[go: up one dir, main page]

JPS6191001A - Modifying container apparatus - Google Patents

Modifying container apparatus

Info

Publication number
JPS6191001A
JPS6191001A JP59210905A JP21090584A JPS6191001A JP S6191001 A JPS6191001 A JP S6191001A JP 59210905 A JP59210905 A JP 59210905A JP 21090584 A JP21090584 A JP 21090584A JP S6191001 A JPS6191001 A JP S6191001A
Authority
JP
Japan
Prior art keywords
gas
reforming
heat
modifying
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59210905A
Other languages
Japanese (ja)
Inventor
Isamu Kitamura
北村 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59210905A priority Critical patent/JPS6191001A/en
Publication of JPS6191001A publication Critical patent/JPS6191001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To make a plane temperature distribution in a modifying container uniform, to raise modification reaction efficiency of a hydrocarbon raw material gas, and to prevent local damage of modifying pipes, by setting a specific partition wall between the top of modifying pipe in the modifying container and a burner. CONSTITUTION:The disk partition wall 17 made of a heat-resistant member such as heat- resistant ceramic, heat-resistant steel, etc., having a great number of the holes 18 is set between the burner 4 laid at he top of the modifying container 1 and the top of the modifying pipes 9 at the lower part of the container, the covers 19 having larger diameter than the hole 18, supported by the columnar supports 20, are set at the top of the holes 18, and the exhaust gas dispersing containers 21, truncated cones having diameters larger than the holes 18, supported by the columnar supports 22, are laid under the holes 18. A fuel from the conduit 2 is mixed with air from the conduit 3, a high-temperature combustion gas of the main burner 4 ignited by the auxiliary burner 7 is sent through the columnar supports 20, the covers 19, the holes 18, the dispersing containers 21 and the columnar supports 22 to make a plane temperature distribution uniform, the gas is made to flow down between the modifying pipes while heating it, the pipes are heated through the ceramic balls 11 in the conduits 10, and a mixed gas of a raw material hydrocarbon gas and steam in the pipes 9 is modified.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は改質器内の平面的温度分布を均一とじて、炭化
水素系の原料ガスの改質反応を効率よく促進させ得るよ
うにした改質器装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an improvement that uniformizes the planar temperature distribution within a reformer to efficiently promote the reforming reaction of a hydrocarbon-based raw material gas. Regarding quality equipment.

〔発明の技術的背景〕[Technical background of the invention]

近年、その開発、実用化の研究に期待と関心が寄せられ
てきている燃料電池は、燃料の有する化学エネルギーを
電気化学プロセスで酸化させることにより、酸化反応に
伴って放出されるエネルギーを直接電気エネルギーに変
換する装置である。この燃料電池を用いた発電プラント
は、比較的小さな規模でも発電の熱効率が40〜50%
にも達し、新鋭火力発電をはるかにしのぐと期待されて
いる。また、近年大きな社会問題になっている公害要因
であるいおう酸化物。
In recent years, research into the development and practical application of fuel cells has attracted much attention and interest.By oxidizing the chemical energy of fuel through an electrochemical process, the energy released during the oxidation reaction can be directly converted into electricity. It is a device that converts energy into energy. A power generation plant using this fuel cell has a thermal efficiency of 40 to 50% even on a relatively small scale.
It is expected that it will reach even more power than new thermal power plants. In addition, sulfur oxides are a pollution factor that has become a major social problem in recent years.

窒素酸化物の排出が極めて少ない。さらに、発電装置内
に燃焼サイクルを含まないことから、大量の冷却水を必
要としない、振動音が小さいなど、原理的に高いエネル
ギー変換効率が期待できると共に、騒音・排ガス等の環
境問題が少なく、さらには負荷変動に対して応答性が良
い等の特長がある。そして、この様な燃料電池を用いた
発電プラントにおいては、天燃ガス等炭化水素系の原料
ガスに水蒸気を混合して改質器内で加温変成して得られ
た水素ガスと、他系統のター〆・コンプレッサーよりの
空気とを夫々燃料電池に供給して酸化反応させ、電力を
得るようにしているものが多い。
Emissions of nitrogen oxides are extremely low. Furthermore, since the power generator does not include a combustion cycle, it can be expected to have high energy conversion efficiency in principle, such as not requiring a large amount of cooling water and low vibration noise, as well as reducing environmental problems such as noise and exhaust gas. Furthermore, it has features such as good responsiveness to load fluctuations. In a power generation plant using such a fuel cell, hydrogen gas obtained by mixing water vapor with hydrocarbon-based raw material gas such as natural gas and heating it in a reformer, and other systems. In many cases, the air from the fuel cell and the compressor are supplied to the fuel cell for an oxidation reaction to generate electricity.

