[go: up one dir, main page]

JPS6197566A - Detection for generation of crack in brittle material - Google Patents

Detection for generation of crack in brittle material

Info

Publication number
JPS6197566A
JPS6197566A JP22015284A JP22015284A JPS6197566A JP S6197566 A JPS6197566 A JP S6197566A JP 22015284 A JP22015284 A JP 22015284A JP 22015284 A JP22015284 A JP 22015284A JP S6197566 A JPS6197566 A JP S6197566A
Authority
JP
Japan
Prior art keywords
container
acoustic emission
generation
curing
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22015284A
Other languages
Japanese (ja)
Inventor
Koichi Tsukiyama
興一 槻山
Michio Oba
大場 教夫
Toshifumi Teramura
敏史 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODA EE L C KK
Taiheiyo Cement Corp
Clion Co Ltd
Original Assignee
ONODA EE L C KK
Onoda ALC Co Ltd
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODA EE L C KK, Onoda ALC Co Ltd, Onoda Cement Co Ltd filed Critical ONODA EE L C KK
Priority to JP22015284A priority Critical patent/JPS6197566A/en
Publication of JPS6197566A publication Critical patent/JPS6197566A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/228Details, e.g. general constructional or apparatus details related to high temperature conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0251Solidification, icing, curing composites, polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect a possible defect due to the generation of a microscopic crack, by applying an acoustic emission detecting method to a lightweight aerated concrete being cured with an autoclave to monitor. CONSTITUTION:Brittle material S to be inspected is arranged in a container 2 supported with a base 1. The container 2 has a heater 3, which is connected to a controller 12 and a recorder 11 and further to a thermocouple 4 to heat and control the inside of the container 2 to a required temperature. In addition, a waveguide rod 5 is provided piercing the wall of the container 2 and the tip thereof is stuck into a lightweight aerated concrete material S while the other end thereof is mounted on an acoustic emission transducer 6 outside the container 2. An acoustic emission signal in the material S is inputted into a personal computer 9 and a data recorder 10 via an amplifier 7. In this manner, the material S in the container 2 is cured adequately under the required curing conditions and a microscopic crack can be observed as generated during the curing.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は軽量気泡コンクリートやセメントコンクリー
ト、セラミックス等のぜい性材料のクラック発生検出方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for detecting the occurrence of cracks in brittle materials such as lightweight cellular concrete, cement concrete, and ceramics.

従来の技術 軽は気泡コンクリート°はその製造過程の最終工程にお
いて、高温高圧蒸気釜であるオートクレーブ内での養生
中に発生するマイクロクラックによって製品の良否が左
右される。すなわち、@泡硬化された成型品である多孔
質のグリーンケーキは板状に切断されてオートクレーブ
内で十数時間、約/ f O’(!の温度で、/ 0 
”/cm”の圧力下にて養生されるが、この養生中にマ
イクロクラックが褪生し、時に爆裂と呼ばれる現象によ
って致命的な欠陥となり不良品となることがある。しか
し、この様な欠陥は養生後にオートクレーブから出して
判かるものであり、密閉された圧力容器であるオートク
レーブ内の硬化過程におけるマイクロクラックの発生の
メカニズムを知る好適な手段がなく、歪計を用いる試み
が行われているに過ぎない。しかし、この様な歪計を用
いる方法ではぜい性材料に多数の歪計を取付けねばなら
ないが、全ての歪計が円滑に作動することがなく、ラン
ニングコストが高くつき、特にぜい性材料の弾性係数の
変化の様な弾性領域内における測定には向いていても、
軽量気泡コンクリートの養生における様な物性の変化す
るものには特に不向きである等の欠点がみられる。
Conventional technology The quality of the product depends on the microcracks that occur during curing in an autoclave, which is a high-temperature, high-pressure steam pot, during the final step of the manufacturing process for light aerated concrete. In other words, the porous green cake, which is a foam-cured molded product, is cut into plates and kept in an autoclave for over ten hours at a temperature of about /f O'(!).
The product is cured under a pressure of 100 cm/cm, but during this curing, the microcracks may deteriorate and a phenomenon called explosion may sometimes develop into a fatal defect, resulting in a defective product. However, such defects are only visible when the autoclave is removed from the autoclave after curing, and there is no suitable means to understand the mechanism of microcracks occurring during the curing process inside the autoclave, which is a sealed pressure vessel, and a strain meter is used. It's just an attempt. However, in this method of using strain gauges, it is necessary to attach a large number of strain gauges to the brittle material, but all of the strain gauges do not operate smoothly, resulting in high running costs. Although it is suitable for measuring within the elastic region, such as changes in the elastic modulus of
Disadvantages include that it is particularly unsuitable for materials whose physical properties change, such as in the curing of lightweight cellular concrete.

