[go: up one dir, main page]

JPS62100629A - Torsion meter and shaft horsepower meter using same - Google Patents

Torsion meter and shaft horsepower meter using same

Info

Publication number
JPS62100629A
JPS62100629A JP24184185A JP24184185A JPS62100629A JP S62100629 A JPS62100629 A JP S62100629A JP 24184185 A JP24184185 A JP 24184185A JP 24184185 A JP24184185 A JP 24184185A JP S62100629 A JPS62100629 A JP S62100629A
Authority
JP
Japan
Prior art keywords
shaft
light source
torsion
measured
long tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24184185A
Other languages
Japanese (ja)
Inventor
Sakuichi Kenno
研野 作一
Masahiro Sunaga
須永 政博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURAMOTO KEIKI SEIKOSHO KK
Original Assignee
KURAMOTO KEIKI SEIKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURAMOTO KEIKI SEIKOSHO KK filed Critical KURAMOTO KEIKI SEIKOSHO KK
Priority to JP24184185A priority Critical patent/JPS62100629A/en
Publication of JPS62100629A publication Critical patent/JPS62100629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To increase the reliability and the measuring accuracy of an instrument by detecting the displacement of the position of a light source caused by the torsion of a shaft to be measured by a position detector. CONSTITUTION:First and second flanges 8 and 8', respectively, are fixedly mounted to a rotating shaft 3 to be measured, the latter being apart from the former by a predetermined length L. Light is transmitted in a long cylinder mounted to the second flange 8' in an overhung manner. The light emitter from a laser 13 is converged on the surface of a one-dimensional position detector (PSD) 16 fixedly mounted to the fixed end of the long cylinder via an objective lens 14. A light source position displacement detecting circuit 17 processes the output of the PSD 16 and detects the positional displacement delta of the laser 13 generated with the torsion of the shaft 3 to be measured. A torsional angle calculator 37, processing positional displacement signals transmitted from a detecting circuit 17, computes the torsional angle theta of the shaft 3. A data thetais fed to a shaft horsepower meter 11 wherein the product of theta and the rotating speed of the shaft 3 is computed and a shaft horsepower P is obtained.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はねじり計およびこれを用いた軸馬力計の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement of a torsion meter and a shaft horsepower meter using the same.

[発明の技術的背景コ 従来より第6図(a)に示すように内燃機関、蒸気機関
、fft!t+機等の原動機1で発生した動力、および
1■進器、発電機、ポンプ、送風機等の受動機2で消費
される動力の大きさは動力削によって測定される。動力
は動力を伝達する中間伝達軸3の回転力率と回転速度と
の積に比例する。従って回転速度は回転胴により測定さ
れるので、動力計は単に軸3の回転力のみを測定する回
転力率計(トルクメータ)または軸3のねじれO(第6
図(b))を測定するねじり計(トーションメータ)を
さす場合が多い。
[Technical Background of the Invention] Conventionally, as shown in FIG. 6(a), internal combustion engines, steam engines, fft! The power generated by a prime mover 1 such as a T+ machine and the power consumed by a passive machine 2 such as an advance machine, a generator, a pump, and a blower are measured by power cutting. The power is proportional to the product of the rotational power factor and the rotational speed of the intermediate transmission shaft 3 that transmits the power. Therefore, since the rotational speed is measured by the rotating cylinder, the dynamometer can be used as either a rotational power factor meter (torque meter) that simply measures the rotational force of the shaft 3 or a torsion O of the shaft 3 (the sixth
It is often referred to as a torsion meter that measures figure (b)).

ねじり計および、ねじり計を用いた軸馬力Jt(ねじり
動力計)は、軸3のねじれθを測定する方法、原理、目
的等に従って、きわめて多くの種類が考案され設計製作
されている(日本舶用機関学会誌第16巻第10号参照
)。軸3のねじれθを測定する一般的な方法としては、
特別な測定用弾性軸を用いる場合と、実際の動力伝達軸
3の外部に測定装置4 (第6図(a))を付設する場
合とがあり、その測定原理は、軸3のある標点距離り間
のねじれによる角度の変化Oを、ある半径の位置変化量
に変え(CC’=R・θ、cc’=δ、Oが小さいので
δ年R・θ)(第6図(b))、これを機械的、光学的
、電気的に測定するか、あるいは磁歪などトルクにより
変化する物理量に変えて直接測定している。それによっ
て得られた測定値により、公式試運転に必要な船の契約
速度に要する軸馬力の測定、エンジンの燃料消費量の割
合、将来の設計に必要な実船と模型船との相似則に関す
る資料等のデータや、運航管理に必要なエンジンの経済
運転に要する燃料消費量との比、船の運航の最高効率と
船体や推進器軸性能の寿命、軸出力の測定による運航管
理の合理化等のためのデータや、その他軸系の振動特性
やねじり振動についての資料等、きわめて多くのデータ
を得ることができる。
Many types of torsion meters and shaft horsepower Jt (torsion dynamometers) using torsion meters have been devised, designed and manufactured according to the method, principle, purpose, etc. of measuring the torsion θ of the shaft 3 (Japanese Marine (Refer to Journal of the Society of Mechanical Engineers, Vol. 16, No. 10). The general method for measuring the torsion θ of shaft 3 is as follows:
There are cases in which a special elastic shaft for measurement is used, and there are cases in which a measuring device 4 (Fig. 6 (a)) is attached to the outside of the actual power transmission shaft 3. Change the angle change O due to the twist between the distances into the position change amount of a certain radius (CC' = R・θ, cc' = δ, since O is small, δ years R・θ) (Figure 6 (b) ), this is measured mechanically, optically, electrically, or directly by converting it into a physical quantity that changes with torque, such as magnetostriction. The measurements obtained are used to measure the shaft horsepower required for the ship's contracted speed, which is necessary for the official commissioning, the ratio of engine fuel consumption, and information on the rules of similarity between the actual ship and the model ship that will be necessary for future designs. data, the ratio of fuel consumption required for economical operation of the engine necessary for operation management, the maximum efficiency of ship operation and the life of the hull and propeller shaft performance, the rationalization of operation management by measuring shaft output, etc. An extremely large amount of data can be obtained, including data on the vibration characteristics of the shaft system and torsional vibration.

