JPS619350A - Orienting method of fault point for coaxial cable feeder circuit - Google Patents
Orienting method of fault point for coaxial cable feeder circuitInfo
- Publication number
- JPS619350A JPS619350A JP12867484A JP12867484A JPS619350A JP S619350 A JPS619350 A JP S619350A JP 12867484 A JP12867484 A JP 12867484A JP 12867484 A JP12867484 A JP 12867484A JP S619350 A JPS619350 A JP S619350A
- Authority
- JP
- Japan
- Prior art keywords
- coaxial cable
- point
- current
- fault point
- impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Locating Faults (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は同軸ケーブルと電車線路を並列に陸続した同軸
ケーブルき電回路における故障点標定方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for locating a fault point in a coaxial cable feeding circuit in which a coaxial cable and an overhead contact line are connected in parallel.
交流電気鉄道のき電回路において、狭あいなトンネルな
どにATき電回路を適用すると、ATき電線の絶縁離隔
が十分に取れないことがあり、その場合のき電力式とし
て同軸ケーブルき電回路が開発された。第1図は同軸ケ
ーブルき電回路を示し、CCは内部導体Aと外部導体B
からなる同軸の内部導体Aと外部導体Bが近接しており
、両導体間の相互インピーダンスが大きいため、内部導
体と外部導体の往復線路インピーダンスはトロリ線Tと
レールRの往復線路インピーダンスより著しく小さい。In the feeding circuit of AC electric railways, when an AT feeding circuit is applied to a narrow tunnel etc., it may not be possible to maintain sufficient insulation distance between the AT feeding wires, and in that case, a coaxial cable feeding circuit is used as the feeder type. was developed. Figure 1 shows the coaxial cable feeding circuit, where CC is the inner conductor A and the outer conductor B.
Since the coaxial inner conductor A and outer conductor B are close to each other, and the mutual impedance between the two conductors is large, the round trip line impedance between the inner conductor and the outer conductor is significantly smaller than the round trip line impedance between the contact wire T and the rail R. .
このため第1図に示すように、電気車には変電所SSか
ら直接トロリ線とレールを通して電流■1が−供給され
るとともに、同軸ケーブルを経由して、電気車Carよ
りも遠方のトロリ線とレールからも電fiIzが供給さ
れることとなる。For this reason, as shown in Figure 1, current 1 is supplied to the electric car directly from the substation SS through the contact wire and rail, and at the same time, it is supplied via a coaxial cable to the contact wire farther away than the electric car Car. Electricity fiIz will also be supplied from the rail.
このような同軸ケーブルき電回路の特殊性のため、故障
も、同軸ケーブルの内部導体と外部導体の短絡、及びト
ロリ線とレールの短絡の2種の故障が存在すると予想さ
れる。Due to the special characteristics of such a coaxial cable feeding circuit, it is expected that there are two types of failures: a short circuit between the inner conductor and the outer conductor of the coaxial cable, and a short circuit between the contact wire and the rail.
なお、上記き電回路において、同軸ケーブルの内部導体
はトロリ線と並列に接続されるため、トロリ線と同じ絶
線強度が必要であるが、外部導体はレールと並列に接続
されるため、絶縁強度は低くてよい。In the above-mentioned feeding circuit, the inner conductor of the coaxial cable is connected in parallel with the contact wire, so it needs to have the same insulation strength as the contact wire, but the outer conductor is connected in parallel with the rail, so it requires insulation. The strength may be low.
ところで、一般にき電回路において故障が発生した場合
、故障点を正確に検出することは故障の復旧時間短縮の
面から非常に重要であり、上記した同軸ケーブルき電回
路においても例外ではない。By the way, in general, when a failure occurs in a power feeding circuit, it is very important to accurately detect the point of failure in terms of shortening the recovery time from the failure, and the above-mentioned coaxial cable feeding circuit is no exception.
しかるに、同軸ケーブルき電回路は現在のところまだ実
施されていないので、そのき電画路用の故障点標定方法
も未だ確立されていないのが現状である。そこで、近時
同軸ケーブルき電回路の実施が現実のものとなったこと
に伴ない、その故障点標定方法の確立が急務となったの
である。However, since coaxial cable feeding circuits have not yet been implemented, a method for locating fault points for the feeding circuits has not yet been established. Therefore, as coaxial cable feeding circuits have recently become a reality, it has become urgent to establish a method for locating their failure points.
