JPS6196427A - Temperature measuring instrument - Google Patents
Temperature measuring instrumentInfo
- Publication number
- JPS6196427A JPS6196427A JP59219122A JP21912284A JPS6196427A JP S6196427 A JPS6196427 A JP S6196427A JP 59219122 A JP59219122 A JP 59219122A JP 21912284 A JP21912284 A JP 21912284A JP S6196427 A JPS6196427 A JP S6196427A
- Authority
- JP
- Japan
- Prior art keywords
- light
- temperature
- temp
- absorption edge
- temperature sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/12—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明Fim度測定装置に関し、特に光の波長の吸収
端が温度によって変化する材料を用いた温度測定装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a Fim degree measuring device, and more particularly to a temperature measuring device using a material whose absorption edge of the wavelength of light changes depending on the temperature.
「従来の技術」
第3図は従来の温度測定装置の構成図で、(1)は発光
素子駆動回路、(6) Vi光源としての発光素子、(
2)、(4)は光ファイバ、(9)は温度センサで温度
によ一=)て光の波長の吸収端従って光の透過率が変化
する材料、例えばGaAs等の半導体結晶あるいは非晶
体を光ファイバ(2)と(4)との筒にはさみ、接着剤
で収り付けたものである。(15)は分光器としての回
折格子、(16)はフォトダイオードアレイ、 (1
7)は7オトダイオードアレイ(16)の各素子にそれ
ぞれ接続されたコンパレータ、(is)は処理回路であ
る。第4図は、温度センサ(9)の波長依存性と温度と
の関係の一例を示す特性図で、温度が高くなるにつれて
、光の吸収端が長波長側に移動する。第5図は、発光素
子(6)のスペクトルと温度センサ(9)の透過光のス
ペクトルを示した図である。"Prior Art" Figure 3 is a block diagram of a conventional temperature measuring device, in which (1) is a light emitting element drive circuit, (6) a light emitting element as a Vi light source, (
2) and (4) are optical fibers, and (9) is a temperature sensor that uses a material whose light transmittance changes depending on the absorption edge of the wavelength of light, such as a semiconductor crystal such as GaAs or an amorphous material. The optical fibers (2) and (4) are sandwiched between tubes and fixed with adhesive. (15) is a diffraction grating as a spectrometer, (16) is a photodiode array, (1
7) is a comparator connected to each element of the 7-otodiode array (16), and (is) is a processing circuit. FIG. 4 is a characteristic diagram showing an example of the relationship between the wavelength dependence of the temperature sensor (9) and the temperature. As the temperature increases, the light absorption edge moves to the longer wavelength side. FIG. 5 is a diagram showing the spectrum of the light emitting element (6) and the spectrum of transmitted light from the temperature sensor (9).
次に動作について説明する。第3図において、発光素子
(6)は発光素子駆動回路(1)で駆動される。Next, the operation will be explained. In FIG. 3, a light emitting element (6) is driven by a light emitting element driving circuit (1).
この発光素子(6)のスペクトルfiLEDt−使うと
第5図のような正規分布となる。このスペクトル内に温
度センサ(9)の光吸収端があるように選択、しておけ
ば、温度センサ(9)の置かれる温度によってその吸収
端が第4図に示すように移動するため、その透過光は第
5図の斜線で示したスペクトルを持つ。そこで光ファイ
バ(4)の出射光を回折格子(15)で分光し、分解さ
れた光をそれぞれフォトダイオードアレイ(16)で光
電変換し、各々アレイ素子にある1定レベル以上で出力
されるコンパレータ(17)を設け、仁れらコンパレー
タ(17)の出力のうち、温度セッサ(9)の透過光の
最低波長の位置を処理回路(18)で演算する。When the spectrum fiLEDt- of this light emitting element (6) is used, a normal distribution as shown in FIG. 5 is obtained. If the light absorption edge of the temperature sensor (9) is selected to be within this spectrum, the absorption edge will shift as shown in Figure 4 depending on the temperature at which the temperature sensor (9) is placed. The transmitted light has a spectrum shown by diagonal lines in FIG. Therefore, the light emitted from the optical fiber (4) is separated by a diffraction grating (15), each of the separated lights is photoelectrically converted by a photodiode array (16), and each comparator outputs at a certain level or higher in each array element. (17) is provided, and a processing circuit (18) calculates the position of the lowest wavelength of the transmitted light of the temperature sensor (9) among the outputs of the comparator (17).