原動機1が中間軸3を経て動力を伝達している時の軸馬
力は、受動機2の回転軸の回転数Nと回転力率(トルク
)Tを測定することによって得られる。回転力率Tはそ
れに比例して生ずる回転軸3のねじれ0(あるいはδ)
をねじり計によって測定して求められる。ねじれθは受
動機2との干渉作用のため、常に一層複雑な変動を伴う
。従って回転数一定の定常運転の正確な軸馬力を得るた
めには、ねじれの平均値が求められるねじり計を用いな
ければならない。公式試運転の場合、船体は定速で軸3
の回転数Nおよび回転力率Tは独立でほぼ一定である。
The shaft horsepower when the prime mover 1 is transmitting power via the intermediate shaft 3 can be obtained by measuring the rotational speed N and rotational power factor (torque) T of the rotating shaft of the passive machine 2. The rotation power factor T is the torsion 0 (or δ) of the rotating shaft 3 that occurs in proportion to it.
is determined by measuring with a torsion meter. The twist θ is always accompanied by more complicated fluctuations due to interference with the passive device 2. Therefore, in order to obtain accurate shaft horsepower for steady-state operation at a constant rotational speed, it is necessary to use a torsion meter that can calculate the average value of torsion. For the official trial run, the hull is at constant speed and on axis 3.
The rotational speed N and rotational power factor T are independent and approximately constant.

従って、回転数Nを回転計で。Therefore, measure the rotational speed N using a tachometer.

回転力率Tに比例するねじhaをねじり計によりそれぞ
れ平均値を求め、次式から軸馬力Pが算出される(第6
図(b)参照)。
The average value of the screw ha, which is proportional to the rotational power factor T, is determined using a torsion meter, and the shaft horsepower P is calculated from the following formula (6th
(See figure (b)).

P=π2・D4・G−N・θ/7.2・し・10′′ 
 ・・・・(1)D:軸径(cm) G:軸材の剛性率(kg/cn?) N;輔の回転数(rpm) L:ねじり基亭軸長(cnl) θ:L間のねじり角(rad) しかるに、風波のある一般外洋航海中では船体の動揺が
加わり、回転軸3の回転数Nおよび回転力率Tは船の操
縦法に関連して互いに干渉し合いそれぞれ独立ではない
。従って時々刻々変動する回転数N、回転力率T、およ
び両者の積(TXN)である軸馬力Pの時間的変化が計
測できる高精度で耐久性のある安価なねじり計およびこ
れを用いた軸馬力計が要求されていた。
P=π2・D4・G−N・θ/7.2・shi・10''
...(1) D: Shaft diameter (cm) G: Rigidity of shaft material (kg/cn?) N: Number of rotations of shaft (rpm) L: Torsion base shaft length (cnl) θ: Between L However, during general ocean voyages with wind and waves, the ship's body is shaken, and the rotational speed N of the rotating shaft 3 and the rotational power factor T interfere with each other in relation to the ship's maneuvering method, and are not independent of each other. do not have. Therefore, a highly accurate, durable, and inexpensive torsion meter that can measure temporal changes in the rotating speed N, rotating power factor T, and shaft horsepower P, which is the product of both (TXN), which fluctuates from moment to moment, and a shaft using the same. A horsepower meter was required.

多くのねじり計はその基本的な構造面から長い基線を用
いる円板型、スリーブ型、円環型、その他の型に大別さ
れ、比較的に新しいものでも10数種類をかぞえること
ができ、さらに、ねじれの検出・測定方法によってそれ
ぞれ機械的、光学的、電気的な型に分類される。例えば
、第6図(c)はスリーブ型、同図(d)は円環型のね
じり計を示したもので、回転する伝達軸3の基!5(長
さし)の各々にディスク6、スリーブ7、(あるいは円
環8.8′)をそれぞれ固定し、回転中の軸3のねじ九
〇すなわちディスク6とスリーブ7(あるいは円環8.
8′)との微小な変位δ(δ=R・θ)を。
Many torsion gauges are broadly classified into disc type, sleeve type, ring type, and other types based on their basic structure, and even relatively new types can be classified into more than 10 types. They are classified into mechanical, optical, and electrical types depending on the method of detecting and measuring twist. For example, FIG. 6(c) shows a sleeve-type torsion meter, and FIG. 6(d) shows an annular-type torsion meter, which is the base of the rotating transmission shaft 3. A disk 6, a sleeve 7, (or an annular ring 8.8') is fixed to each of the lengths 5 (lengths), and a screw 90 of the rotating shaft 3, that is, the disk 6 and a sleeve 7 (or an annular ring 8.
8') and a minute displacement δ (δ=R・θ).

それぞれ機械的、光学的、電気的な方法によって測定す
るものである。また、光学的測定方法は、近年光学的デ
バイスの進歩と共に反射手段を用いないで直接に変位δ
を計測することができるようになりつつある・ 従来例として第6図(d)に示した円環型の光学的ねじ
り計について簡単に説明する。
They are measured by mechanical, optical, and electrical methods, respectively. In addition, with the progress of optical devices in recent years, optical measurement methods have been developed to directly measure the displacement δ without using reflection means.
It is becoming possible to measure the following. As a conventional example, the annular optical torsion meter shown in FIG. 6(d) will be briefly explained.

中間伝達軸3の長さ■−の基線5の各々に金属環8.8
′を回転軸QR1と垂直に固定し、その上に光源Sと曲
率半径りの凹面鏡Mを対向して設け、さらにレンズV、
プリズムG、フィルムFとがそれぞれ$*3に設けてあ
り、Oは曲率中心、Cは鏡心、従って○Cは主軸で、軸
3の回転軸の中心線QRと平行になるように固定しであ
る。○を通りかつ主軸OCと直角をなす直線X1、X2
の延長上の任意の点にスリット状の光gSを置くと、0
点に関して対称かつ同大の反)す像Pが得られる。
A metal ring 8.8 is attached to each of the base lines 5 of the intermediate transmission shaft 3 of length ■-.
' is fixed perpendicularly to the rotation axis QR1, and a light source S and a concave mirror M with a radius of curvature are provided thereon to face each other, and lenses V,
A prism G and a film F are each provided at $*3, O is the center of curvature, C is the mirror center, and therefore ○C is the main axis, which is fixed so that it is parallel to the center line QR of the rotation axis of shaft 3. It is. Straight lines X1 and X2 that pass through ○ and are perpendicular to the main axis OC
If a slit-shaped light gS is placed at any point on the extension of
A mirror image P that is symmetrical with respect to the point and of the same size is obtained.