本発明はこのような点にあって、同軸ケーブルき電回路
の特殊性を考慮した新規、有用な故障点π
標定方法を提供するものである。In view of this, the present invention provides a new and useful failure point π locating method that takes into account the special characteristics of coaxial cable feeding circuits.
次に本発明の標定方法を図面に基づいて説明する。第2
図に本発明の標定方法を実施する基本的な構成を示す。Next, the orientation method of the present invention will be explained based on the drawings. Second
The figure shows the basic configuration for implementing the orientation method of the present invention.
同軸ケーブルき電回路の故障としては、上述した如く、
同軸ケーブルの内部導体と外部導体の短絡と電車線路で
トロリ線とレールの短絡との2つが考えられる。従って
、この2つの故障のうちいずれが起っても故障地点の標
定を行なうことができねばならない。そこで、先ず、同
軸ケーブル自身が短絡故障を起した場合の故障点標定方
法と、電車線路が短絡故障を起した場合の故障点標定方
法とを各別に説明するっ
(1)同軸ケーブル自身が短絡故障を起した場合の故障
点標定方法
第3図に同軸ケーブル内で故障が生じた場合の故障点標
定方法を示す。As mentioned above, failures in the coaxial cable feeding circuit include:
There are two possible causes: a short-circuit between the inner and outer conductors of the coaxial cable, and a short-circuit between the contact wire and the rail on the overhead contact line. Therefore, it is necessary to be able to locate the fault point no matter which of these two faults occurs. Therefore, first, we will explain separately the method for locating the fault point when the coaxial cable itself has caused a short-circuit fault, and the method for locating the fault point when the short-circuit fault has occurred on the electric train line. Method of locating a fault point in the event of a fault Figure 3 shows a method of locating a fault point in the case of a fault occurring within a coaxial cable.
同軸ケーブルの左端P1からL離れた箇所Scで内部導
体と外部導体が短絡すると、変電所から故障電流■sが
流れるとともに、11点の電圧■cが健全時に比べて低
下する。When the inner conductor and the outer conductor are short-circuited at a point Sc that is L away from the left end P1 of the coaxial cable, a fault current ■s flows from the substation, and the voltage ■c at 11 points decreases compared to when it is healthy.
、ν
変電所から流れる故障電流Isは、11点から直接故障
点に流れる電流ICと、トロリ線とレールを通して同軸
ケーブルの右端P2から故障点に流れる電流■C′に分
離される。, ν The fault current Is flowing from the substation is separated into a current IC flowing directly from point 11 to the fault point and a current ■C' flowing from the right end P2 of the coaxial cable to the fault point through the contact wire and rail.
同軸ケーブルは一般に線路数内に布設されるが、内部導
体と外部導体が近接しているため、側導体間の相互イン
ピーダンスが大きく、内部導体表外部導体を流れる電流
はほぼ等しくなるから、実用上、同軸ケーブルとトロリ
線及びレール間の相互インピーダンスは無視しうる。す
なわち、同軸ケーブルのインピーダンスと、トロリ線ト
レールで構成される電車線路のインピーダンスはそれぞ
れ単独に考えて良い。それ故同軸ケーブルの内部導体と
外部導体を短絡した場合のインピーダンスZCは、内部
導体の自己インピーダンスをZA、外部導体の自己イン
ピーダンスをZB m内部・外部導体間の相互インピー
ダンスをZABとすると、単位長さ当たり
Zc = ZA+ ZB−2ZAB・・・・・・・・・
・・・・・・(1)で表される。Coaxial cables are generally laid within a number of lines, but because the inner conductor and outer conductor are close to each other, the mutual impedance between the side conductors is large, and the currents flowing through the inner conductor and outer conductor are almost equal, so it is not practical. , the mutual impedance between the coaxial cable and the contact wire and rail is negligible. That is, the impedance of the coaxial cable and the impedance of the overhead contact line made up of the contact wire trail can be considered independently. Therefore, the impedance ZC when the inner conductor and outer conductor of a coaxial cable are short-circuited is given by the unit length: ZA is the self-impedance of the inner conductor, ZB is the self-impedance of the outer conductor. Satari Zc = ZA+ ZB-2ZAB・・・・・・・・・
......It is represented by (1).
