2セルで発生
した電流がスムーズに流れないために第6図の(I)で
示すように電流−電圧曲線が電圧(V)の上昇に伴って
急激に低下してしまい、必要とする電流−電圧曲線(I
I)より特性が悪く、最大出力点にあ【プる出力が低く
なるという欠点があった。That is, conventionally, pl 11n1, p2!2n2 as shown in FIG.
Even if a cell with a two-layer structure of
Because the current generated in the 11n1 cell and the current generated in the 2'2n2 cell do not flow smoothly, the current-voltage curve suddenly changes as the voltage (V) increases, as shown in (I) in Figure 6. The required current-voltage curve (I
The characteristics were worse than I), and the disadvantage was that the output reaching the maximum output point was lower.
これはn1p2接合面のみを取出すと、第7図の曲線の
ように整流作用がおるため、DI!1n1、p212n
2のダイオードのnl p2が逆向きに接合された形と
なるためと考えられる。This is because when only the n1p2 junction is taken out, a rectifying effect occurs as shown in the curve in Figure 7, so DI! 1n1, p212n
This is thought to be because the nl p2 of the second diode is connected in the opposite direction.
く問題点を解決するための手段〉
上記に鑑みて、本発明者らはタンデム構造セル、例えば
pl 11n1、p212n2におけるn1層2接合面
の電流−電圧特性として整流特性を全く示さない、即ち
電流(I)軸とほぼ近い直線的とし、かつ抵抗の極めて
小さい構造の’1 p22層面とするならば、n1層2
接合面による電流ロスが生じないことにより高効率のタ
ンデム構造太陽電池が得られることを児出し、この発明
に至ったものである。In view of the above, the present inventors found that the current-voltage characteristics of the n1 layer 2 junction surface in tandem structure cells, for example, pl 11n1 and p212n2, do not exhibit any rectification characteristics, that is, the current (I) If the '1 p22 layer plane is a straight line almost close to the axis and has an extremely low resistance structure, then the n1 layer 2
This invention was developed based on the discovery that a highly efficient tandem structure solar cell can be obtained because no current loss occurs at the junction surface.
〈作用〉
即ち、この発明は上記の目的を次のようにして達成する
ものである。<Operation> That is, the present invention achieves the above object as follows.
■ n1層にn2層を形成するに際して高周波出力を0
.1W/Cr7I以上と高くしてnID2接合面に接合
面単位(欠陥)を多数作り、これによって電子、ホール
の■結合をスムーズにすること、ざらに微結晶化を促進
さUることである。■ When forming the n2 layer on the n1 layer, the high frequency output is set to 0.
.. The purpose is to increase the concentration to 1W/Cr7I or more to create a large number of junction surface units (defects) on the nID2 junction surface, thereby smoothing the bonding of electrons and holes and roughly promoting microcrystalization.
また■としてn 層の活性化エネルギーとp2層の活性
化エネルギーの和を出来るだり小ざくすることである。Also, as for (■), the sum of the activation energy of the n layer and the activation energy of the p2 layer can be made smaller or smaller.
なお■の場合、°燐、硼素などの不純物質をn1層2層
に高ドープしてやることも効果的で必る。In the case of (2), it is also effective and necessary to heavily dope the n1 layer and the second layer with an impurity such as phosphorus or boron.
かくして高周波出力による接合面準位の生成と不純物質
のドーピングの両者を適宜に調整すればよい。In this way, both the generation of junction surface levels by high-frequency output and the doping of impurity substances may be adjusted as appropriate.
要するに、この発明は上記した如<n11)2接合面の
接合面準位を多く設けたり、微結晶化を行なったり、燐
や硼素などのドーピングによりn1層2接合面の抵抗を
小さくして同接合面での電流の流れをスムーズにしたこ
とにより’1 p22層面での電力損失の防止に非常な
効果を発揮するものである。In short, this invention achieves the same result by lowering the resistance of the n1 layer 2 junction surface by providing many junction surface levels at the <n11)2 junction surface, performing microcrystalization, or doping with phosphorus, boron, etc., as described above. By smoothing the flow of current at the junction surface, it is extremely effective in preventing power loss at the '1p22 layer surface.
かくしてこの発明のタンデム構造セルはタンデム構造太
陽電池としてだけでなく、タンデム構造を有するイメー
ジセンサヤ感光体などにも利用することができるのであ
る。Thus, the tandem structure cell of the present invention can be used not only as a tandem structure solar cell, but also as an image sensor and photoreceptor having a tandem structure.