今、軸3が右廻りに回転する推進器とすれば、反対の向
きにねじJしるので、凹面鏡Mは光源Sを通る直線X1
.X2と平行にδだけ変位してM′の位置すなわち主軸
OCは○゛C′に移動する。従って、光源Sの像はO′
と対称なP′に移動して明らかにPP’=2δ (基線
5の長さり、が1mで約0.5mm程度)となる、この
変位2δをレンズVで拡大し、特殊プリズムGを通して
回転軸3の中心線QRと直交する軸x’、x’、で回転
するフィルlz F面上にP′の像P、を結像させるこ
とができる。このようにねしれθは全く光学的方法によ
ってフィルムFの面上に現われるので、回転中の軸3の
回転力率Tの変化は、軸3の回転に伴いフィルムFを矢
印方向に回転することによって連続的に得られる。そし
て軸3の外周面上の両側に対称に、同一光学系を一対装
備して両者の平均値から常に正しい零点を求め、tiJ
I13のたわみによる影響分を除く;4慮を払うように
しである。零負荷の状態で回転軸3を左右一回転させた
両ii!Bの平均値、すなわち静的零線の記録を無負荷
時の読みΔ0としてフィルム17面上にとる。次に負荷
的のねじれの変化を動的零線として記録し、1回転分の
平均値をΔ′とする。これより両者の差Δ′−Δ。=Δ
が平均回転力率に相当するねじれとなる。従ってこの時
の回転軸3の回転数をNとすれば軸馬力Pは次式から得
られる。
Now, if the shaft 3 is a propeller rotating clockwise, the screw J is turned in the opposite direction, so the concave mirror M is a straight line X1 passing through the light source S.
.. By displacing δ in parallel to X2, the position of M', that is, the main axis OC, moves to ○゛C'. Therefore, the image of the light source S is O'
This displacement 2δ, which is clearly PP' = 2δ (the length of the base line 5 is about 0.5 mm at 1 m), is magnified with a lens V and passed through a special prism G to the rotation axis. An image P of P' can be formed on the plane of the filter lzF, which rotates about axes x', x', which are orthogonal to the center line QR of 3. In this way, the twist θ appears on the surface of the film F entirely by an optical method, so the change in the rotational power factor T of the shaft 3 during rotation is due to the rotation of the film F in the direction of the arrow as the shaft 3 rotates. is obtained continuously by Then, a pair of identical optical systems is installed symmetrically on both sides of the outer peripheral surface of the shaft 3, and the correct zero point is always determined from the average value of both.
This excludes the influence of the deflection of I13; four considerations should be taken. Both ii made by rotating the rotating shaft 3 once left and right under zero load condition! The average value of B, that is, the static zero line is recorded on the surface of the film 17 as a reading Δ0 under no load. Next, the change in torsion due to load is recorded as a dynamic zero line, and the average value for one rotation is set as Δ'. From this, the difference between the two is Δ′−Δ. =Δ
is the twist corresponding to the average rotational power factor. Therefore, if the rotational speed of the rotating shaft 3 at this time is N, the shaft horsepower P can be obtained from the following equation.

P=k・Δ・N    ・・・・・・・・(2)k:ね
じり計定数 Δ:フィルム面上の像の平均変位(−m)N : *t
Jの回転数(rpm) [背景技術の問題点コ ところで、相対的微小変位δを光学的方法で拡大する上
述のような円環型ねじり計では、基本軸長が長く、装置
類を装備するのに要する空間が広く装置の調整、取付け
が困難であった。また、スリーブ等を用いるものにあっ
ては、装置類の機械的要素が装置されるため、その質量
分布が回転軸に対して不均等となり、遠心力等の慣性力
を受ける。また、光源部や反射手段等の質量が大きいた
め、外界から振動を受けやすく、それによる誤差が大き
くなる。また、装備上光源のスリット像の幅が広くなり
すぎ、光学的倍率を高めることができなかった。そして
、軸の回転数は、−走航間の平均値を求めているためそ
の誤差が大きかった。
P=k・Δ・N (2) k: Torsion meter constant Δ: Average displacement of image on film surface (-m) N: *t
Rotational speed of J (rpm) [Problems with the background art] By the way, in the above-mentioned toric torsion meter that magnifies the relative minute displacement δ using an optical method, the basic axis length is long and it is necessary to equip it with devices. The space required for this process was large, making it difficult to adjust and install the device. Furthermore, in the case of a device using a sleeve or the like, since the mechanical elements of the device are installed, the mass distribution thereof becomes uneven with respect to the rotation axis and is subjected to inertial force such as centrifugal force. Furthermore, since the light source section, the reflecting means, etc. have large masses, they are susceptible to vibrations from the outside world, which increases errors. Furthermore, due to the equipment, the width of the slit image of the light source became too wide, making it impossible to increase the optical magnification. Furthermore, since the rotation speed of the shaft was calculated as an average value between - and cruising, the error was large.

しかもねじり計によっては、試運転完了エンジン停止後
でなければ軸馬力の結果は得られない等の多くの難点が
あった9 [発明の目的] 本発明は叙上の問題点に鑑みてなされたもので、光学系
が簡素で調整が容易なために装置の信頼性が高く、光学
系の拡大率が大きく精度が高いので軸長の短い被測定軸
の測定が可能で、光路が遮蔽されているので外部からの
光の進入を容易に阻止でき、尚かっ防じん構造になって
いるので汚染されにくいというねじり計およびこれを用
いた軸馬力計を提供することを目的とする。
Moreover, depending on the torsion meter, there are many drawbacks such as the fact that shaft horsepower results cannot be obtained until after the test run is completed and the engine is stopped.9 [Object of the Invention] The present invention was made in view of the above-mentioned problems. The reliability of the device is high because the optical system is simple and easy to adjust, and the optical system has a large magnification ratio and high precision, making it possible to measure short measured axes, and the optical path is shielded. Therefore, it is an object of the present invention to provide a torsion gauge and a shaft horsepower meter using the torsion gauge, which can easily prevent light from entering from the outside, and which is less likely to be contaminated because it has a dust-proof structure.

[発明の概要] この目的を達成するために本発明のねじり計によれば、
被測定軸に固定された第1のフランジと、前記第1のフ
ランジから所定長離れて前記被測定軸に固定された第2
のフランジと、前記第2のフランジに片持式に取り付け
られた長筒と、前記第1のフランジに取り付けられてい
て前記長筒の非固定端に対峙させられている光源と、前
記光源からの放射光が前記長筒の固定端に収斂されるよ
うに前記長筒に嵌め込まれた対物レンズと、前記光源と
前記長筒の非固定端を接合するフレキシブルパイプと、
前記対物レンズの焦点位置に受光面がくるように前記長
筒の固定端に取り付けられた位置検出器と、前記位置検
出器の出力信号を処理して前記被測定軸のねじれに伴な
って生ずる前記光源の位置変位を検出する光源位置変位
検出回路と、前記光源位置変位検出回路から伝送さ才t
できた位置変位信号を処理して前記被測定軸のねじれ角
を算出するねじれ角算出器とを具備したものである。
[Summary of the invention] According to the torsion meter of the present invention to achieve this object,
a first flange fixed to the measured shaft; and a second flange fixed to the measured shaft at a predetermined distance from the first flange.
a flange, a long tube attached to the second flange in a cantilevered manner, a light source attached to the first flange and opposed to the non-fixed end of the long tube, and a light source from the light source. an objective lens fitted into the long tube so that the emitted light is converged on the fixed end of the long tube; a flexible pipe joining the light source and the non-fixed end of the long tube;
a position detector attached to the fixed end of the long tube so that the light receiving surface is at the focal position of the objective lens; and a position detector that processes the output signal of the position detector to detect the distortion caused by the torsion of the axis to be measured. a light source position displacement detection circuit that detects a position displacement of the light source; and a light source position displacement detection circuit that detects a position displacement of the light source;
and a torsion angle calculator that processes the generated positional displacement signal to calculate the torsion angle of the shaft to be measured.