また、電車線路の往復インピーダンスZllt′i、ト
ロリ線の自己インピーダンスをZT+レールの自己イン
ピーダンスをzftl )ロリ線とレール間の相互イン
ピーダンスをZ・IRとすると、学位長さ当たりZF
= ZT+ ZR−2ZTR・・・・・・・・・・・・
(2)で表される。In addition, if the reciprocating impedance of the trolley line is Zllt'i, the self-impedance of the contact wire is ZT + the self-impedance of the rail is Zftl), and the mutual impedance between the trolley wire and the rail is Z・IR, then ZF per degree length is
= ZT+ ZR-2ZTR・・・・・・・・・・・・
It is expressed as (2).
従って、11点から見た故障点までのインピーダンスは
、
■)P0点の電圧Vcと電流Icより求めると、Z=■
9/1o=Zctc・・・曲・曲(3)となり、故障点
までの距離tCに比例する。Therefore, the impedance from point 11 to the failure point is: ■) Calculated from the voltage Vc and current Ic at point P0, Z=■
9/1o=Zctc...song/song (3), which is proportional to the distance tC to the failure point.
1) PI点の電圧Vcと電流Ic’より求めると、Z
’ = VC/ic’= (ZF+ ZC) 1ZC
tC・・・(4)となシ、同軸ケーブルのインピーダン
スに電車線路インピーダンスが加わり、式(3)より複
雑となる。1) When calculated from the voltage Vc and current Ic' at the PI point, Z
'=VC/ic'= (ZF+ZC) 1ZC
tC...(4), the electric train line impedance is added to the coaxial cable impedance, making the equation more complicated than equation (3).
m) pt点の電圧Vcと変電所からの故障電(5iI
sより求めると、
となり、ムは故障点までの距離tCの自乗に比例する形
となる。m) Voltage Vc at point pt and fault current from substation (5iI
When calculated from s, it becomes as follows, and m is proportional to the square of the distance tC to the failure point.
以上のことから同軸ケーブル内の故障点までのインピー
ダンスを求める方法としては、式(3)の関係を用いる
のが最も準線であり、それ故正確を明しやすいといえる
。この式(3)より求めたZは、21点から故障点まで
の距離tCに比例するから健全時の同軸ケーブルのイン
ピーダンスZcを既知として、Lc =Z/Zc
・・・・・・・・・・・・(6)よシ、故障点ま
での距離tcを求めることができる0
ただし、故障点は一般にアークによって短絡されるため
、故障インピーダンスZにはアーク抵抗が加算され、イ
ンピーダンスが大きくなり誤差の原因になる。この誤差
を除くために、インピーダンスからリアクタンス分Xを
取り出し、zC= X/Xo ・・・四囲・(
力として、既知のリアクタンスXCと比較することによ
り、故障点の標定を行う。ただし、θは21点の電圧■
と電流ICの位相差である。(7)式により故障点距離
tcを求めるには、リアクタンスXを求めなければなら
ない。(7)式で示すリアクタンスXはX −■0S
in・θ ・・・曲・曲(8)−■
で表される。第3図中、Mは(8)式の演算を行なう回
路である。この回路は例えばマイクロコンピュータ等で
構成される。From the above, as a method for determining the impedance up to the failure point in the coaxial cable, using the relationship in equation (3) is the most direct directrix, and therefore the accuracy can be easily determined. Since Z obtained from this formula (3) is proportional to the distance tC from the 21st point to the failure point, assuming that the impedance Zc of the coaxial cable when healthy is known, Lc = Z/Zc
・・・・・・・・・・・・(6) Yes, the distance tc to the fault point can be found. However, since the fault point is generally short-circuited by an arc, the fault impedance Z is determined by the arc resistance. is added, increasing impedance and causing errors. In order to eliminate this error, take out the reactance X from the impedance, zC=X/Xo...
The fault point is located by comparing the force with the known reactance XC. However, θ is the voltage at 21 points■
This is the phase difference between the current IC and the current IC. In order to find the fault point distance tc using equation (7), the reactance X must be found. The reactance X shown in equation (7) is X −■0S
in・θ...Song/Song (8)-■ Represented. In FIG. 3, M is a circuit that performs the calculation of equation (8). This circuit is composed of, for example, a microcomputer.
(2)電車線路でトロリ線とレールが短絡故障を起した
場合の故障点標定方法
第4図に電車線路が短絡故障を起した場合の故障点標定
方法を示す。(2) Method for locating a fault point when a short-circuit fault occurs between a contact wire and a rail on an overhead contact line Figure 4 shows a method for locating a fault point when a short-circuit fault occurs on an overhead contact line.
