JPS619294A - Production of beta-hydroxyamino acid - Google Patents
Production of beta-hydroxyamino acidInfo
- Publication number
- JPS619294A JPS619294A JP59129980A JP12998084A JPS619294A JP S619294 A JPS619294 A JP S619294A JP 59129980 A JP59129980 A JP 59129980A JP 12998084 A JP12998084 A JP 12998084A JP S619294 A JPS619294 A JP S619294A
- Authority
- JP
- Japan
- Prior art keywords
- glycine
- reaction
- aldehyde
- treatment
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野良
本発明は、β−ヒドロキシアミノ酸の製造法に関し、更
に詳しくはセリンヒドロキシメチルトランスフェラーゼ
生産能を有する微生物の存在下、グリシンとアルデヒド
よりβ−ヒドロキシアミノ酸を製造する方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing β-hydroxyamino acids, more specifically, the production of β-hydroxyamino acids from glycine and aldehyde in the presence of a microorganism capable of producing serine hydroxymethyltransferase. The present invention relates to a method for producing amino acids.
(従来の技術)
β−ヒドロキシアミノ酸は、セリン、スレオニン、フェ
ニルセリン等のアミノ酸、医薬品、化粧品、飼料添加物
、医薬品中間体として重要な物質である。(Prior Art) β-hydroxyamino acids are important substances as amino acids such as serine, threonine, and phenylserine, pharmaceuticals, cosmetics, feed additives, and pharmaceutical intermediates.
セリンヒトワキシメチルトランスフェラーゼ(λ1.2
.L
E、 O,&+ 4 & & )は、セリントランスヒ
ドロキシ)チラーゼまたはセリンアルドラーゼとも呼ば
れ哺乳動物、鳥類、高等植物、微生物等に広く存在して
おり、ピリドキサルリン酸を補酵累とし、グリシンとア
ルデヒドからβ−ヒドロキシアミノ酸を合成する反応を
触媒することが既に良く知られている。(例えば、Ad
vances in 1シnzymology 53
。Serine human waxy methyltransferase (λ1.2
.. L E, O, &+ 4 && ) is also called serine transhydroxy) tylase or serine aldolase, and is widely present in mammals, birds, higher plants, microorganisms, etc. It ferments pyridoxal phosphate and synthesizes glycine and It is already well known that it catalyzes the reaction of synthesizing β-hydroxyamino acids from aldehydes. (For example, Ad
vances in 1 zymology 53
.
83−112(1982)、)。83-112 (1982), ).
(発明が解決しようとする問題点〕
本発明者らは、セリンヒドロキシメチルトランスフェラ
ーゼ生産能を有する微生物の存在下、グリシンとアルデ
ヒドよりβ−ヒドロキシアミノ酸を製造する方法につい
て更に研究を進めたところ、酵素源として微生物の培養
液または菌体をそのまま用いて酵素反応を行なうと、基
質等の菌体細胞膜の透過性が悪い故かみかげ上、酵素活
性が低く反応収率も低い場合があることをかねてより見
ていた。(Problems to be Solved by the Invention) The present inventors conducted further research on a method for producing β-hydroxyamino acids from glycine and aldehydes in the presence of microorganisms capable of producing serine hydroxymethyltransferase. If an enzymatic reaction is performed using the culture solution or cells of microorganisms as a source, the enzyme activity may be low and the reaction yield may be low due to the poor permeability of the cell membrane of the microorganisms, such as substrates. I was watching more.
従来、菌体の細胞膜の透過性を増大させる方法としては
、機械的破壊、超音波破砕、凍結融解処理、加圧減圧処
理、浸透圧処理、自己消化、細胞壁分解酵素処理、界面
活性剤処理等が用いられていた。(例えば、Agric
、 Biol、 Ohem、 、 42.2515−2
321(1978)、J、 Ferment、 Tec
hnol 、 ’、 61゜135−142(1983
))。しかしながら、機械的破壊、超音波処理、凍結融
解処理、加圧減圧処理等では高価な装置が必要であり、
又、大量処理が困難である。浸透圧処理、自己消化、細
胞壁分解酵素処理、界面活性剤処理等は微生物細胞の種
類や状態により効果が一定でなく、処理にも長時間を要
することが多い等の欠点がある。また、有機溶媒による
自己消化や界面活性剤処理では使用した有機溶媒や界面
活性剤の除去が難しいのも欠点である。Conventionally, methods for increasing the permeability of bacterial cell membranes include mechanical disruption, ultrasonic disruption, freeze-thaw treatment, pressurization and vacuum treatment, osmotic pressure treatment, autolysis, cell wall-degrading enzyme treatment, surfactant treatment, etc. was used. (For example, Agric
, Biol, Ohem, , 42.2515-2
321 (1978), J. Ferment, Tec.