第2図は、この種の燃料電池発電プラントに設けられる
改質器の一例を縦断面図にて示したもの、第3図は第2
図のIll線部分の矢視平面図を示したものである。図
において、改質器容器1の内部には、図示しない燃料タ
ンクに連結した導管2よりの燃料と、図示しない空気供
給機に連結した導管3よりの空気を夫々導入混合して燃
焼する主バーナ−4が配設されておシ、また導管6より
燃料および導管6より空気が夫々導入され、かつ先端に
電気点火装置を有した主バーナ−4を点火させるための
補助バーナー7が設けられている。上記主バーナ−4の
高温燃焼排ガスは、加温室8を流通しこれより断面環状
の改質管9の外周空間を通り、下層部にあるセラミック
球11を保持゛した導管10を通過し、さらにこれと連
通した排ガス管12を通して改質器容器1の外部へ排出
され、図示しないターボ・コンプレッサーへ導かれて運
転に寄与する。一方、天然ガス等炭化水素系の原料ガス
と水蒸気との混合ガスは、等管13より導入され、改質
管9内の改質触媒層(以下、単に触媒層と称する)14
を保持した管路を通過する。
Figure 2 shows a vertical cross-sectional view of an example of a reformer installed in this type of fuel cell power generation plant, and Figure 3 shows a
This is a plan view taken along the line Ill in the figure. In the figure, inside the reformer container 1 is a main burner that introduces fuel from a conduit 2 connected to a fuel tank (not shown) and air from a conduit 3 connected to an air supply machine (not shown), mixes the mixture, and burns the mixture. -4 is arranged, and an auxiliary burner 7 is provided, into which fuel and air are respectively introduced from a conduit 6 and an electric ignition device at the tip for igniting the main burner -4. There is. The high-temperature combustion exhaust gas from the main burner 4 flows through the heating chamber 8, passes through the outer circumferential space of the reforming tube 9 having an annular cross section, passes through the conduit 10 holding the ceramic balls 11 in the lower layer, and further The gas is discharged to the outside of the reformer container 1 through an exhaust gas pipe 12 communicating therewith, and is led to a turbo compressor (not shown) to contribute to its operation. On the other hand, a mixed gas of hydrocarbon-based raw material gas such as natural gas and water vapor is introduced through the isotube 13, and is introduced into the reforming catalyst layer (hereinafter simply referred to as catalyst layer) 14 in the reforming tube 9.
It passes through a conduit that holds.

そして、この通過中に加温と触媒作用により改質反応が
行なわれて水素リッチなガスに改質される。この改質ガ
スは、改質管9内の導管15を介しさらにこれと連通し
た導管16を介して改質器容器1の外部へ導かれ、これ
より改質ガス中に含有する一酸化炭素を二酸化炭素にす
る図示しない変成器を介し、図示しない燃料電池へ供給
されて発電に寄与することになる。
During this passage, a reforming reaction takes place due to heating and catalytic action, and the gas is reformed into hydrogen-rich gas. This reformed gas is led to the outside of the reformer vessel 1 via a conduit 15 in the reforming tube 9 and further via a conduit 16 communicating with this, and from this the carbon monoxide contained in the reformed gas is removed. The carbon dioxide is supplied to a fuel cell (not shown) via a transformer (not shown) that converts it into carbon dioxide, thereby contributing to power generation.