この目的を達成するために本発明の軸馬力計によれば、
被測定軸に固定された第1のフランジと、前記第1のフ
ランジから所定長離れて前記被測定軸に固定された第2
のフランジと、前記第2のフランジに片持式に取り付け
られた長筒と、前記第1のフランジに取り付けられてい
て前記長筒の非固定端に対峙させられている光源と、前
記光源からの放射光が前記長筒の固定端に収斂されるよ
うに前記長筒に嵌め込まれた対物レンズと、前記光源と
前記長筒の非固定端を接合するフレキシブルパイプと、
前記対物レンズの焦点位置に受光面がくるように前記長
筒の固定端に取り付けら九た位置検出器と、前記位置検
出器の出力信号を処理して前記被測定軸のねしわに伴な
って生ずる前記光源の位置変位を検出する光源位置変位
検出回路と、前記光源位置変位検出回路から伝送されて
きた位置変位信号を処理して前記被測定軸のねじれ角を
算出するねじれ角算出器と、前記被測定軸の回転数を測
定する軸回転針と、前記軸回転針で測定された回転数と
前記ねじれ角算出器で算出されたねじれ角とをもとに軸
馬力を算出する軸馬力算出器とを具備したものである。
According to the shaft horsepower meter of the present invention to achieve this purpose,
a first flange fixed to the measured shaft; and a second flange fixed to the measured shaft at a predetermined distance from the first flange.
a flange, a long tube attached to the second flange in a cantilevered manner, a light source attached to the first flange and opposed to the non-fixed end of the long tube, and a light source from the light source. an objective lens fitted into the long tube so that the emitted light is converged on the fixed end of the long tube; a flexible pipe joining the light source and the non-fixed end of the long tube;
A position detector is attached to the fixed end of the long tube so that the light receiving surface is at the focal position of the objective lens, and the output signal of the position detector is processed to detect wrinkles in the shaft to be measured. a light source position displacement detection circuit that detects a positional displacement of the light source caused by the light source; and a torsion angle calculator that processes a position displacement signal transmitted from the light source position displacement detection circuit to calculate a torsion angle of the measured axis. , a shaft rotation needle that measures the rotation speed of the shaft to be measured; and a shaft horsepower that calculates shaft horsepower based on the rotation speed measured by the shaft rotation needle and the torsion angle calculated by the torsion angle calculator. It is equipped with a calculator.

[発明の実施例] 本発明の好ましい実施例を第1図、第2図を参照して詳
述する。本発明のねじり計10.10’は、第1のフラ
ンジ8、第2のフランジ8′、長筒15、光源としての
点光源半導体レーザ(以下レーザと称す)13.13′
(ここに13′はレーザ13の見かけ上の位置にあるレ
ーザを示す)。
[Embodiments of the Invention] Preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. The torsion meter 10.10' of the present invention includes a first flange 8, a second flange 8', a long cylinder 15, and a point light source semiconductor laser (hereinafter referred to as laser) 13.13' as a light source.
(Here, 13' indicates the laser at the apparent position of laser 13).

対物レンズ14.フレキシブルパイプ(図示せず)とし
てのベローズ、位置検出器としての一次元位置検出器(
以下PSDと称す)16、光源位置変位検出回路17、
ねじれ角算出器371発振器18、変調器19.復調器
25、空中線系2o、20′とで形成されている。
Objective lens 14. Bellows as a flexible pipe (not shown), one-dimensional position detector as a position detector (
(hereinafter referred to as PSD) 16, light source position displacement detection circuit 17,
Torsion angle calculator 371 oscillator 18, modulator 19. It is formed by a demodulator 25 and antenna systems 2o and 20'.

第1のフランジ8は、船の動力伝達軸などの回転する被
測定軸3に固定されている。第2のフランジ8′は、前
記第1のフランジ8がら所定長り。
The first flange 8 is fixed to a rotating shaft 3 to be measured, such as a power transmission shaft of a ship. The second flange 8' has a predetermined length from the first flange 8.

例えば300a+m位離れて前記被測定軸3に固定され
ている。長筒15は、前記第2のフランジ8′に片持式
に取り付けられていて光が内部を伝播するものである。
For example, it is fixed to the shaft 3 to be measured at a distance of about 300 a+m. The long tube 15 is attached to the second flange 8' in a cantilevered manner, and light propagates inside.

レーザ13は、前記第1のフランジ8に取り付けられて
いて前記長筒15の非固定端38に対峙させられている
。対物レンズ14は。
The laser 13 is attached to the first flange 8 and is opposed to the non-fixed end 38 of the long tube 15. The objective lens 14 is.

前記レーザ13からの放射光が前記長筒15の固定端3
9に固定されたP S D ]、 6の面上に収斂され
るように前記長筒15に嵌め込まれた凸レンズである。
The emitted light from the laser 13 is transmitted to the fixed end 3 of the long tube 15.
P S D ], fixed at 9, is a convex lens fitted into the long tube 15 so as to converge on the surface of 6.

図示しないベローズは、前記レーザ13と前記長筒15
の非固定端38を接合する遮光部材である。PSD16
は、前記対物レンズ14の焦点位置に受光面がくるよう
1;前記長筒の固定端39に取り付けらJしたものであ
る。光源位置変位検出回路17は前記PSD16の出カ
イご号を処理して前記被測定軸3のねじ九に伴なって生
ずるし−ザ13の位置変位δを検出するものである。ね
じれ角算出器37ば、前記光源位置変位検出回路17か
ら伝送されてきた位置変位信号を処理して前記被測定軸
3のねじれ角θを算出するものである。発振器18は、
搬送波を発生するものである。
The bellows (not shown) includes the laser 13 and the long cylinder 15.
This is a light shielding member that joins the non-fixed end 38 of. PSD16
is attached to the fixed end 39 of the long tube so that the light receiving surface is located at the focal point of the objective lens 14. The light source position displacement detection circuit 17 processes the output signal from the PSD 16 and detects the position displacement δ of the laser 13 that occurs as the shaft 3 to be measured is screwed. The torsion angle calculator 37 processes the position displacement signal transmitted from the light source position displacement detection circuit 17 to calculate the torsion angle θ of the shaft 3 to be measured. The oscillator 18 is
It generates a carrier wave.