hnol, ', 61°135-142 (1983
)). However, mechanical destruction, ultrasonic treatment, freeze-thaw treatment, pressurization and depressurization treatment, etc. require expensive equipment.
Moreover, it is difficult to process in large quantities. Osmotic pressure treatment, autolysis, cell wall-degrading enzyme treatment, surfactant treatment, etc. have disadvantages such as varying effectiveness depending on the type and condition of microbial cells and often requiring a long time for treatment. Another drawback is that it is difficult to remove the used organic solvent or surfactant in autolysis using an organic solvent or surfactant treatment.
(問題点を解決する。ための手段)
本発明者らは菌体を用いグリシンとアルデヒドより効率
よくβ−ヒドロキシアミノ酸を製造する方法ニついて鋭
意研究の結果、セリンヒドロキシメチルトランスフ−ラ
ーゼ生産能を有jる微生物の培養液または菌体の存在下
、グリシンとアルデヒド−よりβ−ヒドロキシアミノ酸
を製造するに際して、微生物菌体をあらかじめグリシン
と接触させたのち反応に使用することにより効率良くβ
−ヒドロキシアミノ酸が生成することを見出し本発明を
完成するに至った。(Means for solving the problem) As a result of intensive research into a method for producing β-hydroxyamino acids more efficiently than glycine and aldehyde using bacterial cells, the present inventors have found that serine hydroxymethyltransferase production ability has been achieved. When producing β-hydroxyamino acids from glycine and aldehydes in the presence of microbial cultures or microbial cells, β-hydroxyamino acids can be efficiently produced by bringing the microbial cells into contact with glycine in advance and then using them in the reaction.
- It was discovered that hydroxyamino acids are produced, and the present invention was completed.
本発明で使用されるグリシンは、反応基質でもあるので
有機溶媒や界面活性剤のように使用後除去する必要もな
く、そのまま反応基質として使用できる。また、前体と
グリシンとの接触(グリシン処理〕は高価な装置を必要
とせず、短時間でしかも大量処理が可能であり、本発明
の方法は工業的に極めて優れている。あらかじめ行なう
菌体とグリシンの接触の結果は、恐らく菌体の細胞膜の
透過性に影響を及ぼしているものと思われる。Since the glycine used in the present invention is also a reaction substrate, there is no need to remove it after use unlike organic solvents or surfactants, and it can be used as a reaction substrate as it is. In addition, contacting the precursor with glycine (glycine treatment) does not require expensive equipment and can be carried out in a short time and in large quantities, making the method of the present invention industrially extremely superior. The result of contact between the bacteria and glycine probably affects the permeability of the bacterial cell membrane.
本発明において用いられる微生物は、セリンヒドロキシ
メチルトランスフェラーゼ生産能を有スるものであれば
よく特に制限はない。このような微生物の例としては、
エシェリヒア・コリ(Fischerichia co
li ) MT−10350(微工研菌寄第7437号
〕、エシェリヒア・コリMT−10351(微工研菌寄
第7468号)をあげることができる。The microorganism used in the present invention is not particularly limited as long as it has the ability to produce serine hydroxymethyltransferase. Examples of such microorganisms include:
Fischerichia coli
li) MT-10350 (FEB No. 7437) and Escherichia coli MT-10351 (FEB No. 7468).
本発明において用いられる微生物の培養に当っては、使
用菌株の利用しうる炭素源、窒素源、無機塩類、有機栄
養物などを含有するものであれば合成培地、天然培地の
いずれも使用できる。For culturing the microorganisms used in the present invention, any synthetic or natural medium can be used as long as it contains carbon sources, nitrogen sources, inorganic salts, organic nutrients, etc. that can be utilized by the strain used.