〈実施例〉 以下、この発明を実施例により説明する。<Example> This invention will be explained below with reference to Examples.
a−si単位セル数が2つのタンデム構造セル試料を従
来公知の方法にて製造するに当り、n1層2接合面の高
周波出力を0.5W/ciとしてn1層2接合面に多数
の接合面準位を作った本発明のセル試料Aとn1層2接
合面の高周波出力を0.05W/CrIIとした従来構
造のセル試料Bを作った。When manufacturing a tandem structure cell sample with two a-si unit cells by a conventionally known method, the high frequency output of the n1 layer 2 bonding surface was set to 0.5 W/ci, and a large number of bonding surfaces were applied to the n1 layer 2 bonding surface. A cell sample A of the present invention in which a level was created and a cell sample B having a conventional structure in which the high frequency output of the n1 layer 2 junction surface was 0.05 W/CrII were made.
これらA、Bの試料に対する太陽光線照射下での電流−
電圧出力特性は第1図の如くなり、この発明の試おIA
ではn1層2接合面での電力ロスがなく正常な電流−電
圧曲線を呈しており、曲線因子は43%を示した。Current for these samples A and B under sunlight irradiation -
The voltage output characteristics are as shown in Figure 1.
In this case, there was no power loss at the n1 layer 2 junction surface, a normal current-voltage curve was exhibited, and the fill factor was 43%.
これに対してBの従来法による試料ではn1層2接合而
が整流特性を有しているため、n1層2接合面での電力
ロスが生じ、十分な出力が得られず、曲線因子は31%
にすぎなかった。上記実施例はnp接合面の特性を示す
ために実施したもので、各単位セルの出力特性の最適化
は行なっていないため、変換効率は3%前後である。ざ
らに各単位セルの検討により変換効率8%のものがjq
られている。On the other hand, in the sample B made using the conventional method, the n1 layer 2 junction has rectifying characteristics, so power loss occurs at the n1 layer 2 junction, and sufficient output cannot be obtained, and the fill factor is 31. %
It was nothing more than The above example was carried out to show the characteristics of the np junction surface, and the output characteristics of each unit cell were not optimized, so the conversion efficiency was around 3%. After a rough study of each unit cell, one with a conversion efficiency of 8% was found.
It is being
上記第1図のA、Bについて、ざらに電流−電圧特性を
シミュレーションにより説明する。Regarding A and B in FIG. 1, the current-voltage characteristics will be briefly explained by simulation.
第2図において、タンデム構造セルの1層目のセルの出
力特性を<a)、21目セルの出力特性を(b)とする
と、n1層2接合面による出力ロスがなければ、即らn
1層2接合面において抵抗なく電流が流れているとする
と、全体での出力は(C)で示す良好な出力特性を示し
、第1図のへが再現できるのである。In Fig. 2, if the output characteristics of the first layer of the tandem structure cell are <a) and the output characteristics of the 21st cell are (b), then if there is no output loss due to the n1 layer 2 junction, then n
Assuming that current flows without resistance at the one-layer, two-layer junction interface, the overall output exhibits a good output characteristic as shown in (C), and can reproduce the pattern shown in Fig. 1.
次に第1図のBを再現するためには、第3図の(d)の
ようなnl p22層面の出力特性を付加する必要があ
り、そうすると、(e)をシミュレートすることができ
る。これは即ち、従来のタンデム構造セルのn1層2接
合面が第3図の(d>のような曲線の出力特性を有して
いるために(e)のような状態となり曲線因子が極端に
悪くなるのである。従って第3図の(d>をVIlll
llにほぼ近い直線となるようにする、即ち整流特性を
なくし、かつ抵抗を)木端に小さくして抵抗なく電流が
流れるようにし、n1p2接合面におりる電子とボール
の再結合を起りやすくすれば、第2図のにうな状態とな
ってタンデム構造セルの出力特性を向上させることがで
きるのである。Next, in order to reproduce B in FIG. 1, it is necessary to add the output characteristics of the nl p22 layer plane as shown in (d) in FIG. 3, and then (e) can be simulated. This is because the n1 layer 2 junction surface of the conventional tandem structure cell has the output characteristic of the curve shown in (d> in Figure 3), resulting in the state shown in (e), where the fill factor becomes extremely large. Therefore, if (d> in Fig. 3 is
ll, in other words, eliminate the rectifying property, and reduce the resistance (resistance) to the end of the wood so that the current flows without resistance, making it easier for the electrons and balls that fall on the n1p2 junction to recombine. If this is done, the state shown in FIG. 2 will be achieved, and the output characteristics of the tandem structure cell can be improved.
〈発明の効果〉
上記の如くこの発明によれば光変換効率の高いタンデム
@造太陽電池が得られ、その実用的効果は非常に大ぎい
ものである。<Effects of the Invention> As described above, according to the present invention, a tandem solar cell with high light conversion efficiency can be obtained, and its practical effects are very great.