〔背景技術の問題点〕[Problems with background technology]

ところで、上述したような改質器において、改質管9人
口側の原料ガスと水蒸気との混合ガスの温度は、427
C以上510C以下に制御する必要がある。その理由は
、温度が427C以下になると触媒層14にポリプロピ
レンが沈着して触媒の性能が劣化し、また510C以上
になると混合ガスが分解を起こしてカーピンを生成し、
これが触媒層14の組織内に入シこんで触媒を破壊し、
粉化させて改質管9内の差圧を増大させるからである。
By the way, in the above-mentioned reformer, the temperature of the mixed gas of raw material gas and steam on the reforming tube 9 population side is 427
It is necessary to control the temperature to not less than C and not more than 510C. The reason for this is that when the temperature falls below 427C, polypropylene is deposited on the catalyst layer 14, deteriorating the performance of the catalyst, and when the temperature rises above 510C, the mixed gas decomposes and produces carpin.
This penetrates into the structure of the catalyst layer 14 and destroys the catalyst.
This is because the powder is pulverized and the differential pressure inside the reforming tube 9 is increased.

そして実際には、改質器容器1内の改質管9に下部から
導入された原料ガスと水蒸気との混合ガスは、改質管9
内の触媒層14を上昇するに従がい、温度が上昇して7
60C以上で水素ガスに改質する反応を起こし、改質管
9の上部での温度が982Cと最高なるように、改質器
容器1の主/?−ナーiにより改質管9を加熱制御して
いる。また、これにより改質された水素リッチなガスは
、改質管9頂部より内側の導管15を流降下しつつ触媒
層14へ伝熱して、改質管9の出口側では約593GK
制御するようにしている。
In reality, the mixed gas of raw material gas and water vapor introduced from the lower part into the reforming tube 9 in the reformer container 1 flows into the reforming tube 9.
As the catalyst layer 14 inside rises, the temperature rises and 7
The main/? - The heating of the reforming tube 9 is controlled by the heater i. In addition, the hydrogen-rich gas reformed by this transfers heat to the catalyst layer 14 while flowing down the conduit 15 inside from the top of the reforming tube 9, and on the exit side of the reforming tube 9, approximately 593 GK
I try to control it.

以上の説明から、原料ガスと水蒸気との混合ガスが改質
管9内に充填された触媒層14で水素リッチなガスに改
質するには、加温室8より改質管9への加熱を効率良く
平面的で均一に行なわなければならないことがわかる。
From the above explanation, in order to reform the mixed gas of raw material gas and steam into a hydrogen-rich gas in the catalyst bed 14 filled in the reforming tube 9, it is necessary to heat the reforming tube 9 from the heating chamber 8. It can be seen that it must be done efficiently, flatly and uniformly.

しかし乍ら従来の改質器では、主バーナ−4ニテの燃焼
時は、バーナーノズルよりの火炎が円錐形となるため、
改質器容器1実際には加温室8内の平面的温度分布は不
均一となシ、多数本設けられている改質管9の平面的受
熱温度に高低差が生じる。そのため、改質管9に平面上
で不均一な温度を与えるために触媒層14は不均一な温
度となることから、改質反応効率が悪くなるばかシでな
く、局部的に高温部となる改質管9の頂部が損傷すると
いうような問題がある。
However, in conventional reformers, during combustion in the main burner 4, the flame from the burner nozzle takes on a conical shape.
In reality, the planar temperature distribution in the heating chamber 8 of the reformer vessel 1 is not uniform, and there is a height difference in the planar heat receiving temperature of the many reforming tubes 9 provided. Therefore, since the catalyst layer 14 has a non-uniform temperature in order to give the reforming tube 9 a non-uniform temperature on a plane, it does not cause the reforming reaction efficiency to deteriorate, but instead becomes a locally high-temperature part. There are problems such as damage to the top of the reforming tube 9.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題を解決するために成されたも
ので、その目的は加温室内の複数本の改質管を平面的に
均一な加温状態とし改質反応効率を高めると共に改質管
の局部的な損傷を防止することが可能な改質器装置を提
供することにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to heat a plurality of reforming tubes in a heating chamber uniformly in a plane, thereby increasing the reforming reaction efficiency and improving the reforming reaction efficiency. An object of the present invention is to provide a reformer device that can prevent local damage to quality tubes.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明の改質器装置は、改質
器容器内における改質管頂部とバーナとの間に、多数の
孔を有した耐熱性部材からなる隔壁を設け、当該隔壁の
6孔のバーナ側には支柱で支持された蓋体を各別に配設
し、かつ上記隔壁の6孔の改質管側には支柱で支持され
た排ガス拡散器を保持するようにしたことを特長とする
In order to achieve the above object, the reformer device of the present invention provides a partition wall made of a heat-resistant member having a large number of holes between the top of the reforming tube and the burner in the reformer container, and the partition wall A lid body supported by a strut is separately arranged on the burner side of the six holes, and an exhaust gas diffuser supported by a strut is held on the reforming tube side of the six holes of the partition wall. Features:

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して具体的
に説明する。第1図は、本発明による改質器装置の構成
例を断面図にて示したもので、第2図、第3図と同一部
分には同一符号を付して示している。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. FIG. 1 is a sectional view showing an example of the structure of a reformer device according to the present invention, and the same parts as in FIGS. 2 and 3 are denoted by the same reference numerals.