本発明の方法では、このようにして得られた培養液その
まま、又は遠心分離、沢過等により集菌した生菌体をグ
リシンと接触させたのち、酵素源として使用する。In the method of the present invention, the culture solution thus obtained is used as it is, or the viable bacterial cells collected by centrifugation, straining, etc. are brought into contact with glycine, and then used as an enzyme source.
微生物菌体をグリシンと接触させる方法(グリシン処理
〕としては、培養液そのままを酵素源として用いる場合
は培養終了後の培養液にグリシンを添加すれば良く、遠
心分離、濾過等により集菌した菌体を酵素源として用い
るときは、適当なグリシン溶液に集菌した菌体を懸濁す
れば良い。グリシン処理は静置条件下、攪拌条件下いず
れで行なっても良いが、pHは6〜9、温度は20〜7
゜℃の範囲で行なうのが望ましい。この場合のグリシン
濃度は4チ(重量%、以下同じ)もあれば効果が出て来
るが、通常は7〜26係程度である。As for the method of bringing microbial cells into contact with glycine (glycine treatment), if the culture solution itself is used as an enzyme source, it is sufficient to add glycine to the culture solution after completion of culture. When using the cells as an enzyme source, it is sufficient to suspend the collected cells in an appropriate glycine solution.Glycine treatment may be carried out either under static conditions or under stirring conditions, but the pH should be 6 to 9. , the temperature is 20-7
It is desirable to carry out the test within the range of °C. In this case, the glycine concentration may be as high as 4% by weight (the same applies hereinafter) for the effect to be obtained, but it is usually about 7 to 26%.
グリシン処理時間は菌体濃度、グリシン濃度、温度等に
より異なるようであるが通常6o分〜24時間程度であ
る。グリシン処理後の菌体は、グリシン溶液のまま適当
な濃度に調整して酵素源として反応に使用することがで
きる。The glycine treatment time seems to vary depending on the bacterial cell concentration, glycine concentration, temperature, etc., but is usually about 60 minutes to 24 hours. The bacterial cells treated with glycine can be used as an enzyme source in a reaction by adjusting the concentration to an appropriate concentration as a glycine solution.
本発明に係るグリシンとアルデヒドとの反応は、このよ
うにし、て得られたグリシン処理菌内の存在下、p14
6〜9、温度20〜60”Cで振とうまたは撹拌条件下
で行なうのが望ましい。The reaction between glycine and aldehyde according to the present invention is carried out in the presence of the glycine-treated bacteria obtained in this manner.
It is preferable to carry out the reaction under conditions of shaking or stirring at a temperature of 6-9°C and a temperature of 20-60''C.
反応基質としてのグリシンの使用、濃度の範囲も広い。The use of glycine as a reaction substrate also has a wide range of concentrations.
通常1〜40%であるから反応基質としてのグリシンは
反応開始時にその全肚を添加しておいてもよ(、反応の
進行にともない逐次分割して添加してもよい。Since the amount is usually 1 to 40%, glycine as a reaction substrate may be added in its entirety at the start of the reaction (or may be added in successive portions as the reaction progresses).
もう一方反応基質であるアルデヒドとしては、ホルムア
ルデヒド、アセトアルデヒド、プロピオンアルデヒド、
ブチルアルデヒド、イソブチルアルデヒド、バレルアル
デヒド、イソバレルアルデヒド、カプロンアルデヒド、
カプリルアルデヒド、ドデシルアルデヒド、ミリスチン
アルデヒド、パルミチンアルデヒド等の脂肪族飽和アル
デヒド、スクシジンアルデヒド等の脂肪族ジアルデヒド
、アクロレイン、クロトンアルデヒド等の脂肪族不飽和
アルデヒド、ベンズアルデヒドおよび置換基を1つま1
こは2つ以上有するベンズアルデヒド、ホルミル酢酸等
のアルデヒド酸、メチルグリオキサール等のケトアルデ
ヒド等があげられる。On the other hand, the aldehydes that are reaction substrates include formaldehyde, acetaldehyde, propionaldehyde,
Butyraldehyde, isobutyraldehyde, valeraldehyde, isovaleraldehyde, capronaldehyde,
Aliphatic saturated aldehydes such as capryaldehyde, dodecylaldehyde, myristic aldehyde, palmitic aldehyde, aliphatic dialdehydes such as succidinaldehyde, aliphatic unsaturated aldehydes such as acrolein and crotonaldehyde, benzaldehyde and one or one substituent
Examples of this include aldehyde acids such as benzaldehyde and formyl acetic acid having two or more, and ketoaldehydes such as methylglyoxal.