第1図はこの発明のタンデム構造太陽電池の出力特性を
示す説明図、第2図および第3図は第1図の出力特性の
シミュレーション説明図、第4図はa−3,111層セ
ル太陽電池の1例を示す断面図、第5図はタンデム構造
太陽電池の1例を示す断面図、第6図は従来法による2
層@造太陽電池(I)と適正な太陽電池(II)の出力
特性を示し、第7図は従来法による2層構造太陽電池の
np接合面の電流−電圧特性を示す説明図である。FIG. 1 is an explanatory diagram showing the output characteristics of the tandem structure solar cell of the present invention, FIGS. 2 and 3 are simulation explanatory diagrams of the output characteristics of FIG. 1, and FIG. 5 is a sectional view showing an example of a tandem structure solar cell, and FIG. 6 is a sectional view showing an example of a tandem structure solar cell.
The output characteristics of the layered solar cell (I) and the proper solar cell (II) are shown, and FIG. 7 is an explanatory diagram showing the current-voltage characteristics of the np junction surface of the conventional two-layer structure solar cell.
Claims (2)
太陽電池においてnp接合面の電流−電圧出力特性がほ
ぼ直線的であり、かつ前記np接合面の面抵抗を小さく
して光変換効率を高めたことを特徴とするタンデム構造
太陽電池。(1) In a tandem solar cell in which the junction between unit cells is an np junction, the current-voltage output characteristic of the np junction surface is almost linear, and the light conversion efficiency is improved by reducing the sheet resistance of the np junction surface. A tandem structure solar cell characterized by increased height.
とする特許請求の範囲第1項記載のタンデム構造太陽電
池。(2) The tandem structure solar cell according to claim 1, characterized in that a large number of junction surface levels are provided on the np junction surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60241817A JPS62101081A (en) | 1985-10-28 | 1985-10-28 | Tandem structure solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60241817A JPS62101081A (en) | 1985-10-28 | 1985-10-28 | Tandem structure solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62101081A true JPS62101081A (en) | 1987-05-11 |
Family
ID=17079935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60241817A Pending JPS62101081A (en) | 1985-10-28 | 1985-10-28 | Tandem structure solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62101081A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6476778A (en) * | 1987-09-17 | 1989-03-22 | Fuji Electric Res | Amorphous photoelectric conversion device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS609178A (en) * | 1983-06-29 | 1985-01-18 | Toshiba Corp | Photovoltaic device |
-
1985
- 1985-10-28 JP JP60241817A patent/JPS62101081A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS609178A (en) * | 1983-06-29 | 1985-01-18 | Toshiba Corp | Photovoltaic device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6476778A (en) * | 1987-09-17 | 1989-03-22 | Fuji Electric Res | Amorphous photoelectric conversion device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH025576A (en) | Thin film solar cell device | |
WO2018223868A1 (en) | Photovoltaic solar cell sheet assembly | |
Mahto et al. | Improving performance of photovoltaic panel by reconfigurability in partial shading condition | |
CN103928555A (en) | A solar cell module | |
CN109037367A (en) | Multi-main-grid solar cell | |
CN103548257A (en) | Method for quality inspection of photovoltaic solar cells, solar cell module and method for manufacturing photovoltaic solar cells | |
CN109119497B (en) | A silicon-based solar cell structure | |
JPS62101081A (en) | Tandem structure solar cell | |
JPS61241982A (en) | Optical power-generating element | |
JP2010067752A (en) | Photovoltaic device, and method for manufacturing the same | |
JP2023103163A (en) | solar module | |
CN209729932U (en) | A kind of no main gate line component | |
CN209592062U (en) | A kind of solar photovoltaic assembly of high generation efficiency | |
Vunnam et al. | A novel monocrystalline PV array configuration for enhancing the maximum power under partial shading conditions | |
JP2001111083A (en) | Solar cell module | |
Wenham et al. | Australian educational and research opportunities arising through rapid growth in the photovoltaic industry | |
van de Stadt et al. | A computationally efficient multidiode model for optimizing the front grid of multijunction solar cells under concentration | |
JP2884171B2 (en) | Amorphous solar cell | |
JPS6242467A (en) | Photoelectric conversion element | |
JPS63222469A (en) | Laminated photosensor | |
JPS633471A (en) | Tandem structure solar cell | |
JPS6116579A (en) | Integrated type solar cell | |
TWM467180U (en) | Electrode structure of solar cell | |
CN119133269A (en) | A back contact solar cell string and its assembly and system | |
CN119133268A (en) | Electrode structure of back contact battery, back contact battery and its components and system |