第1図において、改質器容器1の頂部には、主バーナ−
4が設けられ、その燃焼口は改質器容器1の内側部にあ
るように設置されている。
In FIG. 1, there is a main burner at the top of the reformer vessel 1.
4 is provided, and its combustion port is located inside the reformer vessel 1.

また、燃焼ノズルに電気点火装置を有した補助バーナー
7が、上記主バーナ−4を点火出来るように配設されて
いるd さらに、上記主バーナ−4の下部には、多数の孔18が
夫々形成された円板状の隔壁17を設け、当該隔壁17
の6孔18の上部つまり主バーナ4の側には支柱20で
支持された蓋体19を各別に配設し、かつ上記隔壁17
の6孔18の下部つ″!シ改質管9側には支柱22で支
持された排ガス拡散器2ノを保持している。ここで、蓋
体19の径は上記隔壁17の孔18の径よりも大きくし
ておシ、また排ガス拡散器21は上記隔壁17の孔18
の径よりも大きな截頭円錐体としている。一方、上記隔
壁17の下方には、断面環状の改質管9を複数本等間隔
に配列している。また、改質器容器1の隔壁17の燃焼
室8aにおいて、主バーナ−4で燃焼した高温燃焼排ガ
スは、蓋体19の支柱20間より隔壁17に設けられた
孔18を通り、次に下部に設けられた排ガス拡散器21
の支柱22間を通過し、複数本ある改質管9の間隙を改
質管9を加温しながら流下し、改質管9の下方外周部に
セラミック球11を充填した導管1oを通過して、これ
に連通している導管12より改質器容器1外へ排出し、
排ガス熱利用の図示しないターボ・コンプレッサーの運
転に寄与して排ガス放出するように1.て−/、〜−古
一 巌什+豐工箇百籠イスと水蒸気との混合ガスは導管
13より導入し、改質管9の内部に充填された触媒層1
4を通り、改質管9の頂部内側で導管15に入シ、とれ
に連通している導管16より水素リッチな改質ガスを改
質器容器外へ導き、図示しない変成器を介して燃料電池
へ燃料として供給するようにしている。なお、上記で隔
壁17は例えば耐熱セラミック等の耐熱性部材から成る
Further, an auxiliary burner 7 having an electric ignition device in its combustion nozzle is arranged so as to be able to ignite the main burner 4.D Furthermore, in the lower part of the main burner 4, a number of holes 18 are respectively provided. A disk-shaped partition 17 is provided, and the partition 17 is
Above the six holes 18, that is, on the side of the main burner 4, a lid body 19 supported by a column 20 is separately provided, and the partition wall 17
An exhaust gas diffuser 2 supported by a strut 22 is held at the bottom of the 6 holes 18 on the reformer tube 9 side. The diameter of the exhaust gas diffuser 21 should be larger than that of the hole 18 of the partition wall 17.
The diameter of the truncated cone is larger than the diameter of the truncated cone. On the other hand, below the partition wall 17, a plurality of reforming pipes 9 each having an annular cross section are arranged at equal intervals. Further, in the combustion chamber 8a of the partition wall 17 of the reformer container 1, the high temperature combustion exhaust gas combusted in the main burner 4 passes through the holes 18 provided in the partition wall 17 from between the pillars 20 of the lid body 19, and then passes through the holes 18 provided in the partition wall 17 at the lower part. Exhaust gas diffuser 21 installed in
The water passes through the gaps between the plurality of reforming tubes 9 while heating the reforming tubes 9, and passes through the conduit 1o filled with ceramic balls 11 on the lower outer periphery of the reforming tubes 9. and discharge it to the outside of the reformer container 1 from the conduit 12 communicating with this,
1. To contribute to the operation of a turbo compressor (not shown) that utilizes exhaust gas heat and releases exhaust gas. The mixed gas of the chair and water vapor is introduced from the conduit 13, and the catalyst layer 1 filled inside the reforming tube 9
4, enters the conduit 15 inside the top of the reforming tube 9, leads the hydrogen-rich reformed gas out of the reformer container through the conduit 16 communicating with the reformer, and converts it into fuel via a shift converter (not shown). It is used to supply fuel to batteries. Note that the partition wall 17 described above is made of a heat-resistant member such as heat-resistant ceramic.