変調器19は、前記搬送波を前記位置変位信号で変調す
るものである。空中線系20は被変調波を送信するもの
であり、空中線系20′は前記被変調波を受信するもの
である。復調器25は、前記空中線系20′で受信した
被変調波を復調して前記位置変位信号を得んとするもの
である。
The modulator 19 modulates the carrier wave with the position displacement signal. The antenna system 20 is for transmitting modulated waves, and the antenna system 20' is for receiving the modulated waves. The demodulator 25 demodulates the modulated wave received by the antenna system 20' to obtain the position displacement signal.

第2図に示すように本発明の軸馬力計11は、前記ねじ
り計10.10′をそのまま採用することの他に軸回転
計26と軸馬力算出器27とを用いて成るものである。
As shown in FIG. 2, the shaft horsepower meter 11 of the present invention employs the torsion meter 10, 10' as is, and also includes a shaft rotation meter 26 and a shaft horsepower calculator 27.

軸回転計26は、前記被測定軸3の回転数N@:測定す
るものである。軸馬力算出器27は、前記軸回転計26
で測定された回転数Nと前記ねじれ角算出器37で算出
されたねじれ角Oとをもとに軸馬力Pを算出するもので
ある。
The shaft tachometer 26 measures the rotational speed N@ of the shaft 3 to be measured. The shaft horsepower calculator 27 includes the shaft rotation meter 26.
The shaft horsepower P is calculated based on the rotational speed N measured by the rotation speed N and the torsion angle O calculated by the torsion angle calculator 37.

以上のように構成された本発明のねじり計およびこれを
用いた軸馬力計の動作を第1図、第2図、第3図を基に
説明する。ねじれおよび軸馬力の測定原理は以下のよう
である。
The operation of the torsion meter of the present invention constructed as described above and the shaft horsepower meter using the same will be explained based on FIGS. 1, 2, and 3. The principles of measuring torsion and shaft horsepower are as follows.

すなわち回転する被測定軸3の無負荷時における放射光
の受光面における受光位置と、負荷時における放射光の
受光面における受光位置との変位δは、回転する被測定
軸3のねじれ、つまり回転力率(トルク)Tに比例する
。従ってこの変位を検出して電気信号として取り出せば
ねじれ角Oが知れる。これにその時点での被測定軸3の
回転速度(回転数N)との積を算出すれば軸馬力Pが知
れる。
In other words, the displacement δ between the light receiving position on the receiving surface of the emitted light when the rotating measured shaft 3 is not loaded and the light receiving position on the receiving surface of the emitted light when the rotating measured shaft 3 is loaded is determined by the torsion of the rotating measured shaft 3, that is, the rotation. Power factor (torque) is proportional to T. Therefore, by detecting this displacement and extracting it as an electrical signal, the torsion angle O can be determined. By calculating the product of this and the rotation speed (rotation speed N) of the shaft 3 to be measured at that time, the shaft horsepower P can be determined.

先づ第2図に示すねじり計10において、レーザ13か
ら発射されたレーザ光線は、所定距R1aだけ離れた位
置に配設された対物レンズ14で集光され、該レンズ1
4から所定距離b、即ち該レンズ14の焦点距離だけ離
九た位置に配設されたPSD16に受光位IQ点で受光
される。そして被測定軸3が矢印方向に回転している状
態ではし一ザ光線は、被測定軸3のねじわθに従って初
期点PがP′点にδだけ変位するので、受光位置がδ・
b / aだけ変位したQ′点で受光される。そしてP
SD16における受光位置の、電極23からの変位X(
第3図)に比例した位置変位信号V o−1−K−x 
+  (Kは定数)が光源位置変位検出回路17によっ
て得られる。
First, in the torsion meter 10 shown in FIG.
The light is received by the PSD 16 located at a predetermined distance b, that is, the focal length of the lens 14, from the light receiving position IQ point. Then, while the shaft 3 to be measured is rotating in the direction of the arrow, the initial point P of the beam is displaced by δ to point P' according to the torsion θ of the shaft 3 to be measured, so that the light receiving position is δ・
The light is received at point Q', which is displaced by b/a. and P
Displacement X (of the light receiving position in SD16 from electrode 23
position displacement signal V o-1-K-x proportional to Fig. 3)
+ (K is a constant) is obtained by the light source position displacement detection circuit 17.

即ち、PSD16が第3図に示すように一次元の受光部
と3本の電極22〜24からなっていて、入射光が被測
定軸3のねじ九〇に比例した位置に与えられる。そして
電極22.23間の距離をα(抵抗値R−α、Rは単位
長さ当りの抵抗値)、電極23から入射光の受光位置ま
での距離をX(抵抗値R−x)とすると、光の入射エネ
ルギーはこれに比例した光電流として、光の受光位置x
から電[22,23までの抵抗値R−xに逆比例して分
割され、電極22.23から取り出される。すなわち入
射光により生成した光電流をI。、ffi極22.23
から取り出される電流をIa、Ibとして、Ta=(Q
−x)・Io /Q、It+=x−Ia /Qとなる。
That is, as shown in FIG. 3, the PSD 16 consists of a one-dimensional light receiving section and three electrodes 22 to 24, and the incident light is applied to a position proportional to the screw 90 of the shaft 3 to be measured. If the distance between the electrodes 22 and 23 is α (resistance value R-α, R is the resistance value per unit length), and the distance from the electrode 23 to the receiving position of the incident light is X (resistance value R-x). , the incident energy of the light is expressed as a photocurrent proportional to this, and the light receiving position x
The voltage is divided in inverse proportion to the resistance value Rx from 22 to 23, and taken out from the electrodes 22 and 23. That is, the photocurrent generated by the incident light is I. , ffi pole 22.23
Assuming the currents taken out from Ia and Ib, Ta=(Q
-x)・Io/Q, It+=x−Ia/Q.