一般に、固体物質における塑性変形は物質により様々で
あるが、@址気泡コンクリートやセメントコンクリート
、セラミックス等の様なぜい性材料においては載荷条件
下にて弾性変形から重性変形へと移り、このときの構成
物質間の摩擦またはスリップによる音の発生がアコース
ティック・エミッション(Acoustic Emis
sion)として知られ、マイクロクラックの初生をな
している。更に、載荷を増すと、マイクロクラック同志
が連結して発生し、やがて破壊を形成するようになる。
In general, plastic deformation in solid materials varies depending on the material, but in fragile materials such as cellular concrete, cement concrete, and ceramics, there is a transition from elastic deformation to heavy deformation under loading conditions, and at this time The generation of sound due to friction or slip between the constituent materials is called acoustic emissions.
sion), and is the first generation of microcracks. Furthermore, when the load is increased, microcracks connect with each other and occur, eventually forming a fracture.

発明の目的 従って、この発明の目的は、従来の歪計利用における問
題点を解決するためにアコースティック・エミッション
検出方法を、オートクレーブ中で養生中の軽量気泡コン
クリートに適用してモニターリングすることによりマイ
クロクランク発生にもとづく欠陥の発生を検出すること
を特徴とするぜい性材料のクラック発生検出方法を提供
することにある。
OBJECTS OF THE INVENTION Accordingly, an object of the present invention is to solve the problems in the use of conventional strain meters by applying an acoustic emission detection method to lightweight cellular concrete being cured in an autoclave for monitoring. An object of the present invention is to provide a method for detecting the occurrence of cracks in brittle materials, which is characterized by detecting the occurrence of defects based on the occurrence of cracks.

発明の構成 この発明に依れば、ぜい性材料のクランク発生検出力、
去は、密閉された加熱圧力容器内に設置されたぜい性材
料に、該容器の壁を気密封止して貫通する導波棒の先端
を係止し、導波棒の外部他端にアコースティック・エミ
ッション・トランスデューサを取付け、ぜい性材料にお
けるクラックの発生を導波棒とトランスデユーサを介し
て検出することを特徴としている。
According to the present invention, the ability to detect crank occurrence of brittle materials;
In this method, the tip of a waveguide rod that passes through the wall of the container is hermetically sealed and secured to a brittle material installed in a sealed heated pressure vessel, and the other end of the waveguide rod is attached to the outside of the vessel. It is characterized by the fact that it is equipped with an acoustic emission transducer and detects the occurrence of cracks in brittle materials via a waveguide rod and transducer.

この発明の他の目的と特長および利点は以下のこの発明
の方法を実施するための装置を示す添付図面に沿っての
詳細な説明により明らかになろう。
Other objects, features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate an apparatus for carrying out the method of the invention.

発明の実施例 この発明のぜい性材料のクラック発生検出方法を冥施す
るための検出装置の一例が第1図に示されており、検出
装置は台/の上に支持された密閉可能な容器−を備え、
この容器λ内に検査すべきぜい性材料日が配置される。
Embodiment of the Invention An example of a detection device for carrying out the method of detecting the occurrence of cracks in brittle materials according to the present invention is shown in FIG. comprising a container,
In this container λ the brittle material to be inspected is placed.