かかる様に構成した改質器装置においては、隔壁17に
より形成された燃焼室8a内で、主バーナ−4により原
料ガスと水蒸気との混合ガスが燃焼され、その高温燃焼
排ガスは蓋体19の支柱20間を混流して隔壁17の孔
18を通過し、その下部に設けられている排ガス拡散器
2ノの支柱22の間を平面的に拡散混合するため、平面
上での湯度分布が均一となる。この平面上で均一になっ
た燃焼排気ガスは、加温室8bにおいて複数本の改質管
9に平面上で均一に加温しながら流下し、導管10に保
持されたセラミック球11に熱を与えることにより、改
質管9下部を均一に熱効率良く加温することが可能とな
る。一方、複数本の改質管9内部に導入された原料ガス
と水蒸気との混合ガスは、改質管9内壁側に保持された
触媒層14に導入され、この導入部で先に述べたセラミ
ック球11により伝熱された改質管9の下部において加
温され、更にこれより上方へ流れることにより水素リッ
チになる改質反応を行なう適温となるように加温される
。そして、この改質反応を行なって触媒層14を通った
水素リッチな改質ガスは、改質管9の頂部で約360C
曲がって触媒層14保持筒板の内側に沿って下降流し、
この触媒層14に伝熱しつつ導管16を介して改質器容
器1外へ導かれる機構になっているため、触媒層14に
おいて改質に必要な適温に均一に制御される。これによ
り、改質反応の効率が向上するとともに、加温室8b内
の温度分布を均一として局部的に高温となることにより
改質管9の損傷を防止することが可能となる。
In the reformer device configured as described above, a mixed gas of raw material gas and steam is combusted by the main burner 4 in the combustion chamber 8a formed by the partition wall 17, and the high temperature combustion exhaust gas is passed through the lid 19. The mixed flow flows between the pillars 20, passes through the holes 18 of the partition wall 17, and is diffused and mixed between the pillars 22 of the exhaust gas diffuser 2 provided at the bottom thereof, so that the hot water temperature distribution on the plane is It becomes uniform. The combustion exhaust gas that has become uniform on this plane flows down into the plurality of reforming tubes 9 in the heating chamber 8b while being uniformly heated on the plane, and gives heat to the ceramic sphere 11 held in the conduit 10. This makes it possible to heat the lower part of the reforming tube 9 uniformly and with high thermal efficiency. On the other hand, the mixed gas of raw material gas and water vapor introduced into the plurality of reforming tubes 9 is introduced into the catalyst layer 14 held on the inner wall side of the reforming tubes 9. The lower part of the reforming tube 9 where the heat is transferred by the bulb 11 is heated, and as it flows upward from this point, it is heated to an appropriate temperature for carrying out a hydrogen-rich reforming reaction. The hydrogen-rich reformed gas that has undergone this reforming reaction and passed through the catalyst layer 14 is heated to about 360C at the top of the reforming tube 9.
It curves and flows downward along the inside of the catalyst layer 14 holding cylindrical plate,
Since the mechanism is such that the heat is transferred to the catalyst layer 14 and guided out of the reformer container 1 via the conduit 16, the temperature in the catalyst layer 14 is uniformly controlled to the appropriate temperature required for reforming. As a result, the efficiency of the reforming reaction is improved, and the temperature distribution in the heating chamber 8b is made uniform and the temperature locally becomes high, thereby making it possible to prevent damage to the reforming tube 9.