そして)寅算されたIaとIbとの和(Ia+Ib)、
差(Ia−Ib)の比(Ia−丁b)/(Ia+丁b)
が求められて、出力VOは(Ia  Ib)/(Ia+
Ib)=1−に−x、(K=2/Q)となる。このよう
に入射エネルギーに無関係に光の入射位置に比例した直
線性を持つ位置変位信号が得られることになる。
and) the sum of the calculated Ia and Ib (Ia + Ib),
Ratio of difference (Ia-Ib) (Ia-Chob)/(Ia+Chob)
is calculated, and the output VO is (Ia Ib)/(Ia+
Ib) = 1- to -x, (K = 2/Q). In this way, a positional displacement signal having linearity proportional to the incident position of the light is obtained regardless of the incident energy.

そこで第2図に示すように発振器18から発生する搬送
波が変調器19で前記位置変位信号によって変調される
。この変調された被変調波は空中線系20からねじり計
10′に向けて送信され、ねじり計10′の空中線系2
0′で受信され、そして復調器25で復調される。更に
ねじれ角質出回路37でねじれ角が算出される。この信
号はねじれO(ねじれθに比例するトルクT)について
の信号で、この信号はアナログ表示器28およびデジタ
ル記録器29に入力され、それぞれのデータを表示する
Therefore, as shown in FIG. 2, a carrier wave generated from an oscillator 18 is modulated by a modulator 19 using the position displacement signal. This modulated wave is transmitted from the antenna system 20 toward the torsion meter 10', and the antenna system 2 of the torsion meter 10'
0' and demodulated by demodulator 25. Further, a twist angle is calculated in a twist horn output circuit 37. This signal is a signal regarding the torsion O (torque T proportional to the torsion θ), and this signal is input to the analog display 28 and the digital recorder 29, and the respective data are displayed.

また、ねじれθ (ねじれθに比例するトルクT)の信
号は、軸馬力計11の軸馬力算出器27に入力され、被
測定軸3に別に設置された軸回転計26による回転数N
の信号が軸馬力算出器27に入力される。そして軸馬力
算出器27は、トルクTと回転数Nとの積TXNを算出
して軸馬力Pの時間的変化を出力する。このようにして
得られた被測定軸3に関する軸馬力P、回転数Nのデー
タは、連続してアナログ表示器30.32.およびデジ
タル記録器31.33にそれぞれ表示され記録される。
The signal of the torsion θ (torque T proportional to the torsion θ) is input to the shaft horsepower calculator 27 of the shaft horsepower meter 11, and the rotational speed N is measured by the shaft tachometer 26 installed separately on the shaft 3 to be measured.
The signal is input to the shaft horsepower calculator 27. Then, the shaft horsepower calculator 27 calculates the product TXN of the torque T and the rotational speed N, and outputs a temporal change in the shaft horsepower P. The data of the shaft horsepower P and rotation speed N regarding the shaft 3 to be measured thus obtained are continuously displayed on the analog display 30, 32. and are displayed and recorded on digital recorders 31 and 33, respectively.

この場合において被測定軸3の回転に伴なって回転する
ねじり計10へのねじり計10′からの電源の供給は、
スリップコンタクト35を介してなされる。
In this case, power is supplied from the torsion meter 10' to the torsion meter 10, which rotates with the rotation of the shaft 3 to be measured.
This is done via a slip contact 35.

また本発明の好ましい他の実施例を第4図、第5図を参
照して詳述する。本発明のねじり計10.10′は、第
1のフランジ8、第2のフランジ8′、長筒15、光源
としての点光源半導体レーザ(以下レーザと称す)13
、反射手段としての反射鏡36、対物レンズ14、フレ
キシブルパイプ(図示せず)としてのベローズ、位置検
出器としての一次元位置検出器(以下PSDと称す)1
6、光源位置変位検出回路17、ねじれ角算出器37゜
発振器18.変調器19.復調器25.空中線系20.
20′とで形成されており、前記実施例しこ比して反射
鏡36が付与されていることと長筒15の形状が異なっ
ている点で差違がある。
Another preferred embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5. The torsion gauge 10.10' of the present invention includes a first flange 8, a second flange 8', a long cylinder 15, and a point light source semiconductor laser (hereinafter referred to as laser) 13 as a light source.
, a reflecting mirror 36 as a reflecting means, an objective lens 14, a bellows as a flexible pipe (not shown), and a one-dimensional position detector (hereinafter referred to as PSD) 1 as a position detector.
6. Light source position displacement detection circuit 17, twist angle calculator 37° oscillator 18. Modulator 19. Demodulator 25. Aerial system 20.
20', and is different from the previous embodiment in that a reflecting mirror 36 is provided and the shape of the long tube 15 is different.

その長筒15は、前記第2のフランジ8′に片持式に取
り付けられていて非固定端近傍がL字状に屈曲しており
、光が内部を伝播するものであり、反射!I36は、前
記レーザ13からの放射光が前記長筒15の固定端39
に向けて反射されるように前記長筒15の屈曲部位40
に、例えば光軸に対して45度の角度になるように配設
されたものである。
The long tube 15 is attached to the second flange 8' in a cantilevered manner and is bent in an L-shape near the non-fixed end, allowing light to propagate inside and be reflected! I36 indicates that the emitted light from the laser 13 reaches the fixed end 39 of the long tube 15.
The bent portion 40 of the long tube 15 is bent so as to be reflected toward the
For example, it is arranged at an angle of 45 degrees with respect to the optical axis.

このように長軸15の非固定端近傍をL字状に屈曲させ
、その屈曲部位40に45度の角度で反射鏡36を配設
させたので1例え被測定軸3が軸方向に伸縮したとしで
もレーザ13から対物レンズ14までの光路長に変化が
生ずることはない。
In this way, the vicinity of the non-fixed end of the long axis 15 is bent into an L-shape, and the reflecting mirror 36 is disposed at the bent portion 40 at an angle of 45 degrees, so that even if the shaft 3 to be measured is expanded or contracted in the axial direction, Even if this happens, the optical path length from the laser 13 to the objective lens 14 will not change.

その結果被測定軸3のねじり角の測定値に被J1g定軸
3の伸縮に伴なう誤差が付加されると杷憂する必要はな
い。
As a result, there is no need to worry if an error due to the expansion and contraction of the J1g constant shaft 3 is added to the measured value of the torsion angle of the shaft 3 to be measured.

また前記のように構成されているので被測定軸3のねし
れに伴なうレーザ13のX方向の位置変位δy (第5
図)と同様に、被測定軸3の伸縮に伴なうレーザ13の
X方向の位置変位δX(第5図)も、PSD16上で光
軸からの受光位置変位δX−b/dとして受光されるよ
うになっている。
Furthermore, since the configuration is as described above, the positional displacement δy (fifth
(Fig. 5), the positional displacement δX (Fig. 5) of the laser 13 in the X direction due to the expansion and contraction of the measured axis 3 is also received on the PSD 16 as the light receiving position displacement δX-b/d from the optical axis. It has become so.