また、容器コは適宜  ゛なヒータ3を有しており、所
要の温度にまで加熱でき、熱電対ダにより温度が測定さ
れるようになっている。更に、容器コの壁を貫通して導
波棒Sが設けられて右り、容器コの壁に対して適宜なパ
ツキンを用いて気密に取付けられている。導波棒jはス
テンレス鋼や他の適宜な鋼材でつくられ、図示実施例で
°は軽量気泡コンクリートの材料S内に刺し込まれるよ
うに先端が鋭利に尖っており、また検査すべき材料がセ
メントコンクリートの様なl質の材料の場合には材料表
面に吸着または接触係合すべく形成されるようになって
いる。また、導波作Sの他端は容器コの外部に出し、ア
コースティック・エミッション・トランスデューサ6が
取付けられ、増幅器りおよびモニターSを介してパーソ
ナルコンピュータ9およびデータレコーダ104C,接
続されている。従って、材料8におけるAI (アコー
スティック・エミッションの略)信号は増幅器7にて増
幅され、パーソナルコンピュータ9およびデータレコー
ダioに入力される。
Further, the container is equipped with an appropriate heater 3, so that it can be heated to a required temperature, and the temperature can be measured with a thermocouple. Furthermore, a waveguide rod S is provided to penetrate the wall of the container, and is airtightly attached to the wall of the container using a suitable gasket. The waveguide j is made of stainless steel or other suitable steel material, and in the illustrated embodiment, the tip is sharply pointed so that it can be inserted into the material S of lightweight cellular concrete, and the material to be inspected is In the case of solid materials such as cement concrete, it is designed to adsorb or come into contact with the surface of the material. The other end of the waveguide S is placed outside the container, and an acoustic emission transducer 6 is attached thereto, and is connected to a personal computer 9 and a data recorder 104C via an amplifier and a monitor S. Therefore, the AI (acoustic emission) signal in the material 8 is amplified by the amplifier 7 and input to the personal computer 9 and data recorder io.

また、熱電対ダはレコーダ//およびコントローラl−
に、更にヒータ3に接続され、所要の温度に容器コ内を
加熱側ζできるようになっている。
In addition, the thermocouple is connected to the recorder//and controller l-
Furthermore, it is connected to a heater 3, so that the inside of the container can be heated to a desired temperature.

この様に構成された検出装置iこおいて、検査すべき材
料Sは、原料をミキサーで攪拌して所賢の型枠に流し込
み、発泡硬化させ、打設幻弘〜S時間後に硬化したグリ
ーンケーキを所定の板状に切断し、容器−円に設置され
る。この碌にして容器コ内に設置された材料Sは所要の
蚤生栄件のもとにて必要な養生が行われ、養生中に発生
するマイクロクラックが観察される。この様にして考涙
された所要の養生条件下における軽意気心コンクリート
における時間に対する温度およびAE次象数の関係が第
2,3図に示されており、両図において曲縁Aは温度を
示し、波形66分B%C1DはAE次象数を示している
。両図を比軟するに、42図の材料盛こては爆裂やクラ
ックは何等践察されず、AI 信号が波形部分Bとして
温度が降下するときにだけ検出され、この程度のAFi
信号、丁なわちマイクロクランクの発生では材料の破壊
に至らなかった。また、第3図の材料にてはかなり多く
のAK信号の発生がみられ、温度約1000の待期中と
、温度上昇部分から保持初期にかけての期間と、温度の
降下期間とにおいて顕著にみられ、六生後の材料には大
きな割れがみられて材料は破壊していた。従って、 A
E 信号の検出される波形部分C1Dからクラック発生
を知ることができる。
In the detection device I configured in this way, the material S to be inspected is a raw material S that is stirred with a mixer, poured into a mold, foamed and hardened, and hardened after a period of time S of pouring. The cake is cut into predetermined plate shapes and placed in a container-circle. The material S placed in the container is subjected to necessary curing under the required conditions for flea growth, and microcracks generated during curing are observed. The relationship between temperature and AE quadrant over time in light air-centered concrete under the required curing conditions considered in this way is shown in Figures 2 and 3, and in both figures, the curved edge A indicates the temperature. The waveform 66 minutes B%C1D shows the AE quadrant. Comparing both figures, we can see that no explosions or cracks were detected in the material deposition trowel shown in Figure 42, and the AI signal was only detected as waveform part B when the temperature dropped, and this level of AFi was detected.
The generation of the signal, ie the microcrank, did not lead to the destruction of the material. In addition, quite a lot of AK signals are observed in the material shown in Figure 3, and they are noticeable during the waiting period at a temperature of about 1000, from the temperature rise section to the early holding period, and during the temperature drop period. After 6 years of use, the material showed large cracks and was destroyed. Therefore, A
The occurrence of a crack can be determined from the detected waveform portion C1D of the E signal.

勿論、材料の成分混合割合やオートクレーブの養生条件
を極々変えることができる。
Of course, the mixing ratio of the ingredients and the autoclave curing conditions can be greatly changed.

発明の効果 この様に、この発明の方法によるAE倍信号観奈から、
オートクレーブ内で破壊する場合には昇温時から保持初
期にかけてAI傷信号検出が6られ、破壊しない場合に
はこの部分でのAI傷信号検出がみられないので、この
様なAE倍信号検出をもってオートクレーブ内における
養生中のU!量気気泡コンクリートおけるクラックの発
生を早期に確実に知ることができ、また検出装置の構成
、取付も簡単容易で且つ安価に製作でき、櫨々のいかな
る養生奈件のもとでも工場において確実に検査できる等
の効果を萎するものである。
Effects of the invention In this way, from the AE multiplication signal observation by the method of this invention,
In the case of destruction in the autoclave, the AI flaw signal is detected from the time of temperature rise to the early stage of holding, and if it does not break, the AI flaw signal is not detected in this area, so such AE multiplied signal detection is required. U during curing in autoclave! The occurrence of cracks in aerated concrete can be detected early and reliably, and the configuration and installation of the detection device are simple and easy to manufacture, and can be manufactured at low cost. This diminishes the effectiveness of testing.

【図面の簡単な説明】[Brief explanation of the drawing]

=i i図はこの発明の方法を叉施するための検出装d
の一実施例を示す概要図、第2図および第3図はこの発
明の方法における時間と温度およびAm 次象数の関係
を示すグラフである。図中、l:台、コニ容器、J:ヒ
ータ・、q:熱一対、s:4波棒、6:アコースティッ
ク・エミッション・トランスデューサ、り:増幅器、g
:モニター、t:パーソナルコンピュータ、lO:デー
タレコーダ、//:レコーダ、12:コントローラ。 特許出願人  小野田セメント株式会社に1図 第2図 死3図 約I’Jl(IJQ間]
=i Figure d shows a detection device for carrying out the method of this invention.
A schematic diagram showing one embodiment of the present invention, and FIGS. 2 and 3 are graphs showing the relationship between time, temperature, and the number of Am-order quadrants in the method of the present invention. In the figure, l: stand, container, J: heater, q: heating pair, s: 4-wave rod, 6: acoustic emission transducer, ri: amplifier, g
: monitor, t: personal computer, lO: data recorder, //: recorder, 12: controller. Patent applicant Onoda Cement Co., Ltd. Figure 1 Figure 2 Death Figure 3 Approximately I'Jl (between IJQ)

Claims (1)

【特許請求の範囲】[Claims] 密閉された加熱圧力容器内に設置されたぜい性材料に、
該容器の壁を気密封止して貫通する導波棒の先端を係止
し、該導波棒の外部他端にアコースティック・エミッシ
ョン・トランスデューサを取付け、ぜい性材料における
クラックの発生を導波棒とトランスデューサを介して検
出することを特徴とするぜい性材料のクラック発生検出
方法。
In a brittle material placed in a sealed heated pressure vessel,
The tip of a waveguide rod that penetrates the wall of the container is hermetically sealed, and an acoustic emission transducer is attached to the other end of the waveguide rod to guide the generation of cracks in brittle materials. A method for detecting the occurrence of cracks in brittle materials, characterized by detecting through a rod and a transducer.
JP22015284A 1984-10-19 1984-10-19 Detection for generation of crack in brittle material Pending JPS6197566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22015284A JPS6197566A (en) 1984-10-19 1984-10-19 Detection for generation of crack in brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22015284A JPS6197566A (en) 1984-10-19 1984-10-19 Detection for generation of crack in brittle material

Publications (1)

Publication Number Publication Date
JPS6197566A true JPS6197566A (en) 1986-05-16

Family

ID=16746701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22015284A Pending JPS6197566A (en) 1984-10-19 1984-10-19 Detection for generation of crack in brittle material

Country Status (1)

Country Link
JP (1) JPS6197566A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460516B2 (en) 2000-07-18 2002-10-08 Aisan Kogyo Kabushiki Kaisha Canister for vehicle
EP2397849A1 (en) * 2010-06-18 2011-12-21 BAM Bundesanstalt für Materialforschung und -prüfung Method for measuring the alkali-silica reaction in concrete by means of continuous acoustic emission analysis and ultrasound measurement
CN103913514A (en) * 2013-01-05 2014-07-09 山东三箭建设工程管理有限公司 Method for monitoring temperature and gradient cracks of large-volume concrete
JP2015215979A (en) * 2014-05-08 2015-12-03 大阪瓦斯株式会社 Device and method for inspecting solid oxide fuel cell
JP2018179790A (en) * 2017-04-14 2018-11-15 日立造船株式会社 Air gap determination method, air gap determination system, and elastic wave detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460516B2 (en) 2000-07-18 2002-10-08 Aisan Kogyo Kabushiki Kaisha Canister for vehicle
EP2397849A1 (en) * 2010-06-18 2011-12-21 BAM Bundesanstalt für Materialforschung und -prüfung Method for measuring the alkali-silica reaction in concrete by means of continuous acoustic emission analysis and ultrasound measurement
CN103913514A (en) * 2013-01-05 2014-07-09 山东三箭建设工程管理有限公司 Method for monitoring temperature and gradient cracks of large-volume concrete
JP2015215979A (en) * 2014-05-08 2015-12-03 大阪瓦斯株式会社 Device and method for inspecting solid oxide fuel cell
JP2018179790A (en) * 2017-04-14 2018-11-15 日立造船株式会社 Air gap determination method, air gap determination system, and elastic wave detection method

Similar Documents

Publication Publication Date Title
Niemeijer et al. Compaction creep of quartz sand at 400–600 C: Experimental evidence for dissolution-controlled pressure solution
Voigt et al. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques
Saliba et al. Experimental study of creep-damage coupling in concrete by acoustic emission technique
Amorós et al. Green strength testing of pressed compacts: An analysis of the different methods
JPS6197566A (en) Detection for generation of crack in brittle material
CN106769759B (en) A device and accelerated test method for testing the permeability of concrete reinforcement protective layer
CN107941268A (en) A kind of method that concrete sample humiture is measured under constant shaft press loading effect
Pazdera et al. Nondestructive testing of advanced concrete structure during lifetime
CN212059675U (en) A test block assembly for ultrasonic nondestructive testing of creep damage
Pour-Ghaz et al. Can acoustic emission be used to detect alkali silica reaction earlier than length change tests
Yi et al. Evaluation of compressive damage in concrete using ultrasonic nonlinear coda wave interferometry
CN114002326A (en) A method for detecting damage of loaded rock
CN106018559A (en) Accelerated deterioration test method for cement-based materials in restraint state
US7240563B2 (en) Method for verifying concrete flexural strength
SU1714357A1 (en) Method of determining deformation of article
Terzić et al. Application of results of nondestructive testing methods in the investigation of microstructure of refractory concretes
Collins et al. Evaluation of concrete spall repairs by pullout test
Pirskawetz et al. Detection of early-age cracking using acoustic emission
CN105973791A (en) Accelerated degradation testing method and judging method of cement-based material under restrained condition
Shah et al. Correlating tests of progressively damaged concrete with NLU and AE techniques
Coffin¹ Localized ductility method for evaluating Zircaloy-2 cladding
Lefever et al. Evaluation of crack closure by ultrasonic wave transmission
TIGHE et al. Fracture of brittle materials at high temperature[Final Report, Jan. 1976- Dec. 1977]
Fridman et al. Use of Acoustic Emission for Optimizing the Heat Treatment of Carbon Shapes. WAA Translation available
KR880001365B1 (en) Nondestructive Testing of Cylinder Fillers