〔発明が解決しようとする問題点3
以上のように従来の温度測定装置は構成されているため
、発光素子(6)の温度変化や経時変化に伴なう光強度
あるいは中心波長に大きな変化があると、温度センサ(
9)の吸収端特性が完全な直線立上りでないため、誤差
が生じるという問題点があった。[Problem to be Solved by the Invention 3] Since the conventional temperature measuring device is configured as described above, there is no possibility that the light intensity or center wavelength will change significantly due to temperature changes or changes over time of the light emitting element (6). If there is a temperature sensor (
Since the absorption edge characteristic of 9) does not have a perfect linear rise, there is a problem in that an error occurs.
この発明では、上記のような従来のものの問題点を解決
するためになされたもので、光源の温度変化や経時変化
に伴う光強度あるいは中心波長に大きな変化があっても
正確な温度を測定できる温度測定装置を得ることを目的
とする。This invention was made to solve the problems of the conventional ones as described above, and it is possible to accurately measure temperature even if there is a large change in the light intensity or center wavelength due to temperature changes or changes over time of the light source. The purpose is to obtain a temperature measuring device.
この発明に係る湿度測定装Ml力を複数のレペ(ルでレ
ベル検出し、それぞれの最低波長側の位置から、温度セ
ンサの吸収端の立上シ点を演算処理するようにしたもの
である。The humidity measuring device according to the present invention detects the level of Ml power using a plurality of repeaters, and calculates the rising point of the absorption edge of the temperature sensor from the position on the lowest wavelength side of each. .
[作用]
この発明においては、複数のレベルにおける最低波長側
の位置から温度センサの吸収端の立上り点を演算処理し
て温度を攻めるので、光源の光強度や中心波長が変化し
ても温度誤差が生じない。[Operation] In this invention, since the temperature is measured by calculating the rising point of the absorption edge of the temperature sensor from the position on the lowest wavelength side at multiple levels, there is no temperature error even if the light intensity or center wavelength of the light source changes. does not occur.
以下図面についてこの発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.
第1図は本発明の一実施例と示す構成図で、第3図と同
一番号のものは同一のものを示す。第1図において、(
19)はCCD (Charged Coupled
Device)、(17−1) 、(17−2)はそれ
ぞれ相互に異なるレベルで動作するコンパレータ、(2
0)は処理回路である。FIG. 1 is a block diagram showing one embodiment of the present invention, and the same numbers as in FIG. 3 indicate the same components. In Figure 1, (
19) is a CCD (Charged Coupled
Device), (17-1), and (17-2) are comparators that operate at mutually different levels, and (2
0) is a processing circuit.
第2図は、温度センサ(9)の透過光のスペクトル?示
す図で発光素子(6)の光強度の変化があった場合の吸
収端の立上りの関係をその(a)と(b)図で示してい
る。Figure 2 shows the spectrum of transmitted light from the temperature sensor (9). The relationship between the rise of the absorption edge when there is a change in the light intensity of the light emitting element (6) is shown in the figures (a) and (b).