そこでX方向、X方向の2方向、即ち2次元のPSDを
用いれば、被測定軸3の伸縮量も測定可能となる。
Therefore, by using a two-dimensional PSD in the X direction and the X direction, the amount of expansion and contraction of the shaft 3 to be measured can also be measured.

[発明の効果コ 以上の実施例からも明らかなように本発明のねじり計お
よびこれを用いた軸馬力計によれば、光源が被測定軸に
固定された第1のフランジに取り付けられ、長筒の非固
定端を前記光源に対峙させるべく該長筒の固定端が前記
被測定軸に固定された第2のフランジに取り付けられ、
前記長筒の固定端に取り付けられた位置検出器の受光面
から焦点距離だけ離れた位置に対物レンズが嵌め込まれ
[Effects of the Invention] As is clear from the above embodiments, according to the torsion meter of the present invention and the shaft horsepower meter using the same, the light source is attached to the first flange fixed to the shaft to be measured, and the long A fixed end of the long tube is attached to a second flange fixed to the shaft to be measured so that the non-fixed end of the tube faces the light source,
An objective lens is fitted at a position separated by a focal length from a light receiving surface of a position detector attached to the fixed end of the long tube.

フレキシブルパイプが前記光源と前記長筒の非固定端と
を接合させ、被測定軸のねじれに伴なって生ずる前記光
源の位置変位を前記位置検出器で捕えてねじり角および
軸馬力を算出すべく構成したので、光学系が簡素で調整
が容易なために装置の信頼性が高く、光学系の拡大率が
大きく精度が高いので軸長の短い被測定軸の測定が可能
で、光路が遮蔽されているので外部からの光の進入を容
易に阻止でき、尚かつ防じん構造になっているので汚染
されにくいという効果を奏する。
A flexible pipe connects the light source and the non-fixed end of the long tube, and the position detector captures the positional displacement of the light source that occurs as the shaft to be measured is torsion, and calculates the torsion angle and shaft horsepower. Because of this configuration, the optical system is simple and easy to adjust, making the device highly reliable.The optical system has a large magnification and high precision, making it possible to measure short measured axes, and the optical path is not blocked. Since it has a dust-proof structure, it can easily prevent light from entering from the outside, and it has the effect of being less likely to be contaminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるねじり計の光学系の斜視図、第2
図は本発明によるねじり計およびこれを用いた軸馬力計
のブロック図、第3図は本発明によるねじり計の位置検
出器および光源位置変位検出回路の説明図、第4図(a
)は本発明による他の実施例として示したねじり計の光
学系の側面図、第4図(b)は本発明による他の実施例
として示したねじり計の光学系の平面図、第5図は本発
明による他の実施例として示したねじり計の光学系の斜
視図、第6図(a)は中間伝達値を介して連結さ汎る原
動機と受動機との関係を示す説明図。 第6図(b)は中間伝達軸のねじ九を示す説明図、第6
図(c)は従来のスリーブ型ねじり計を示す説明図、第
6図(d)は従来の光学式環型ねしり計およびこれを用
いた軸馬力計を示す説明図である。
Fig. 1 is a perspective view of the optical system of the torsion meter according to the present invention;
The figure is a block diagram of a torsion meter according to the present invention and a shaft horsepower meter using the same, FIG. 3 is an explanatory diagram of the position detector and light source position displacement detection circuit of the torsion meter according to the present invention, and FIG.
) is a side view of the optical system of the torsion meter shown as another embodiment of the present invention, FIG. 4(b) is a plan view of the optical system of the torsion meter shown as another embodiment of the present invention, and FIG. 6 is a perspective view of an optical system of a torsion meter shown as another embodiment of the present invention, and FIG. 6(a) is an explanatory diagram showing the relationship between a prime mover and a passive device connected via an intermediate transmission value. FIG. 6(b) is an explanatory diagram showing the screw 9 of the intermediate transmission shaft,
FIG. 6(c) is an explanatory diagram showing a conventional sleeve-type torsion meter, and FIG. 6(d) is an explanatory diagram showing a conventional optical ring-type torsion meter and a shaft horsepower meter using the same.

Claims (1)