上述したように本構成の改質器装置によれば、改質器容
器1内に設けられた複数本の改質管9に対して平面的に
均一に加温することが出来るためζ改質管9内の触媒層
14にて炭化水素系の原料ガスを水素リッチなガスとす
る改質反応を効率よく行なうことが可能となる。また、
改質管9を均一な加温状態に保つことが出来るため、改
質管9が局部的に高温となりて損傷するようなことを防
止することが可能である。
As described above, according to the reformer device having this configuration, it is possible to uniformly heat the plurality of reforming tubes 9 provided in the reformer container 1 in a two-dimensional manner. In the catalyst layer 14 in the pipe 9, it becomes possible to efficiently carry out a reforming reaction to convert the hydrocarbon-based raw material gas into a hydrogen-rich gas. Also,
Since the reforming tube 9 can be maintained in a uniformly heated state, it is possible to prevent the reforming tube 9 from becoming locally heated and being damaged.

尚、本発明は上記実施例に限定されるものではなく、次
のようにしても同様に実施することができるものである
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be similarly implemented in the following manner.

(a)  上記排ガス拡散・器21の形状は、斜面部を
放射状に凹凸をつけること、または渦流状に凹凸をつけ
るようにしてもよく、かようにすると排ガスの拡散混合
が良くなり、温度の均一化を一層効率よく行なうことが
可能となる。
(a) The shape of the exhaust gas diffuser 21 may be such that the slope portion has radial irregularities or vortex-like irregularities, which improves the diffusion and mixing of the exhaust gas and lowers the temperature. It becomes possible to achieve uniformity even more efficiently.

伽)上記では、隔壁17として耐熱性セラミックからな
るものを用いたが、これに限らず耐熱鋼等その他の耐熱
性部材からなるものを用いるようKしてもよい。
In the above, the partition wall 17 is made of heat-resistant ceramic, but is not limited to this, and may be made of other heat-resistant material such as heat-resistant steel.

(c)上記では、改質管9をその上部に設けた主バーナ
−4により加熱したが、改質管9を倒置して改質器容器
1の上部で支持し、主バーナ−4を下部に設けて改質管
9を下方側から加熱するようにしてもよい。
(c) In the above, the reforming tube 9 was heated by the main burner 4 provided at the upper part thereof, but the reforming tube 9 is inverted and supported at the upper part of the reformer container 1, and the main burner 4 is heated at the lower part. Alternatively, the reforming tube 9 may be heated from below.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、加温室内の複数本
の改質管を平面的に均一な加温状態とし改質反応効率を
高めると共に改質管の局部的な損傷を防止することが可
能な改質器装置が提供できる。
As explained above, according to the present invention, it is possible to uniformly heat a plurality of reforming tubes in a heating chamber in a plane, thereby increasing the reforming reaction efficiency and preventing local damage to the reforming tubes. A reformer device capable of this can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の改質器装置の一実施例を示す縦断面図
、第2図は従来の改質器を示す縦断面図、第3図は第2
図のI−■線部分の矢視平面図を示すものである。 1・・・改質器容器、4・・・主バーナ−,7・・・補
助バーナー、8a・・・燃焼室、8b・・・加温室、9
・・・改質管、lノ・・・セラミック球、14・・・触
媒層、17・・・隔壁、18・・・孔、19・・・蓋体
、20.22・・・支柱、21・・・排ガス拡散器。
FIG. 1 is a longitudinal sectional view showing an embodiment of the reformer device of the present invention, FIG. 2 is a longitudinal sectional view showing a conventional reformer, and FIG.
This is a plan view taken along the line I-■ in the figure. DESCRIPTION OF SYMBOLS 1... Reformer container, 4... Main burner, 7... Auxiliary burner, 8a... Combustion chamber, 8b... Warming room, 9
... Reforming tube, l no. Ceramic bulb, 14... Catalyst layer, 17... Partition wall, 18... Hole, 19... Lid body, 20. 22... Support column, 21 ...Exhaust gas diffuser.