同軸ケーブルの往復線路インピーダンスZCは、前述の
式(1)において内部・外部導体間の相互インピーダン
スが大きいため、
ZA+ ZB: 2 ZAB ・・・・・・・・
・・・イ9)となり、Zcは極めて小さく、電車線路の
往復線路インピーダンスと比較すると、
Zc<<Zy ・・・・・・・・・・・・0
0)となり、故障点SFには同軸ケーブルの右端P2か
らも左端P1からと同様に電力が供給されることとなる
。Since the mutual impedance between the inner and outer conductors is large in the above equation (1), the round trip line impedance ZC of the coaxial cable is ZA+ ZB: 2 ZAB ・・・・・・・・・
...A9), and Zc is extremely small, and when compared with the round trip impedance of the electric train line, Zc<<Zy ......0
0), and power is supplied to the failure point SF from the right end P2 of the coaxial cable as well as from the left end P1.
21点から供給される電に、 I 1と12点から供給
される電流■2とは21点から故障点゛までの距離をt
−pとすると、
で表される。ここで、式(10)で述べたような関係が
あるから、I2は近似的に
c
と置ける。I1とI2の絶対値の比をHlとすると、と
なり、tが既知であるから、tFを簡単に標定すること
ができる。For the current supplied from point 21, I 1 and the current supplied from point 12 2 are the distance from point 21 to the fault point t.
When −p is set, it is expressed as follows. Here, since the relationship described in equation (10) exists, I2 can be approximately set as c. If the ratio of the absolute values of I1 and I2 is Hl, then since t is known, tF can be easily located.
第4図中のNは第(13)式の演算を行なう回路である
。この回路はマイクロコンピュータ等で構成することが
できる。N in FIG. 4 is a circuit that performs the calculation of equation (13). This circuit can be constructed from a microcomputer or the like.
以上のことから、き電回路に故障が生じた場合、(8)
式とα■式の演算を行なうことにより、正しい故障地点
の標定を行なうことができるといえる。From the above, if a failure occurs in the feeding circuit, (8)
It can be said that by calculating the equation and the α■ equation, it is possible to correctly locate the fault point.
ところで、この場合、(8)式と(131式の2つの解
が与えられるので、いずれの解が正しい故障点を標定し
ているかの判断を行なう必要がある。しかし、この判断
は容易ではないので、使用に際しては、通常き電回路に
設けられている比率差動形ケーブル故障検出装置87C
及び変電所内のき電回路1呆護用距離継電器44Fを利
用し、自動的に判断するようにする。即ち、同軸ケーブ
ル自身に故障が起きると、87Cが動作するので、この
87Cの動作によって(8)式の演算を行なわせる。一
方、電車線路に故障が起ると、 44Fが動作するので
、この44F’が動作したことを条件に(13)式の演
算を行なわせる。By the way, in this case, two solutions are given, equation (8) and equation (131), so it is necessary to judge which solution locates the correct failure point.However, this judgment is not easy. Therefore, when using the ratio differential type cable failure detection device 87C, which is normally provided in the feeding circuit.
And the distance relay 44F for protecting the feeding circuit 1 in the substation is used to automatically make a judgment. That is, when a failure occurs in the coaxial cable itself, 87C operates, and the operation of 87C causes the calculation of equation (8) to be performed. On the other hand, when a failure occurs in the electric train track, 44F is activated, so the calculation of equation (13) is performed on the condition that 44F' is activated.
もつとも、44Fは同軸ケーブル自身に故障が起っても
動作するが、同軸ケーブルの故障時には87Gが動作し
、電車線路の故障時には87Cが動作しないので、87
Cの動作・非動作から同軸ケーブルの故障であるか電車
線路の故障であるかを判別することができる。Of course, 44F operates even if the coaxial cable itself fails, but 87G operates when the coaxial cable fails, and 87C does not operate when the electric train line fails, so 87
From the operation/non-operation of C, it is possible to determine whether the problem is a coaxial cable failure or a failure of the overhead contact line.