【特許請求の範囲】 1、被測定軸に固定された第1のフランジと、前記第1
のフランジから所定長離れて前記被測定軸に固定された
第2のフランジと、前記第2のフランジに片持式に取り
付けられた長筒と、前記第1のフランジに取り付けられ
ていて前記長筒の非固定端に対峙させられている光源と
、前記光源からの放射光が前記長筒の固定端に収斂され
るように前記長筒に嵌め込まれた対物レンズと、前記光
源と前記長筒の非固定端を接合するフレキシブルパイプ
と、前記対物レンズの焦点位置に受光面がくるように前
記長筒の固定端に取付けられた位置検出器と、前記位置
検出器の出力信号を処理して前記被測定軸のねじれに伴
って生ずる前記光源の位置変位を検出する光源位置変位
検出回路と、前記光源位置変位検出回路から伝送されて
きた位置変位信号を処理して前記被測定軸のねじれ角を
算出するねじれ角算出器とを具備したことを特徴とする
ねじり計。 2、前記長筒の非固定端近傍がL字状に屈曲していて前
記光源からの放射光が前記長筒の固定端に向けて反射さ
れるように前記長筒の屈曲部位に反射手段が配設されて
成る特許請求の範囲第1項記載のねじり計。 3、被測定軸に固定された第1のフランジと、前記第1
のフランジから所定長離れて前記被測定軸に固定された
第2のフランジと、前記第2のフランジに片持式に取り
付けられた長筒と、前記第1のフランジに取り付けられ
ていて前記長筒の非固定端に対峙させられている光源と
、前記光源からの放射光が前記長筒の固定端に収斂され
るように前記長筒に嵌め込まれた対物レンズと、前記光
源と前記長筒の非固定端を接合するフレキシブルパイプ
と、前記対物レンズの焦点位置に受光面がくるように前
記長筒の固定端に取り付けられた位置検出器と、前記位
置検出器の出力信号を処理して前記被測定軸のねじれに
伴なって生ずる前記光源の位置変位を検出する光源位置
変位検出回路と、前記光源位置変位検出回路から伝送さ
れてきた位置変位信号を処理して前記被測定軸のねじれ
角を算出するねじれ角算出器と、前記被測定軸の回転数
を測定する軸回転計と、前記軸回転計で測定された回転
数と前記ねじれ角算出器で算出されたねじれ角とをもと
に軸馬力を算出する軸馬力算出器とを具備したことを特
徴とする軸馬力計。 4、前記長筒の非固定端近傍がL字状に屈曲していて前
記光源からの放射光が前記長筒の固定端に向けて反射さ
れるように前記長筒の屈曲部位に反射手段が配設された
ねじり計を用いて成る特許請求の範囲第3項記載の軸馬
力計。
[Claims] 1. A first flange fixed to the shaft to be measured;
a second flange fixed to the measured shaft at a predetermined distance from the flange; a long tube attached to the second flange in a cantilevered manner; a light source facing the non-fixed end of the tube; an objective lens fitted into the long tube so that emitted light from the light source is converged on the fixed end of the long tube; the light source and the long tube. a flexible pipe that joins the non-fixed ends of the tube, a position detector attached to the fixed end of the long tube so that the light-receiving surface is aligned with the focal position of the objective lens, and a position detector that processes the output signal of the position detector. a light source position displacement detection circuit that detects a positional displacement of the light source that occurs due to the torsion of the measured shaft; and a light source position displacement detection circuit that processes a position displacement signal transmitted from the light source position displacement detection circuit to determine the torsion angle of the measured shaft. A torsion meter characterized by comprising a torsion angle calculator for calculating. 2. A reflection means is provided at the bent portion of the long tube so that the vicinity of the non-fixed end of the long tube is bent in an L-shape, and the emitted light from the light source is reflected toward the fixed end of the long tube. A torsion gauge according to claim 1, wherein the torsion gauge is provided. 3. A first flange fixed to the shaft to be measured, and the first flange fixed to the shaft to be measured;
a second flange fixed to the measured shaft at a predetermined distance from the flange; a long tube attached to the second flange in a cantilevered manner; a light source facing the non-fixed end of the tube; an objective lens fitted into the long tube so that emitted light from the light source is converged on the fixed end of the long tube; the light source and the long tube. a flexible pipe that joins the non-fixed end of the tube, a position detector attached to the fixed end of the long tube so that the light receiving surface is aligned with the focal position of the objective lens, and a position detector that processes the output signal of the position detector. a light source position displacement detection circuit that detects a positional displacement of the light source that occurs due to the torsion of the measured shaft; and a light source position displacement detection circuit that processes a positional displacement signal transmitted from the light source position displacement detection circuit to detect the torsion of the measured shaft. a torsion angle calculator for calculating the angle; a shaft rotation meter for measuring the rotation speed of the shaft to be measured; and a rotation speed measured by the shaft rotation meter and the torsion angle calculated by the torsion angle calculator. A shaft horsepower meter comprising: and a shaft horsepower calculator for calculating shaft horsepower. 4. A reflection means is provided at the bent portion of the long tube so that the vicinity of the non-fixed end of the long tube is bent in an L-shape, and the emitted light from the light source is reflected toward the fixed end of the long tube. The shaft horsepower meter according to claim 3, which uses a torsion meter provided.
JP24184185A 1985-10-28 1985-10-28 Torsion meter and shaft horsepower meter using same Pending JPS62100629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24184185A JPS62100629A (en) 1985-10-28 1985-10-28 Torsion meter and shaft horsepower meter using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24184185A JPS62100629A (en) 1985-10-28 1985-10-28 Torsion meter and shaft horsepower meter using same

Publications (1)

Publication Number Publication Date
JPS62100629A true JPS62100629A (en) 1987-05-11

Family

ID=17080295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24184185A Pending JPS62100629A (en) 1985-10-28 1985-10-28 Torsion meter and shaft horsepower meter using same

Country Status (1)

Country Link
JP (1) JPS62100629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022800A1 (en) * 2009-01-22 2012-01-26 Smart Patent Limited Method and Apparatus for Measuring Torque Transmitted by Driven Wheel of a Cycle or the Like Vehicle
CN109506816A (en) * 2018-11-26 2019-03-22 北京经纬恒润科技有限公司 A kind of torque measuring device and measurement method
PL424104A1 (en) * 2017-12-29 2019-07-01 Akademia Morska W Szczecinie System and method for evaluation of mechanical load of power engineering machines that transmit rotary motion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022800A1 (en) * 2009-01-22 2012-01-26 Smart Patent Limited Method and Apparatus for Measuring Torque Transmitted by Driven Wheel of a Cycle or the Like Vehicle
US9354131B2 (en) * 2009-01-22 2016-05-31 Laser Spoke Limited Method and apparatus for measuring torque transmitted by driven wheel of a cycle or the like vehicle
PL424104A1 (en) * 2017-12-29 2019-07-01 Akademia Morska W Szczecinie System and method for evaluation of mechanical load of power engineering machines that transmit rotary motion
CN109506816A (en) * 2018-11-26 2019-03-22 北京经纬恒润科技有限公司 A kind of torque measuring device and measurement method

Similar Documents

Publication Publication Date Title
CN1846123B (en) Method and system for measuring torque
CN101587241B (en) Light beam scanning apparatus, laser machining apparatus, test method and laser machining method
US6782766B2 (en) Apparatus for detecting torque, axial position and axial alignment of a rotating shaft
US6795779B2 (en) High resolution torque measurement on a rotating shaft
US20110235049A1 (en) Wavefront Sensing Method and Apparatus
KR20020067588A (en) Method and system for optical distance and angle measurement
KR102457941B1 (en) Measuring device and measuring method
US3323377A (en) Fixed axis rate gyroscope
JPS62100629A (en) Torsion meter and shaft horsepower meter using same
JPH04351926A (en) Shaft vibration meter
Orton et al. Automatic self-calibration of an incremental motion encoder
JPS5972011A (en) Torsion meter and shaft horsepower meter using it
US7193730B2 (en) Eccentricity measuring instrument of polygon-mirror motor
US4572670A (en) Interferometric piezoelectric change of state monitor
US5402239A (en) Method of measuring orientation flat width of single crystal ingot
US7415363B2 (en) High resolution torque measurement on a rotating shaft with movement compensation
JPH0727601A (en) Method and apparatus for measuring vibration in non-contact
US7460249B2 (en) Measuring instrument of polygon-mirror motor
Kadambi et al. Turbomachinery blade vibration and dynamic stress measurements utilizing nonintrusive techniques
CN108168461B (en) A Diffraction Grating-Based Spindle Radial Rotation Error Measuring Device and Method
JP3239682B2 (en) Segment position measurement method
JPS63187114A (en) Biaxial rate gyroscope
Simpson et al. Optoelectronic-strain-measurement system for rotating disks
EP0608234A1 (en) Shaft displacement measuring system.
JPH01174908A (en) Method for measuring angle of torsion of rotary shaft