Claims (4)

【特許請求の範囲】[Claims] (1)一端部が密閉されると共に内部に改質触媒層が設
けられた断面環状の複数本の改質管を改質器容器の内部
に配設し、燃焼用ガスおよび燃焼用空気をバーナにより
燃焼させて得られる高温燃焼排ガスを前記改質管の一端
部よりその外側を通して他端部より外部へ流出させると
共に、原料ガスおよび水蒸気の混合ガスを前記改質管の
他端部より流入させ改質触媒層を通して改質ガスに改質
しさらにその一端部より内側管を通して他端部より流出
させる如く構成された改質器において、前記改質管の一
端部と前記バーナとの間に、多数の孔を有した耐熱性部
材からなる隔壁を設け、当該隔壁の各孔のバーナ側には
支柱で支持された蓋体を各別に配設し、かつ前記隔壁の
各孔の改質管側には支柱で支持された排ガス拡散器を保
持するようにしたことを特徴とする改質器装置。
(1) A plurality of reforming tubes each having an annular cross-section, one end of which is sealed and a reforming catalyst layer provided inside, are arranged inside the reformer container, and combustion gas and combustion air are supplied to the burner. The high-temperature combustion exhaust gas obtained by combustion is caused to flow from one end of the reforming tube through the outside to the outside from the other end, and a mixed gas of raw material gas and water vapor is allowed to flow in from the other end of the reforming tube. In a reformer configured to reform into a reformed gas through a reforming catalyst layer and to flow out from one end of the reformed gas through an inner tube and the other end, between one end of the reforming tube and the burner, A partition wall made of a heat-resistant material having a large number of holes is provided, a lid body supported by a support is provided separately on the burner side of each hole of the partition wall, and a reforming pipe side of each hole of the partition wall is provided separately. A reformer device characterized in that it holds an exhaust gas diffuser supported by struts.
(2)蓋体の径は隔壁の孔の径よりも大きくなるように
したことを特徴とする特許請求の範囲第(1)項記載の
改質器装置。
(2) The reformer device according to claim (1), wherein the diameter of the lid is larger than the diameter of the hole in the partition wall.
(3)排ガス拡散器は隔壁の孔の径よりも大きな截頭円
錐体であることを特徴とする特許請求の範囲第(1)項
記載の改質器装置。
(3) The reformer device according to claim (1), wherein the exhaust gas diffuser is a truncated cone having a diameter larger than the diameter of the hole in the partition wall.
(4)耐熱性部材として耐熱セラミックまたは耐熱鋼を
用いるようにしたことを特徴とする特許請求の範囲第(
1)項記載の改質器装置。
(4) Claim No. (4) characterized in that heat-resistant ceramic or heat-resistant steel is used as the heat-resistant member.
The reformer device described in section 1).
JP59210905A 1984-10-08 1984-10-08 Modifying container apparatus Pending JPS6191001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59210905A JPS6191001A (en) 1984-10-08 1984-10-08 Modifying container apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59210905A JPS6191001A (en) 1984-10-08 1984-10-08 Modifying container apparatus

Publications (1)

Publication Number Publication Date
JPS6191001A true JPS6191001A (en) 1986-05-09

Family

ID=16597011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59210905A Pending JPS6191001A (en) 1984-10-08 1984-10-08 Modifying container apparatus

Country Status (1)

Country Link
JP (1) JPS6191001A (en)

Similar Documents

Publication Publication Date Title
US6932958B2 (en) Simplified three-stage fuel processor
CN112265962B (en) Electric cooperative heat supply reforming reaction system
US6645443B1 (en) Device for reforming educts containing hydrocarbons
JP2000058096A (en) Plant having high-temperature fuel cell
US20060188434A1 (en) Compact reformer unit in the low performance range, for production hydrogen from gaseous hydrocarbons
JP2001155756A (en) Steam reforming reactor for fuel cells
JP5317136B2 (en) Burner nozzle device and fuel reformer equipped with the same
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
WO2005077820A1 (en) Fuel reformer
JPS6191001A (en) Modifying container apparatus
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JP2004075435A (en) Fuel reformer
JP2005127634A (en) Combustion device for fuel reformer
CN115849302A (en) Hydrogen production apparatus and method
JPS61111135A (en) Reformer apparatus
JPH07106881B2 (en) Fuel cell reformer device
JPS5823168A (en) Fuel cell power generating system
JPS6191002A (en) Modifying container apparatus
CN118572147B (en) Fuel cell reforming system
JP4431455B2 (en) Reformer
JPH0324583Y2 (en)
US20030061764A1 (en) Method and apparatus for steam reforming of hydrocarbons
JP2700248B2 (en) Heating device for fuel reformer
JPH01320201A (en) Fuel reformer
JPS61165967A (en) Reformer for fuel cell