尚、故障電流ICの検出のだめの計器用変流器CTの挿
入箇所は、内部導体と外部導体に同じ電流が流れるため
、側導体のいずれの引出し線でもよいが、変流器の経済
化の点から、絶縁強度が低い外部導体の引出し線に挿入
するのが望ましい。また、電流計測用の計器用変流器は
、絶縁強度を低くして経済化を図るため、レールと外部
導体の接続線に挿入するのが望ましい。Note that the insertion point of the instrument current transformer CT for detecting the fault current IC may be any lead wire of the side conductor since the same current flows through the internal conductor and the external conductor, but it is important to make the current transformer more economical. Therefore, it is desirable to insert it into the lead wire of an external conductor with low insulation strength. Furthermore, in order to reduce the insulation strength and save money, it is desirable to insert a current transformer for current measurement into the connection line between the rail and the external conductor.
以上説明したように本発明によれば、同軸ケーブルき重
囲路において、き重囲路内で故障が発生した時に、同軸
ケーブルの電源側の内部・外部両導体間の電圧、及び同
軸ケーブルに流れる電流を計測して故障点までのリアク
タンスを計算し、同軸ケーブル自体の故障地点を標定す
るとともに、同軸ケーブルの両端において、レールと同
軸ケーブル外部導体の接続線の電流を計測し、この両端
の電流の比を計算し、電車線路で発生した故障の地点を
標定するものであるから、同軸ケーブル内及び電車線路
のいずれで故障が発生した場合であっても故障地点を正
確に標定することができる。As explained above, according to the present invention, when a failure occurs in a coaxial cable enclosure, the voltage between the internal and external conductors on the power supply side of the coaxial cable and the coaxial cable are reduced. Measure the flowing current and calculate the reactance up to the failure point to locate the failure point of the coaxial cable itself. At both ends of the coaxial cable, measure the current in the connecting wire between the rail and the coaxial cable outer conductor, and Because it calculates the current ratio and locates the point of failure that occurs on the overhead contact line, it is possible to accurately locate the failure point regardless of whether a failure occurs within the coaxial cable or on the overhead contact line. can.
特に、比率差動形ケーブル故障検出装置87Gと距聾
離継電器44Fの動作結果を利用することを条件に、同
軸ケーブル自身の故障であるか、電車線路の故障である
かを簡単に識別でき、より迅速に故障の復旧を行なえ、
列車の運転確保に大きく貢献するものである。In particular, on the condition that the operation results of the ratio differential type cable failure detection device 87G and the distance deaf relay 44F are used, it is possible to easily identify whether the failure is in the coaxial cable itself or in the electric train line. You can recover from failures more quickly,
This will greatly contribute to ensuring train operation.
第1図は同軸ケーブルき重囲路を示す図、第2図は本発
明方法を実施する基本的な回路図、第3図は同軸ケーブ
ル内で故障が発生した場合の故障点標定方法を説明する
図、第4図は電車線路で故障が発生した場合の故障点標
定方法を説明する図である。
なお、図中Wは電源電圧、Zoは変電所の内部インピー
ダンスPTは計器用変圧器を示す。Figure 1 is a diagram showing a coaxial cable enclosure, Figure 2 is a basic circuit diagram for implementing the method of the present invention, and Figure 3 explains a method for locating a failure point when a failure occurs in a coaxial cable. FIG. 4 is a diagram illustrating a method for locating a fault point when a fault occurs on the electric train tracks. In the figure, W indicates the power supply voltage, and Zo indicates the internal impedance PT of the substation.