次に動作について説明する。温度センサ(9)を透過し
た光は光ファイバ(4)を通って、回折格子(15)で
分光され、C0D(19)で時系列に光電変換され、同
時に2つのコンパレータ(17−1) 、(17−2)
である2つのレベルで比較される。ところでいま発光
素子(6)の光強度が変化した場合を考えると、第2図
の(a)と(b)に示されるように、温度センサ(9)
の透過スペクトルを示す斜線部において、その吸収端の
立上り(図ではX印をつけている)点入口Iri変化し
ない。そこで2つのレベルLlとL2でそれぞれ最低波
長側の位置λ11λ2を検出し、これらの値から吸収端
を直線と見なして透過光がゼロとなる点を求めるとλ0
が求まり、この値は発光素子(6)の光強度が変化して
も、変化しない。以上は発光素子(6)の中心波長が変
化したときも同様である。そこでこれらの演算を処理回
路(20)で行なう。この演算は例えばマイクロプロセ
ッサ等を使ったディジタル処理で容易に行える。Next, the operation will be explained. The light transmitted through the temperature sensor (9) passes through an optical fiber (4), is separated by a diffraction grating (15), is photoelectrically converted in time series by a COD (19), and is simultaneously connected to two comparators (17-1), (17-2)
are compared on two levels. By the way, if we consider the case where the light intensity of the light emitting element (6) changes, as shown in FIG. 2 (a) and (b), the temperature sensor (9)
In the shaded area showing the transmission spectrum of , the rise of the absorption edge (marked with an X in the figure) point Iri does not change. Therefore, if we detect the positions λ11λ2 on the lowest wavelength side at the two levels Ll and L2, and from these values, consider the absorption edge as a straight line and find the point where the transmitted light becomes zero, λ0
is determined, and this value does not change even if the light intensity of the light emitting element (6) changes. The above also applies when the center wavelength of the light emitting element (6) changes. Therefore, these calculations are performed by the processing circuit (20). This calculation can be easily performed by digital processing using, for example, a microprocessor.
なお、上記実施例では吸収端をml線とみなして2つの
レベルにおける波長λlλ2から立上り点の波長λ0を
演算処理しているが、更に多くのレベルで検出してそれ
らの値からλn’c@算処理すれば一層正確な測定が可
能となる。In the above embodiment, the absorption edge is regarded as the ml line and the wavelength λ0 of the rising point is calculated from the wavelength λlλ2 at two levels, but it is detected at more levels and from those values λn'c@ Calculation processing allows for even more accurate measurements.
この発明は以上説明したとおり、複数のレベルにおける
最低波長側の位置から温度センサの吸収端の立上り点を
演算処理して温度を求めるので、光源の光強度あるいは
中心波長が変化しても正確な温度が測定できるという効
果がある。As explained above, this invention calculates the temperature by calculating the rising point of the absorption edge of the temperature sensor from the position on the lowest wavelength side at multiple levels, so even if the light intensity or center wavelength of the light source changes, it will not be accurate. It has the effect of being able to measure temperature.
第1図はこの発明の一実施例を示す構成図、第2図は発
光素子の光強度が変化した場合の温度センサの透過光ス
ペクトルと動作レベルとを示す説明図、第3図は従来の
温度測定装置を示す構成図、第4図は第3図の温度セン
サの波長依存性と温度との関係図、第5図は第3図の発
光素子のスペクトルと温度センサの透過光との関係を示
す図である。
図において、(2)(4)は光ファイバ、(6)は光源
としての発光素子、(9〕は温度センサ、(15)は分
光器としての回折格子、(19)はCOD、(20)は
処理回路である。
なお、各図中同一符号は同−又は相当部分を示す。FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the transmitted light spectrum and operation level of the temperature sensor when the light intensity of the light emitting element changes, and FIG. 3 is a diagram showing the conventional A configuration diagram showing the temperature measuring device, Figure 4 is a diagram of the relationship between the wavelength dependence of the temperature sensor in Figure 3 and temperature, and Figure 5 is a diagram of the relationship between the spectrum of the light emitting element in Figure 3 and the transmitted light of the temperature sensor. FIG. In the figure, (2) and (4) are optical fibers, (6) is a light emitting element as a light source, (9) is a temperature sensor, (15) is a diffraction grating as a spectrometer, (19) is a COD, and (20) is a processing circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (2)
料からなる温度センサを光ファイバの通路に設け、光源
からの光を上記温度センサに導き、上記温度センサを透
過した光を分光器で分光した後電気信号に変換し、光出
力の波長成分の最低波長から温度を測定するものにおい
て、上記電気信号を相互に異なる複数のレベルで検知し
、上記各レベルで動作した最低波長側位置から上記吸収
端の立上り点を演算処理することを特徴とする温度測定
装置。(1) A temperature sensor made of a material whose absorption edge of the wavelength of light changes as a function of temperature is provided in the path of the optical fiber, the light from the light source is guided to the temperature sensor, and the light transmitted through the temperature sensor is collected using a spectrometer. In devices that measure the temperature from the lowest wavelength of the wavelength component of the optical output by spectroscopy and converting it into an electrical signal, the electrical signal is detected at multiple mutually different levels, and the lowest wavelength side position operated at each of the above levels is detected. A temperature measuring device characterized in that the rising point of the absorption edge is calculated from .
吸収端の特性を直線とみなして上記各レベルで動作した
最低波長側位置から直線近似で上記吸収端の立上り点を
演算処理することを特徴とする特許請求の範囲第1項記
載の温度測定装置。(2) Detecting electrical signals at two mutually different levels,
The temperature measuring device according to claim 1, wherein the absorption edge characteristic is regarded as a straight line, and the rising point of the absorption edge is calculated by linear approximation from the lowest wavelength side position operated at each of the above levels. .
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59219122A JPS6196427A (en) | 1984-10-17 | 1984-10-17 | Temperature measuring instrument |
KR1019850003280A KR900005778B1 (en) | 1984-10-17 | 1985-05-14 | Temperature measuring device |
CN85108209A CN85108209B (en) | 1984-10-17 | 1985-10-14 | Temperature measuring device |
US06/787,592 US4669872A (en) | 1984-10-17 | 1985-10-15 | Temperature measuring device |
DE8585113173T DE3568871D1 (en) | 1984-10-17 | 1985-10-17 | Temperature measuring device |
EP85113173A EP0179400B1 (en) | 1984-10-17 | 1985-10-17 | Temperature measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59219122A JPS6196427A (en) | 1984-10-17 | 1984-10-17 | Temperature measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6196427A true JPS6196427A (en) | 1986-05-15 |
Family
ID=16730584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59219122A Pending JPS6196427A (en) | 1984-10-17 | 1984-10-17 | Temperature measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6196427A (en) |
-
1984
- 1984-10-17 JP JP59219122A patent/JPS6196427A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101290246B (en) | Rapid spectrometer and its measurement method | |
US7916301B2 (en) | Filter design for colorimetric measurement | |
KR950033445A (en) | Temperature measuring method and apparatus using optical fiber | |
KR900005778B1 (en) | Temperature measuring device | |
US4743119A (en) | Optical measuring apparatus | |
EP1120637A2 (en) | Method and means for calibrating a grating monochromator | |
JPS6196427A (en) | Temperature measuring instrument | |
RU2608394C1 (en) | Device for measuring parameters of physical fields | |
RU2290614C1 (en) | Two-channel spectral ratio pyrometer | |
JP2004146738A (en) | Endpoint detecting method for plasma treatment and its apparatus | |
JP2010112808A (en) | Optical power meter | |
RU161644U1 (en) | DEVICE FOR MEASURING PHYSICAL FIELD PARAMETERS | |
JPH0626930A (en) | Spectrophotometer | |
JPS6285832A (en) | Optical type thermometer | |
JPS6144334A (en) | Temperature measuring device | |
JPS6020021Y2 (en) | Multiwavelength photometer | |
SU1578504A1 (en) | Photodetector | |
RU1800295C (en) | Spectral ratio pyrometer | |
US20040150826A1 (en) | Color measuring device | |
JP2010112807A (en) | Optical power meter | |
SU1030667A2 (en) | Device for remote measuring of temperature | |
SU1442839A1 (en) | Two-channel photometer | |
RU2086935C1 (en) | Method of temperature measurement | |
SU864018A1 (en) | Photometric unit | |
SU1368657A1 (en) | Optical power meter |