これらのアルデヒドは酵素活性を阻害しない程度の濃度
で用いられなげればならず、通常001〜10%程度の
濃度になるよう反応開始時にその全量添加しておいても
よく、勿論反応の進行にともない逐次分割して添加して
もよい。These aldehydes must be used at a concentration that does not inhibit the enzyme activity, and the entire amount may be added at the start of the reaction so that the concentration is usually about 0.001 to 10%. Alternatively, it may be added in successive portions.
セリンヒドロキシメチルトランスフェラーゼは、
補酵素としてビタミンB6を要求するため、ピ
リドキサルリン酸を反応系に添加することKより反応が
高められることがある。Serine hydroxymethyltransferase is
Since vitamin B6 is required as a coenzyme, adding pyridoxal phosphoric acid to the reaction system may enhance the reaction more than K.
アルデヒドとしてホルムアルデヒドを用いる場合は、補
酵素としてテトラヒドロ葉酸を反応系に添加することに
より反応が高められることがある。When formaldehyde is used as the aldehyde, the reaction may be enhanced by adding tetrahydrofolic acid as a coenzyme to the reaction system.
本反応は還元剤の添加または窒素通気条件下で行なうこ
とにより高められることがある。この際の還元剤として
はアスコルビン酸、ジチオスレイトール、2−メルカプ
トエタノール、ジチオエリスリトール、還元型グルタチ
オン、システィン、亜硫酸ナトリウムなどがあげられる
。This reaction may be enhanced by the addition of a reducing agent or by conducting it under nitrogen bubbling conditions. Examples of the reducing agent in this case include ascorbic acid, dithiothreitol, 2-mercaptoethanol, dithioerythritol, reduced glutathione, cysteine, and sodium sulfite.
反応液中に生成したβ−ヒドロキシアミノ酸を単離する
には、濃縮、イオン交換樹脂や活性炭による吸脱着処理
など常法が適用できる。In order to isolate the β-hydroxyamino acid produced in the reaction solution, conventional methods such as concentration, adsorption/desorption treatment using an ion exchange resin or activated carbon can be applied.
生成したβ−ヒドロキシアミノ酸の定性確認はペーパー
クロマトグラム上のニンヒドリン発色によす、定量はペ
ーパークロマトグラム上のニンヒドリン発色スポットを
切り取り、そのスポット抽出液を比色定量することおよ
び液体クロマトグラフィーにより行なうことができる。Qualitative confirmation of the generated β-hydroxy amino acid is based on ninhydrin color development on a paper chromatogram, and quantitative determination is performed by cutting out the ninhydrin coloring spot on the paper chromatogram and colorimetrically quantifying the spot extract, and by liquid chromatography. be able to.
i−セリンの定量は、ロイコノストック・メゼンテロイ
デス(:t、eucOnO8tOc mesenter
oides )によるバイオアッセイ法で行なうことが
できる。Quantification of i-serine was performed using Leuconostoc mesenteroides (:t, eucOnO8tOc mesenter
oides) can be carried out using a bioassay method.
(実施例)
次に実施例及び比較例により本発明を具体的に説明する
。(Example) Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.
実施例1
第1表に示す組成の培地を1oomlづつ500m1容
振とうフラスコに分注し、滅菌後、予めブイヨンスラン
ト上で37℃、20時間生育させたエシェリヒアOコリ
(Escherichia coli ) MT−10
350を1白金耳づつ接種した。37℃で15時間振と
う培養した。培養液より遠心分離により菌体を集め、生
理食塩水で洗浄後、再び遠心分離することにより湿菌体
を得た。この湿菌体の19をpH7,5の18係グリシ
ン溶液5ゴ中に懸濁し、50℃で6時間ゆるやかに振と
うした。(グリシン処理〕。Example 1 1 ooml of the medium having the composition shown in Table 1 was dispensed into 500 ml shake flasks, and after sterilization, Escherichia coli MT-10 was grown on a bouillon slant at 37°C for 20 hours.
350 was inoculated one platinum loop at a time. It was cultured with shaking at 37°C for 15 hours. Bacterial cells were collected from the culture solution by centrifugation, washed with physiological saline, and centrifuged again to obtain wet bacterial cells. This wet bacterial cell No. 19 was suspended in a glycine solution No. 18 having a pH of 7.5 and gently shaken at 50° C. for 6 hours. (Glycine treatment).
次いでこの菌体含有グリシン溶液を水で10m1に希釈
し、pH7,0に訴事したのち、ピリドキサルリン酸1
ダ、テトラヒドロ葉酸10q1ホルマリン(37チホル
ムアルデヒド溶液)20qを加え反応を開始した。反応
は50℃、pH7,0で反応液中に約1 ml/mln
で窒素ガスを通じ、ゆるやかな攪拌条件下で実施した。Next, this bacterial cell-containing glycine solution was diluted to 10 ml with water, adjusted to pH 7.0, and then diluted with 1 ml of pyridoxal phosphate.
Then, 10q1 of tetrahydrofolic acid and 20q of formalin (37 thiformaldehyde solution) were added to start the reaction. The reaction was carried out at 50°C, pH 7.0, and about 1 ml/ml in the reaction solution.
The reaction was carried out under gentle stirring conditions while passing nitrogen gas through.
反応開始後、30分毎にホルマリンを10ηづつ反応液
に添加した。反応は20時間継続し、この間に反応液に
添加したホルマリンの総量は420岬であり、反応液中
には500 mlのL−セリンが蓄積した。After the start of the reaction, 10η of formalin was added to the reaction solution every 30 minutes. The reaction continued for 20 hours, during which time the total amount of formalin added to the reaction solution was 420 ml, and 500 ml of L-serine was accumulated in the reaction solution.
比較例1
一方、実施例1の湿菌体1gをグリシン処理を行なわず
、そのまま9係グリシン溶液1omz(PHZo)に懸
濁し、上記と全く同様の操作で反応したところ、反応液
中に蓄積したL−セリンは98りにすぎなかった。Comparative Example 1 On the other hand, 1 g of the wet bacterial cells of Example 1 was not treated with glycine, but was directly suspended in 1 omz glycine solution (PHZo) and reacted in exactly the same manner as above. L-serine was only 98.
第1表
グ#:7−ス1% M2O3・7H20’0.059
6クエン酸 02係 酵母エキス 0.05%
NaN■(4HPO4,4I(2003%に2HP0.
0.5係
実施例2及び比較例2
実施例1と同じ方法でエシェリヒア・コIJMT−10
350の湿菌体を得た。この湿菌体1!iづつを表2に
示した濃度のグリシン溶液(pH7,5に調整)5ml
に懸濁し、50℃で6時間ゆるやかに振とうした。次い
で、この菌体含有グリシン溶液に水及びグリシンを加え
て、グリシン濃度が9%で液量が10Tnlであるよう
に調整した。引続き実施例1と同じ方法で反応を行ない
全量で420・岬のホルマリンを各反応液に添加した。Table 1 G#: 7-S 1% M2O3・7H20'0.059
6 Citric acid Section 02 Yeast extract 0.05%
NaN■ (4HPO4,4I (2003% and 2HP0.
Example 2 and Comparative Example 2 Escherichia Co. IJMT-10 in the same manner as Example 1
350 wet bacterial cells were obtained. This wet bacterial body 1! 5 ml of glycine solution (adjusted to pH 7.5) with the concentration shown in Table 2 for each i
and gently shaken at 50°C for 6 hours. Next, water and glycine were added to this bacterial cell-containing glycine solution to adjust the glycine concentration to 9% and the liquid volume to 10 Tnl. Subsequently, a reaction was carried out in the same manner as in Example 1, and a total of 420 cm of formalin was added to each reaction solution.
反応液中に生成したL−セリン量を表2に示した。Table 2 shows the amount of L-serine produced in the reaction solution.