Claims (1)
生した時に、同軸ケーブルの電源側の内部・外部両導体
間の電圧、及び同軸ケーブルに流れる電流を計測して故
障点までのリアクタンスを計算し、同軸ケーブル自体の
故障地点を標定するとともに、同軸ケーブルの両端にお
いて、レールと同軸ケーブル外部導体の接続線の電流を
計測し、この両端の電流の比を計算し、電車線路で発生
した故障の地点を標定することを特徴とする同軸ケーブ
ルき電回路の故障点標定方法。In a coaxial cable feeding circuit, when a failure occurs in the feeding circuit, measure the voltage between the internal and external conductors on the power supply side of the coaxial cable and the current flowing through the coaxial cable to calculate the reactance up to the failure point. In addition to locating the failure point of the coaxial cable itself, the current in the connection line between the rail and the coaxial cable outer conductor is measured at both ends of the coaxial cable, and the ratio of the currents at both ends is calculated to determine the failure point that has occurred on the overhead contact line. A method for locating a fault point in a coaxial cable feeding circuit, characterized by locating a point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12867484A JPH0234806B2 (en) | 1984-06-21 | 1984-06-21 | DOJIKUKEEBURUKIDENKAIRONOKOSHOTENHYOTEIHOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12867484A JPH0234806B2 (en) | 1984-06-21 | 1984-06-21 | DOJIKUKEEBURUKIDENKAIRONOKOSHOTENHYOTEIHOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS619350A true JPS619350A (en) | 1986-01-16 |
JPH0234806B2 JPH0234806B2 (en) | 1990-08-07 |
Family
ID=14990636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12867484A Expired - Lifetime JPH0234806B2 (en) | 1984-06-21 | 1984-06-21 | DOJIKUKEEBURUKIDENKAIRONOKOSHOTENHYOTEIHOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0234806B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006001394A (en) * | 2004-06-17 | 2006-01-05 | West Japan Railway Co | Feeder cable monitoring device |
CN104057842A (en) * | 2014-06-17 | 2014-09-24 | 西南交通大学 | Coaxial cable power supply system of electrified railway |
CN106627676A (en) * | 2016-12-09 | 2017-05-10 | 交控科技股份有限公司 | Dynamic allocation method of resource control rights of regional controller |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7901870B1 (en) | 2004-05-12 | 2011-03-08 | Cirrex Systems Llc | Adjusting optical properties of optical thin films |
US7565084B1 (en) | 2004-09-15 | 2009-07-21 | Wach Michael L | Robustly stabilizing laser systems |
JP2011152810A (en) * | 2010-01-26 | 2011-08-11 | East Japan Railway Co | Vehicle position detection and vehicle operation state detecting device |
-
1984
- 1984-06-21 JP JP12867484A patent/JPH0234806B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006001394A (en) * | 2004-06-17 | 2006-01-05 | West Japan Railway Co | Feeder cable monitoring device |
CN104057842A (en) * | 2014-06-17 | 2014-09-24 | 西南交通大学 | Coaxial cable power supply system of electrified railway |
CN104057842B (en) * | 2014-06-17 | 2017-01-11 | 西南交通大学 | Coaxial cable power supply system of electrified railway |
JP2017522229A (en) * | 2014-06-17 | 2017-08-10 | 西南交通大学 | Power supply system by cable in electric railway |
EP3160052B1 (en) * | 2014-06-17 | 2020-04-08 | Southwest Jiaotong University | Electric railway coaxial cable power supply system |
CN106627676A (en) * | 2016-12-09 | 2017-05-10 | 交控科技股份有限公司 | Dynamic allocation method of resource control rights of regional controller |
Also Published As
Publication number | Publication date |
---|---|
JPH0234806B2 (en) | 1990-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4695789B2 (en) | Fault location device for feeder circuits | |
JPS619350A (en) | Orienting method of fault point for coaxial cable feeder circuit | |
US7068040B2 (en) | Ground circuit impedance measurement apparatus and method | |
JP4693564B2 (en) | Fault location device for AC AT feeder circuit | |
CN104111407A (en) | Fault detection method based on impedance ratio same-tower power transmission line transverse differential protection | |
CN208520937U (en) | A kind of transformer core and clamp earthing current monitoring device | |
JPS6215473A (en) | Locating method for fault point of transmission line | |
JP3191274B2 (en) | Accident point locating method for tracks with branch lines | |
JP3873785B2 (en) | Fault location method | |
JP2866172B2 (en) | Transmission line fault direction locating method | |
JPS62249078A (en) | Fault point locating system | |
JP2895994B2 (en) | Fault location method for three-phase cable | |
JPH10157495A (en) | Alternating current bt feeder circuit failure point locating device | |
JPS60169774A (en) | Locating method of insulating failure point of cable under live state | |
JP2000147048A (en) | AC BT feeding circuit failure judgment device | |
JP2885932B2 (en) | Transmission line fault section identification system | |
JP2568097B2 (en) | Power cable accident section detection method | |
JPH0573183B2 (en) | ||
JPH0614086B2 (en) | Single-core cable shield disconnection monitoring device and method | |
JPH034940Y2 (en) | ||
JPS60177276A (en) | Locating method of fault point of direct-current traction feeding circuit | |
JP2000284016A (en) | Method for detecting ground-fault point in trolley power transmission line | |
JPH11295379A (en) | Method of detecting ground trouble in underground wiring | |
JPS61288170A (en) | Detecting circuit for grounding resistance | |
JPS5856116B2 (en) | Method for locating defective points of corrosion protection layer insulation under live wires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |