JPS6197332A - Production of electroconductive polymer - Google Patents
Production of electroconductive polymerInfo
- Publication number
- JPS6197332A JPS6197332A JP21904884A JP21904884A JPS6197332A JP S6197332 A JPS6197332 A JP S6197332A JP 21904884 A JP21904884 A JP 21904884A JP 21904884 A JP21904884 A JP 21904884A JP S6197332 A JPS6197332 A JP S6197332A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- film
- polymerization solution
- electrodes
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は導電性高分子の製造方法に関するものであり、
更に詳しくは電気化学的方法による導電性高分子の製造
方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a conductive polymer,
More specifically, the present invention relates to a method for producing conductive polymers using an electrochemical method.
近年の科学技術の進歩によって、エレクトロニクス用表
示素子や高効率バッテリー、センサー等に対しての要求
が高まり、多種の導電性高分子の開発が求められている
。BACKGROUND OF THE INVENTION With recent advances in science and technology, demands for display elements for electronics, high-efficiency batteries, sensors, etc. are increasing, and the development of a wide variety of conductive polymers is required.
電気化学的酸化方法による導電性高分子の合成法は、生
成した高分子がFlu板上に付着したフィルム状で得ら
れるという利点を持ち、このため、フィルムの面積の制
御が可能であり、また、異なった重合溶液にて反応を行
なうことにより任意の導電性高分子を積層させた素子を
作成することもできる。更にこの方法は、フィルムの厚
さ或いはドープ状態を任意に制御できるという点で優れ
ている。これらの利点を反映して電気化学的酸化法によ
る導電性高分子は、エレクトロニクス用表示素子として
の応用が期待され、現在までにポリチオフェン、ポリピ
ロール等に関しては表示素子としての応用例が報告され
ている。これらの応用例はネサガラス上に電気化学的方
法によってフィルム状に合成した導電性高分子を用いて
、この電気釣用化還元反応による吸収スペクトルの変化
を利用したものである。The method of synthesizing conductive polymers by electrochemical oxidation has the advantage that the produced polymer can be obtained in the form of a film attached to the Flu plate, and therefore the area of the film can be controlled, and It is also possible to create an element in which arbitrary conductive polymers are laminated by performing reactions in different polymerization solutions. Furthermore, this method is excellent in that the thickness or doping state of the film can be controlled arbitrarily. Reflecting these advantages, conductive polymers produced by electrochemical oxidation are expected to be applied as display elements for electronics, and to date, applications of polythiophene, polypyrrole, etc. as display elements have been reported. . These application examples use a conductive polymer synthesized in the form of a film on Nesa glass by an electrochemical method, and utilize changes in the absorption spectrum caused by this electrophoresis reduction reaction.
しかしながら、ネサガラス電極は絶縁体であるガラス表
面に金隔酸化被膜を極めて薄くコーティングしたもので
あり、従って重合溶液中に金R酸化被膜を溶解するよう
な成分、例えばHcla H2S 04HNO3p H
e l O4等の強酸が含まれている場合には、電極と
しての防用は不可能であった。その結果、表示素子の材
料として期待される材料でありながら、この間頃点の為
に実用化が遅れている材料が多々あった。However, Nesa glass electrodes are made by coating the glass surface, which is an insulator, with a very thin gold-plated oxide film, and therefore do not contain components that dissolve the gold R oxide film in the polymerization solution, such as Hcla H2S 04HNO3p H
If a strong acid such as e l O4 was contained, it could not be used as an electrode. As a result, there have been many materials that are expected to be used as materials for display elements, but whose practical application has been delayed due to the late stage.
本発明は、上記の間頭点に鑑みてなされたものであり、
一般的には導電性高分子の合成技術を提供することを目
的とし、特に、電極面を溶解或いは劣化させるような成
分を含む重合溶液を使った□ 場合の電極面上への導
電性高分子フィルム形成技術の提供を目的とする。The present invention has been made in view of the above points,
In general, the purpose is to provide a technology for synthesizing conductive polymers, and in particular, to provide methods for synthesizing conductive polymers on electrode surfaces, especially when polymerization solutions containing components that dissolve or degrade the electrode surface are used. The purpose is to provide film forming technology.
本発明の導電性高分Pの合成法は、電気化学的酸化方法
による導電性高分子合成反応に於いて、電極に予め電圧
を印加してから重合溶液に電極を浸漬することを特徴と
している。The method for synthesizing the conductive polymer P of the present invention is characterized by applying a voltage to the electrode in advance and then immersing the electrode in a polymerization solution in the conductive polymer synthesis reaction using an electrochemical oxidation method. .
本発明に於ける導電性高分子合成反応は、一般の電気化
学的重合反応のうち、重合溶液中に電極を溶解或いは劣
化させるような成分を含む重合溶液とその電極の組合せ
の反応を含むが、それ以外の電気化学的重合反応は含ま
ない。この組合せはHCI t H2SO41HNO
3或いはHO104等の強酸と、金属、金属耐化物、半
導体或いは化合物半導体からなる電極との組合せ、及び
、高分子反導体とこれを劣化する溶媒との組合せである
。The conductive polymer synthesis reaction in the present invention includes, among general electrochemical polymerization reactions, a reaction in which a polymerization solution containing a component that dissolves or deteriorates an electrode is combined with an electrode. , does not include other electrochemical polymerization reactions. This combination is HCI t H2SO41HNO
These are a combination of a strong acid such as 3 or HO104 and an electrode made of a metal, a metal resistant material, a semiconductor, or a compound semiconductor, and a combination of a polymer anticonductor and a solvent that degrades it.
ここで金属は、水素を除くl族、■族、ホウ緊を除く曹
族、炭素及びケイ稟を除く■族、■族および■、■、■
族の各a亜族に属する元素と、これらの混合物である各
種合金である。また半導体は、Sl、Gθ、Se、B等
であり、化合物半導体は、QaAs 、 InSb等の
m−v化合物及びこれらの組合せであるInGaAs、
AIQaAs等、ZnS%cas等の■−■化合物であ
る。Here, metals include the I group excluding hydrogen, the ■ group, the So group excluding hydrogen, the ■ group excluding carbon and silica, the ■ group, and ■, ■, ■.
These are elements belonging to each subgroup a of the group and various alloys that are mixtures thereof. Semiconductors include Sl, Gθ, Se, B, etc., and compound semiconductors include m-v compounds such as QaAs and InSb, and InGaAs, which is a combination thereof.
■-■ compounds such as AIQaAs and ZnS%cas.
1上気化学的重合反応に於いて、予め加える電圧は、そ
れぞれの反応系に於いて重合反応が進行する電圧が選ば
れる。電極を重合溶液に浸漬する速度は特に制限されな
いが°、均一な膜厚のフィルム状高分子を得るためには
、Q−] mm /8 el O以上が望ましい。1. In the upper gas chemical polymerization reaction, the voltage to be applied in advance is selected so that the polymerization reaction proceeds in each reaction system. The speed at which the electrode is immersed in the polymerization solution is not particularly limited, but is preferably Q-] mm /8 el O or more in order to obtain a film-like polymer with a uniform thickness.
本発明の導電性高分子の合成法は、電極を溶解、劣化さ
せる成分を含む重合溶液に、予め電圧を印加した電極を
徐々に浸漬することによってなされる。このような条件
で歌合反応を行なうと、電極の挿入と共に、電極の溶解
或いは劣化が起こる前に、導電性高分子の重合反応によ
って電極面上が保獲きれ、以後の重合反応が均一に進行
する。更に、強酸等を含む溶媒の場合には、電圧を印加
することによって、電極面付近の水素イオン濃度を減少
させ、劣化の進行を抑制するという作用が考えられる。The method for synthesizing a conductive polymer according to the present invention is carried out by gradually immersing an electrode to which a voltage has been previously applied in a polymerization solution containing a component that dissolves and deteriorates the electrode. When a singing reaction is performed under these conditions, when the electrode is inserted, the surface of the electrode is retained by the polymerization reaction of the conductive polymer before the electrode dissolves or deteriorates, and the subsequent polymerization reaction proceeds uniformly. do. Furthermore, in the case of a solvent containing a strong acid or the like, applying a voltage may have the effect of reducing the hydrogen ion concentration near the electrode surface and suppressing the progress of deterioration.
このため、電極面の溶解或いは劣化は、まったく問題と
ならず、電極の繰返し防用が可能JSSラ
フ実施例〕
以下に、実施例を挙げて本発明を具体的に説明するが、
本発明はこれらの実、輸列に限定されるものではない。Therefore, melting or deterioration of the electrode surface is not a problem at all, and the electrode can be protected from repeated use. JSS Rough Examples] The present invention will be specifically explained below with reference to Examples.
The present invention is not limited to these arrangements.
(比較例1)
重合用ガラス容器に、0.1 Mn2 S 04水溶液
を仕込み、これに005 モルのアニリンを加えて、約
30分間攪拌して溶解する。この重合溶液に、電極とし
てネサガラスを浸漬し、直ちに一〇、2V−10Vの電
位幅、走査速度0.I V/ secの走査電圧を加え
たところ、30分間経過後に於いても電極面上には何ら
生成物は認められなかった。また、電流もほとんど流れ
ず、取出した電極表面の電気抵抗は極めて大きく、再び
電極として使用することは不i)能であった。(Comparative Example 1) A 0.1 Mn2 S 04 aqueous solution is charged in a glass polymerization container, 0.05 mol of aniline is added thereto, and the mixture is stirred for about 30 minutes to dissolve. Nesa glass was immersed as an electrode in this polymerization solution, and immediately the potential width was 10.2V-10V and the scanning speed was 0. When a scanning voltage of IV/sec was applied, no product was observed on the electrode surface even after 30 minutes. Further, almost no current flowed, and the electrical resistance of the surface of the electrode taken out was extremely high, making it impossible to use it as an electrode again.
(実施例1)
比較例1と同じ重合溶液に、別のネサガラス電極に予め
04Vの定電圧を印加したままこれを浸漬した。直ちに
、前回と同条の条件の走査電圧に切換えたところ導亀性
高分子ボリアニリンフイルムの生成が確認された。反応
終了後に取出したフィルムは、耐酸性の白金電極を用い
た場合に得られるフィルムと全く同等の性状を示した。(Example 1) Another Nesa glass electrode was immersed in the same polymerization solution as in Comparative Example 1 while a constant voltage of 04 V was applied in advance. Immediately, the scanning voltage was changed to the same conditions as the previous time, and the formation of a torme-conducting polymer polyaniline film was confirmed. The film taken out after the reaction was completed showed properties completely equivalent to those obtained when an acid-resistant platinum electrode was used.
電極を水中で超音波処理してフィルムを引きはがした後
のネサガラス表面の電気抵抗は、反応前と同等であり、
繰返しの使用が可能であった。The electrical resistance of the Nesa Glass surface after the electrode was ultrasonicated in water and the film was peeled off was the same as before the reaction.
Repeated use was possible.
(比較例2)
チーグラー、ナツタ触媒を用いてアセチレンガスから重
合したポリアセチレンフィルムをヨウ素ガスと接触させ
た後アルゴンガス雰囲気下で重合用セルに取り付けた。(Comparative Example 2) A polyacetylene film polymerized from acetylene gas using Ziegler and Natsuta catalysts was brought into contact with iodine gas and then attached to a polymerization cell under an argon gas atmosphere.
これを空気中に取出し、直ちに実施例1と同様のポリア
ニリン重合用溶液を仕込み、電位幅−02V〜loV、
走査速度0. I V/secの走査″電圧を加えたと
ころ、重合用溶液仕込み直後からポリアセチレンの劣化
が起こり、数分間で分解した。ポリアニリンの生成は不
可能であった。This was taken out into the air and immediately charged with the same polyaniline polymerization solution as in Example 1, with a potential width of -02V to loV,
Scanning speed 0. When a scanning voltage of IV/sec was applied, polyacetylene began to deteriorate immediately after charging the polymerization solution and decomposed within several minutes. It was impossible to produce polyaniline.
(実施例2)
比較例2と同じポリアニリン重合溶液を名器に仕込み、
アルゴンガス中で電極としてセットしたポリアセチレン
を空気中に取出し、直ちに04Vの定電圧を加えたまま
重合溶液に浸漬した。電位幅−02V〜lO■、走査速
度01V/seaの走査電圧に切換えたところ、導電性
高分子ポリアニリンフィルムの生成が確認きれた。また
、この場合には、ポリアセチレンの劣化、分解は認めら
れなかった。(Example 2) The same polyaniline polymerization solution as in Comparative Example 2 was charged into a famous container,
The polyacetylene set as an electrode in argon gas was taken out into the air, and immediately immersed in the polymerization solution while a constant voltage of 04 V was applied. When the scanning voltage was changed to a potential width of -02 V to lO2 and a scanning speed of 01 V/sea, the formation of a conductive polymer polyaniline film was confirmed. Further, in this case, no deterioration or decomposition of polyacetylene was observed.
本発明の導電性高分子の合成法は、従来使用が困難であ
った材料の組合せを用いることを可能にするものであり
、また、実施例に於いても具体的に示したように、ネサ
ガラス電極を繰返し使用することを可能にするものであ
る。The method for synthesizing conductive polymers of the present invention makes it possible to use combinations of materials that were previously difficult to use. This allows the electrode to be used repeatedly.
本発明の導電性高分子の合成法を用いれば、種々の重合
溶液を組合せることによって、更に復雑な素子、例えば
金属、半導体、高分子半導体或いはこれらの削化物を任
意に積層したり組合せた素子の開発も可能となる。By using the conductive polymer synthesis method of the present invention, by combining various polymerization solutions, more complex elements such as metals, semiconductors, polymer semiconductors, or shaved products of these can be laminated or combined as desired. It also becomes possible to develop new elements.
特許出願人 、6王石鹸体式会社 、く埋ノ(弁理士 望刀孜部Patent applicant: Six King Soap Company , Kumakuno (patent attorney Moto Keibu)
Claims (1)
する方法に於いて、電極に予め電圧を印加して重合溶液
に浸漬することを特徴とする導電性高分子の製造方法。 2、電極の一方或いは両方が金属、金属酸化物、半導体
、化合物半導体或いは高分子半導体の薄膜である特許請
求の範囲第1項記載の導電性高分子の製造方法。 3、重合溶液が電極面を劣化、溶解させる成分を含む特
許請求の範囲第1項或いは第2項記載の導電性高分子の
製造方法。[Claims] 1. A method for producing a conductive polymer using an electrochemical oxidative polymerization method, characterized in that a voltage is applied to the electrode in advance and the electrode is immersed in a polymerization solution. Method of manufacturing molecules. 2. The method for producing a conductive polymer according to claim 1, wherein one or both of the electrodes is a thin film of metal, metal oxide, semiconductor, compound semiconductor, or polymer semiconductor. 3. The method for producing a conductive polymer according to claim 1 or 2, wherein the polymerization solution contains a component that degrades or dissolves the electrode surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21904884A JPS6197332A (en) | 1984-10-18 | 1984-10-18 | Production of electroconductive polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21904884A JPS6197332A (en) | 1984-10-18 | 1984-10-18 | Production of electroconductive polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6197332A true JPS6197332A (en) | 1986-05-15 |
Family
ID=16729440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21904884A Pending JPS6197332A (en) | 1984-10-18 | 1984-10-18 | Production of electroconductive polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6197332A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01167254A (en) * | 1987-12-24 | 1989-06-30 | Ricoh Co Ltd | Electrically conductive polymer material composite |
CN109946361A (en) * | 2017-12-19 | 2019-06-28 | 恩德莱斯和豪瑟尔分析仪表两合公司 | glass electrode |
-
1984
- 1984-10-18 JP JP21904884A patent/JPS6197332A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01167254A (en) * | 1987-12-24 | 1989-06-30 | Ricoh Co Ltd | Electrically conductive polymer material composite |
CN109946361A (en) * | 2017-12-19 | 2019-06-28 | 恩德莱斯和豪瑟尔分析仪表两合公司 | glass electrode |
US11119067B2 (en) | 2017-12-19 | 2021-09-14 | Endress+Hauser Conducta Gmbh+Co. Kg | Glass electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rong et al. | Spontaneous adsorption of heteropolytungstates and heteropolymolybdates on the surfaces of solid electrodes and the electrocatalytic activity of the adsorbed anions | |
Kuwabata et al. | Copolymerization of pyrrole and thiophene by electrochemical oxidation and electrochemical behavior of the resulting copolymers | |
Prejza et al. | Electropolymerization of pyrrole in the presence of fluoborate | |
Brilmyer et al. | The Electrochemistry of Hydrocarbons in HF/SbF5: Some Mechanistic Conclusions Concerning the Super Acid “Catalyzed” Condensation of Hydrocarbons | |
Riechel et al. | Reversible plating and stripping of sodium at inert electrodes in room temperature chloroaluminate molten salts | |
Doubova et al. | Polyaniline as a cathode for O2 reduction—Kinetics of the reaction with H2O2 and use of the polymer in a model H2O2 fuel cell | |
US5023149A (en) | Electrochemistry employing polyaniline | |
US4820595A (en) | Electrochemistry employing polyaniline | |
JPH0336916B2 (en) | ||
Behl | Anodic oxidation of lithium bromide in tetrahydrofuran solutions | |
Arsov | Electrochemical study of polyaniline deposited on a titanium surface | |
EP0231309B1 (en) | Process for manufacturing electrically conductive polythiophene | |
JPS6197332A (en) | Production of electroconductive polymer | |
Hülser et al. | Electrodeposition of polypyrrole powder on aluminum from aqueous electrolytes | |
Kamau et al. | Microelectrode voltammetry of TCNQ in aprotic solvent at low concentrations of non-reducing and reducing salts | |
JPH01238110A (en) | Method of impregnating electrolytic capacitor with tetracyanoquinodimethanate | |
Reger et al. | Interfacial phenomena at solid aluminum electrodes in solutions of AlBr3/KBr in aromatic hydrocarbons | |
JPH0362451A (en) | Electrode of polyaniline polymer and preparation of polyaniline polymer | |
Chen et al. | Characterization and electrocatalytic properties of composite poly (new fuchsin) and phosphomolybdate films | |
Eftekhari | Enhanced stability of hexacyanoferrate-based modified electrodes prepared under centrifugal fields | |
JPH0243837B2 (en) | ||
JPH10120908A (en) | High-electroconductive polymer composition and its production | |
US4801678A (en) | Poly(2,6-naphthoquinone) film and the preparation and uses thereof | |
Song et al. | Anion movement in polypyrrole films prepared in lithium dodecylsulfate aqueous solutions | |
JP2008106196A (en) | A depolymerization method of a conductive polymer and a repolymerization method thereof. |