表2
実施例6及び比較例3
実施例1と同じ方法で接養したエシェリヒア・コリMT
−10350株の培養液10mJにグリシン2.29を
添加し、50℃、pH7,0で2時間ゆるやかに攪拌し
た(グリシン処理)。次いで、この溶液に第3表に示す
アルデヒドを50ダ加え、40℃、pH−7,0、反応
液に約1 wdl/mi nで窒素ガスを通じ、ゆるや
かな攪拌条件下で5時間反応した。反応液中には第6表
に示した量の各アルデヒドに対応するβ−ヒドロキシア
ミノ酸が蓄積した。Table 2 Example 6 and Comparative Example 3 Escherichia coli MT cultured in the same manner as Example 1
2.29 glycine was added to 10 mJ of the culture solution of -10350 strain, and the mixture was gently stirred at 50°C and pH 7.0 for 2 hours (glycine treatment). Next, 50 Da of aldehydes shown in Table 3 were added to this solution, and the reaction was carried out at 40° C., pH-7.0, and nitrogen gas was passed through the reaction solution at a rate of about 1 wdl/min for 5 hours with gentle stirring. The amounts of β-hydroxy amino acids corresponding to each aldehyde shown in Table 6 were accumulated in the reaction solution.
なお、アルデヒドとしてホルムアルデヒドを用いた場合
は反応液にテトラヒドロ葉酸を1ダ添加した。In addition, when formaldehyde was used as the aldehyde, 1 Da of tetrahydrofolic acid was added to the reaction solution.
一方、同じ培養液をグリシン処理せずにそのまま用いて
、上記と全く同様の反応を行なった結果も表6に示した
。On the other hand, Table 6 also shows the results of performing the same reaction as above using the same culture solution without glycine treatment.
表6
実施例4及び比較例4
エシェリヒア・コリ(Escherichia col
i ) MT −10351を用い、実施例1と同様の
操作を行なったところ、グリシン処理菌体を用いた反応
液中にはL−セリンが370ダ蓄積した。一方、クリシ
ン処理を行なわない菌体を用いた反応液中のL−セリン
蓄積は39”lFに過ぎなかった。Table 6 Example 4 and Comparative Example 4 Escherichia coli
i) When the same operation as in Example 1 was performed using MT-10351, 370 Da of L-serine was accumulated in the reaction solution using glycine-treated bacterial cells. On the other hand, L-serine accumulated in the reaction solution using bacterial cells that were not treated with chrysin was only 39''lF.
実験例
セリンヒドロキシメチルトランスフェラーゼ活性の測定
実施例1または実施例4の方法で得た湿菌体をpH7,
0の50mMリン酸カリウム緩衝液(0,5mMのピリ
ドキサルリン酸を含む)に懸濁し、4′℃で5分間超音
波処理した。この処理液を遠心分離(10,000,9
,5分間コし、その上澄を用いてR,T、 Taylo
rらの方法(Analytical Biocheni
stry1〕、′8O−84(1965))によりセリ
ンヒドロキシメチルトランスフェラーゼ活性を測定した
。Experimental Example Measurement of serine hydroxymethyltransferase activity Wet bacterial cells obtained by the method of Example 1 or Example 4 were diluted to pH 7,
The cells were suspended in 50 mM potassium phosphate buffer (containing 0.5 mM pyridoxal phosphate) and sonicated at 4'°C for 5 minutes. This treated solution is centrifuged (10,000,9
, for 5 minutes, and the supernatant was used for R,T,Taylo
The method of Analytical Biochemi
Serine hydroxymethyltransferase activity was measured using the following method (Stry1], '8O-84 (1965)).
比活性の測定結果を表4に示した。The measurement results of specific activity are shown in Table 4.
表4Table 4
図面は実施例2におけるグリシン処理のグリシン濃度と
セリンの生成量の関係を示すブラシである。The drawing is a brush showing the relationship between the glycine concentration and the amount of serine produced in the glycine treatment in Example 2.
Claims (1)
する微生物の培養液または菌体の存在下、グリシンとア
ルデヒドよりβ−ヒドロキシアミノ酸を製造するに際し
て、微生物菌体をあらかじめグリシンと接触させたのち
反応に使用することを特徴とするβ−ヒドロキシアミノ
酸の製造法。When producing β-hydroxyamino acids from glycine and aldehyde in the presence of a culture solution or bacterial cells of a microorganism capable of producing serine hydroxymethyltransferase, the microbial cells are brought into contact with glycine in advance and then used for the reaction. A method for producing a β-hydroxyamino acid.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59129980A JPS619294A (en) | 1984-06-26 | 1984-06-26 | Production of beta-hydroxyamino acid |
US06/698,533 US4782021A (en) | 1984-02-17 | 1985-02-05 | Method of producing L-serine |
GB08503092A GB2154237B (en) | 1984-02-17 | 1985-02-07 | Producing l-serine enzymatically |
NL8500378A NL192117C (en) | 1984-02-17 | 1985-02-12 | Method for preparing L-serine. |
CH674/85A CH663423A5 (en) | 1984-02-17 | 1985-02-14 | PROCESS FOR PRODUCING L-SERINE. |
CA000474481A CA1247031A (en) | 1984-02-17 | 1985-02-15 | Method of producing l-serine |
IT8547691A IT1209936B (en) | 1984-02-17 | 1985-02-15 | L-SERINA METHOD FOR THE PRODUCTION OF |
DE3505353A DE3505353C2 (en) | 1984-02-17 | 1985-02-15 | Process for the production of L-serine |
FR8502167A FR2563233B1 (en) | 1984-02-17 | 1985-02-15 | PRODUCTION OF L-SERINE USING SERINE HYDROXYMETHYLTRANSFERASE |
AU38776/85A AU550367B2 (en) | 1984-02-17 | 1985-02-15 | Method of enzymatically producing l-serine from glycine and formaldehyde |
MX8511454U MX7343E (en) | 1984-02-17 | 1985-02-15 | MICROBIOLOGICAL PROCEDURE FOR THE PRODUCTION OF L-SERINE |
KR1019850000973A KR870001336B1 (en) | 1984-02-17 | 1985-02-16 | How to prepare L-serine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59129980A JPS619294A (en) | 1984-06-26 | 1984-06-26 | Production of beta-hydroxyamino acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS619294A true JPS619294A (en) | 1986-01-16 |
JPH0422556B2 JPH0422556B2 (en) | 1992-04-17 |
Family
ID=15023184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59129980A Granted JPS619294A (en) | 1984-02-17 | 1984-06-26 | Production of beta-hydroxyamino acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS619294A (en) |
-
1984
- 1984-06-26 JP JP59129980A patent/JPS619294A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0422556B2 (en) | 1992-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60251895A (en) | Method for producing pyrroloquinoline quinone | |
Huh et al. | Synthesis of l-proline from the racemate by coupling of enzymatic enantiospecific oxidation and chemical non-enantiospecific reducation | |
JPH084515B2 (en) | Method for producing organic compound | |
Shimamoto et al. | Taurine catabolism: II. Biochemical and genetic evidence for sulfoacetaldehyde sulfo-lyase involvement | |
JPS59113896A (en) | Method for producing pyrroloquinoline quinone | |
JPS619294A (en) | Production of beta-hydroxyamino acid | |
Cheeseman et al. | Partial purification and properties of D-desthiobiotin synthetase from Escherichia coli | |
Neuser et al. | Formation of aliphatic and aromatic α-hydroxy ketones by Zygosaccharomyces bisporus | |
DE69905636T2 (en) | D-amino acylase from Sebekia benihana | |
EP0286059B1 (en) | Process for preparing (r)-3-chloro-1, 2-propanediol | |
US4782021A (en) | Method of producing L-serine | |
JPS6117475B2 (en) | ||
JPH04234990A (en) | Production of optically active (r)-3-chloro-1-phenyl-1-propanol | |
JP3468626B2 (en) | β-glucosidase and method for producing the same | |
JP2007319053A (en) | Method for producing optically active amino acid derivative | |
JP2023010659A (en) | Composition containing L-glutamate oxidase | |
JPS61216696A (en) | Production of menaquinone-4 | |
JPS63123390A (en) | Production of l-phenylalanine | |
Bode et al. | Enzymatic production of indolepyruvate and some of its methyl and fluoro‐derivatives | |
JPS6043393A (en) | Preparation of l-phenylalanine | |
Mosbach | IMMOBILIZED ENZYMES AND CELLS | |
Neuser et al. | by Zygosaccharomyces bisporus | |
JPS61285989A (en) | Phenol oxidase and production thereof | |
JPH012573A (en) | Method for producing carboxypeptidase | |
RU2032743C1 (en) | Method for producing of yeast alcohol oxidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |