[go: up one dir, main page]

JPS6189210A - Preparation of catalytic component - Google Patents

Preparation of catalytic component

Info

Publication number
JPS6189210A
JPS6189210A JP20980784A JP20980784A JPS6189210A JP S6189210 A JPS6189210 A JP S6189210A JP 20980784 A JP20980784 A JP 20980784A JP 20980784 A JP20980784 A JP 20980784A JP S6189210 A JPS6189210 A JP S6189210A
Authority
JP
Japan
Prior art keywords
halide
vanadium
titanium
solid
electron donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20980784A
Other languages
Japanese (ja)
Inventor
Hideki Tamano
玉野 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20980784A priority Critical patent/JPS6189210A/en
Publication of JPS6189210A publication Critical patent/JPS6189210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain a novel polymerization catalyst having high polymerization activity and useful for the production of a polymer having low crystallinity, by treating a Mg halide with a hydrocarbon solution of an addition product of an electron donor and a Ti or V halide. CONSTITUTION:(A) A solid Mg halide is dissolved in (B) a solution prepared by dissolving (i) preferably 10<-5>-1mol/l of a Ti and/or V halide and (ii) an electron donor (e.g. ethyl ether) in a (halogenated) hydrocarbon at a molar ratio of 2-1,000, at a ratio of the component (i) to the component A of preferably >=10<-6>mol/g, and the mixture is treated e.g. at -50-+200 deg.C for 1sec-2hr, to obtain the objective catalyst component. USE:A soft copolymer of ethylene and an alpha-olefin can be prepared at a relatively low temperature by combining the above catalyst with an organometallic compound.

Description

【発明の詳細な説明】 本発明はオレフィンの重合に使用される触媒成分のjJ
j 造方法に関する。更に詳しくはオレフィンの(共)
重合に使用される触媒成分の新規な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides
j Concerning the manufacturing method. For more details, see Olefin (co)
This invention relates to a novel method for producing catalyst components used in polymerization.

従来から上記触媒成分を得る方法としてハロゲン化マグ
ネシウムにチタンもしくはバナジウムのハロゲン化物を
担持することはよく知られている。
It has been well known that a titanium or vanadium halide is supported on magnesium halide as a method for obtaining the above-mentioned catalyst component.

しかし、チタンもしくはバナジウムのハロゲン化物当り
の重合活性が高くないと、得られるポリオレフィン中に
残ったハロゲンに由来する腐蝕性が問題となる。
However, unless the polymerization activity per halide of titanium or vanadium is high, corrosion caused by the halogen remaining in the resulting polyolefin becomes a problem.

また、得られたポリオレフィン粉末の粒子形状が固く粗
い程、輸送・貯蔵等製造工程内での取扱いが容易である
Furthermore, the harder and rougher the particle shape of the obtained polyolefin powder, the easier it is to handle during manufacturing processes such as transportation and storage.

これらのチタンもしくはバナジウムのハロゲン化物当り
の重合活性の高さ、粉末粒子形状の良さは、結晶化度の
低い重合体を装造しようとする時に特に重要となる。
The high polymerization activity per halide of titanium or vanadium and the good shape of the powder particles are particularly important when preparing a polymer with a low degree of crystallinity.

結晶化度の低い重合体粉末は互着し易く、互6塊化を避
ける為に粉体形状の良好なことが重要であり、一般に低
温にして互6を避けようとする際には触媒活性が低下す
るので、重合活性の高いことが重要である。
Polymer powders with low crystallinity tend to stick to each other, and it is important to have a good powder shape to avoid agglomeration.Generally, when trying to avoid agglomeration at a low temperature, catalyst activity is reduced. Therefore, it is important that the polymerization activity is high.

上記の事情に鑑み鋭意検討した結果本発明者は主として
ハロゲン化マグネシウムより成る囚形物(A)を、その
ハロゲン化マグネシウムと付加物を形成しうる電子供与
体と、チタン及び/またはバナジウムのハロゲン化物と
の付加物の炭化水素もしくはハロゲン化炭化水素溶液(
B)で処理して得られる触媒成分を用いることにより、
粉体性状に良好な重合体を得ることができること、この
際゛チタンもしくはバナジウム原子当りの重合活性も高
くなることを見出し本発明を完成した。
As a result of intensive studies in view of the above circumstances, the present inventors have determined that a trapped material (A) mainly consisting of magnesium halide, an electron donor capable of forming an adduct with the magnesium halide, and a halogen of titanium and/or vanadium. Hydrocarbon or halogenated hydrocarbon solutions of adducts with compounds (
By using the catalyst component obtained by the treatment in B),
The present invention was completed by discovering that it is possible to obtain a polymer with good powder properties, and in this case, the polymerization activity per titanium or vanadium atom is also increased.

本発明にいうハロゲン化マグネシウムとは塩化マグネシ
ウム、臭化マグネシウム、ヨウ化マグネシウム、ヒドロ
キシ塩化マグネシウム、ヒドロキシ塩化マグネシウム等
をあげることができ、とりわけ塩化マグネシウムが良好
である。
The magnesium halide used in the present invention includes magnesium chloride, magnesium bromide, magnesium iodide, magnesium hydroxychloride, magnesium hydroxychloride, etc. Magnesium chloride is particularly preferred.

主としてハロゲン化マグネシウムより成る固形物として
は、上記のハロゲン化マグネシウムまたはこれらと電子
供与体、不活性有機化合物又は不活性無機化合物との複
合体をあげることができる。
Examples of the solid material mainly composed of magnesium halides include the above-mentioned magnesium halides or complexes of these with electron donors, inert organic compounds, or inert inorganic compounds.

重合活性が高い点より電子供与体との複合体がとりわけ
高い効果をあげうる。好ましい電子供与体としてエチル
エーテル、ジオキサン、テトラヒドロフランの如きエー
テル化合物、テトラエトキシシラン、ジフェニルジェト
キシシラン、I・リフェニルエトキシシランの如きアル
コキシシラン類、ヘキサメチルジシロキサン、ジメチル
ポリシロキサンの如きシロ4サン類、テトラブトキシチ
タンの如きアルコキシチタン類、トリブチルフォスフェ
ート、トリフェニルフォスフェートの如きリン酸エステ
ル類、トリプチルフAスフィン、トリフェニルフォスフ
インの如きフォスフイン類、安息香酸エチル、フタル酸
ブチルの如きエステル類をあげつる。
Complexes with electron donors can be particularly effective because of their high polymerization activity. Preferred electron donors include ether compounds such as ethyl ether, dioxane, and tetrahydrofuran, alkoxysilanes such as tetraethoxysilane, diphenyljethoxysilane, and I.liphenylethoxysilane, and siloxanes such as hexamethyldisiloxane and dimethylpolysiloxane. alkoxytitaniums such as tetrabutoxytitanium, phosphoric acid esters such as tributyl phosphate and triphenyl phosphate, phosphines such as triptylph A-sphine and triphenylphosphine, esters such as ethyl benzoate and butyl phthalate. I'll give you something.

上記の複合体を得る方法としては、共粉砕による方法、
電子供与体液体又は溶液による接触処理、電子供与体と
ハロゲン化マグネシウムの混合溶液から沈殿させる方法
、もしくはこれらにより得られた固形物を洗浄したり、
あるいはルイス醒処理することにより得られる。
Methods for obtaining the above composite include co-pulverization;
Contact treatment with an electron donor liquid or solution, precipitation from a mixed solution of an electron donor and magnesium halide, or washing of the solid material obtained by these methods,
Alternatively, it can be obtained by Lewis awakening treatment.

チタンのハロゲン化物としては四塩化チタン、三塩化チ
タン、二塩化チタン、四臭化チタン、三臭化チタンをあ
げうる。バナジウムのハロゲン化物としてはオキシ塩化
バナジウム、四塩化バナジウム、三塩化バナジウム、四
臭化バナジウム、三臭化バナジウム等をあげつる。
Examples of titanium halides include titanium tetrachloride, titanium trichloride, titanium dichloride, titanium tetrabromide, and titanium tribromide. Examples of vanadium halides include vanadium oxychloride, vanadium tetrachloride, vanadium trichloride, vanadium tetrabromide, and vanadium tribromide.

高い触媒活性を得るためにはチタンハロゲン化物、とり
わけ三塩化チタンが好ましい。一方、共重合体の結品化
度を制御する為にはバナジウムハロゲン化物の使用が一
般的に好まれているがバナジウムハロゲン化物としては
触媒活性の点から三塩化バナジウムもしくは四塩化バナ
ジウムとりわけ三塩化バナジウムが好ましい。特に固形
触媒成分としてバナジウム化合物を使用する触媒の活性
はチタン化合物を゛使用するものに比べて非常に低いが
、本発明の方法によれば大1Jに活性が向上する。
Titanium halides, especially titanium trichloride, are preferred in order to obtain high catalytic activity. On the other hand, in order to control the degree of copolymerization, it is generally preferred to use vanadium halides, but from the viewpoint of catalytic activity, vanadium trichloride or vanadium tetrachloride, especially vanadium trichloride, is preferred. Vanadium is preferred. In particular, the activity of a catalyst using a vanadium compound as a solid catalyst component is much lower than that of a catalyst using a titanium compound, but according to the method of the present invention, the activity can be improved by as much as 1J.

ハロゲン化マグネシウムと付加物を形成しうる電子供与
体としては先にあげた電子供与体類の内より選べば良い
が、実用的な溶液mで前記固形物を処理できる程の溶解
度をもち、生成触媒成分の活性が高い為にはエーテル類
が好ましい。具体的にはジエチルエーテル、ジn−プロ
ビルエーテ゛ル、ジー1SO−プロピルエーテル、モロ
−ブチルエーテル、ジー1SO−アミルエーテル、ジオ
クチルエーテル等の脂肪族エーテル、ジオキサン、テト
ラヒドロフラン、フラン等の環状エーテル及びアニソー
ル、ジフェニルエーテル等の芳香族エーテルをあげうる
。重合体の粉体性状を良好に保つ為には脂肪族エーテル
、環状エーテルが好ましく、とりわけテトラヒドロフラ
ンが好適である。
The electron donor that can form an adduct with magnesium halide may be selected from among the electron donors listed above, but it must have a solubility that allows the solid material to be treated with a practical solution, and Ethers are preferred because the activity of the catalyst component is high. Specifically, aliphatic ethers such as diethyl ether, di-n-propyl ether, di-1SO-propyl ether, moro-butyl ether, di-1SO-amyl ether, and dioctyl ether, cyclic ethers such as dioxane, tetrahydrofuran, and furan, and anisole; Aromatic ethers such as diphenyl ether can be mentioned. In order to maintain good powder properties of the polymer, aliphatic ethers and cyclic ethers are preferred, and tetrahydrofuran is particularly preferred.

炭化水素としてはヘキサン、ヘプタン、オクタン等の飽
和脂肪族炭化水素、芳香族炭化水素をあげうるが、実用
的な溶液通で前記固形物を処理できる程の溶siを示す
点からは芳香族炭化水素を含ませるのが良好で具体的に
はベンゼン、]−ルエン、キシレン、テトラリン、スチ
レン等をあげうる。
Examples of hydrocarbons include saturated aliphatic hydrocarbons such as hexane, heptane, and octane, and aromatic hydrocarbons, but aromatic hydrocarbons are preferred from the viewpoint of showing a solubility that is sufficient to process the solid materials in a practical solution. It is preferable to include hydrogen, and specific examples include benzene, ]-toluene, xylene, tetralin, and styrene.

また、ハロゲン化炭−化水素としては、前記付加物を良
く溶解する点では好ましいが、固形触媒成分を溶解して
活性を低下させることを防ぐ点から、四塩化炭素らしく
はハロゲン−原子を一分子中に含む塩化ブチル、塩化オ
クチル等の如き脂肪LXハロゲン化炭化水素が好ましい
In addition, halogenated hydrocarbons are preferable because they dissolve the adducts well, but from the viewpoint of preventing the solid catalyst component from dissolving and reducing the activity, it is preferable to use halogen atoms like carbon tetrachloride. Fatty LX halogenated hydrocarbons such as butyl chloride, octyl chloride, etc. contained in the molecule are preferred.

また、これら芳香族炭化水素、ハロゲン化炭化水素と脂
肪族炭化水素の混合溶媒を用いて溶解度を調部すること
も好ましい。
Moreover, it is also preferable to measure the solubility using a mixed solvent of these aromatic hydrocarbons, halogenated hydrocarbons, and aliphatic hydrocarbons.

処理条件としてはチタン及び/又はバナジウム(以下T
i 十Vと表示することがある)の濃度が10〜111
0ρ/fJ、好ましくは10−4〜10−1mof)/
Jである。薄過ぎる場合には重合活性が低り、淵過ぎる
場合には粉体性状が悪化する。Ti+■と固形物(A>
の比は10−6ioρ/g以上、好ましくは10−5m
olt g以上である。少な過ぎる時は重合活性が低く
なる。高過ぎる場合には担持されないTi+17分が無
駄になり不経済であるので実用的に10moρ/gが上
限とされる。電子供与体は通常、分離、同定しうる錯体
で観察される岳よりも多くを用いることが必要であり具
体的には電子供与体/ (Ti +V)のモル比は2な
いし1000、より好ましくは5ないし200である。
The processing conditions include titanium and/or vanadium (hereinafter T
i (sometimes expressed as 10V) has a concentration of 10 to 111
0ρ/fJ, preferably 10-4 to 10-1 mof)/
It is J. If it is too thin, the polymerization activity will be low, and if it is too thin, the powder properties will deteriorate. Ti+■ and solid matter (A>
The ratio is 10-6ioρ/g or more, preferably 10-5m
olt g or higher. If it is too small, the polymerization activity will be low. If it is too high, the unsupported Ti + 17 minutes will be wasted and it will be uneconomical, so 10 moρ/g is set as the upper limit for practical purposes. It is usually necessary to use a larger amount of electron donor than that observed in complexes that can be separated and identified, and specifically, the molar ratio of electron donor/(Ti + V) is between 2 and 1000, more preferably 5 to 200.

この比が小さ過ぎるとチタンまたはバナジウムの溶解度
が少ない為に担持mが少なく、重合活性B低(なり大き
過ぎると粉体竹状が悪化する。電子供与体濃度は3 X
 10−” 〜5moJ /J 、好ましくは10−3
〜3mo1/flである。少な過ぎても多過ぎても粉体
性状が悪化覆る。温度は−50−・4200℃好ましく
は−20〜−1−120℃である。
If this ratio is too small, the solubility of titanium or vanadium is low, so the amount of supported m is small, and the polymerization activity B is low (if it is too large, the powder becomes bamboo-like).
10-” to 5moJ/J, preferably 10-3
~3mol/fl. If it is too little or too much, the powder properties will deteriorate. The temperature is -50-4200°C, preferably -20 to -1-120°C.

低過ぎる時は、チタンまたはバナジウムの溶w?、lf
f1が低く担持操作が不経済になる。高過ぎる時は一部
触媒の分解が起きる為か重合活性が低下づ゛る。
If it's too low, dissolve titanium or vanadium lol? ,lf
If f1 is low, loading operation becomes uneconomical. When the temperature is too high, the polymerization activity decreases, probably because some of the catalyst decomposes.

処理時間は通常1秒ないし2時間であり、より好ましく
は1分ないし2時間である。担持は通常速やかに行なわ
れるので系内の撹拌均一化に必要な時間経てば良く、2
時間以上長く処理しても余り利点は無い。処理後の洗浄
を処理時と同一溶媒もしくは前記の溶媒類を用いて行な
うことが望ましい。一般には触媒成分の溶解、膨潤を避
ける意味から炭化水素類が好ま・しい。
The treatment time is usually 1 second to 2 hours, more preferably 1 minute to 2 hours. Supporting is usually carried out quickly, so it is sufficient to allow the time necessary for uniform stirring in the system.
There is no advantage to processing for longer than that. It is desirable to perform washing after the treatment using the same solvent used during the treatment or the above-mentioned solvents. In general, hydrocarbons are preferred in order to avoid dissolution and swelling of catalyst components.

本触媒成分は公知の有機金属類と組合わUて後記のオレ
フィン類の重合に供し得る。有深金属と    1して
はAIRY(Rはアルキル基であり、  3−n Yはハロゲン原子もしくはアルコキシ基であり、nは3
ないし1.5であり)で表わされる有機アルミニウム化
合物もしくはアルキルアルモキサン類、とりわけ高活性
化の為にトリアルキルアルミニウムもしくはテトラアル
キルアルモキサン類が好ましく具体的にはトリエチルア
ルミニウム、トリイソブチルアルミニウム、トリヘキシ
ルアルミニウム、トリオクチルアルミニウム、テトラエ
チルジアルモキサンをあげうる。これらの有機金属類は
通常上記の本触媒成分1tj当り、1DImOjIない
し1m01使用される。
This catalyst component can be used in combination with known organometallic compounds to polymerize olefins as described below. Deep metal 1 is AIRY (R is an alkyl group, 3-n Y is a halogen atom or an alkoxy group, n is 3
to 1.5) or alkylalumoxanes, especially trialkylaluminum or tetraalkylalumoxanes are preferred for high activation, specifically triethylaluminum, triisobutylaluminum, trihexyl Aluminum, trioctylaluminum, and tetraethyldialumoxane may be mentioned. These organic metals are usually used in an amount of 1 DImOjI to 1 m01 per 1tj of the above catalyst components.

更に第3の触媒成分として公知の電子供与体を用いるこ
ともできる。
Furthermore, a known electron donor can also be used as the third catalyst component.

これらの触媒系を用いてのオレフィンの重合法としては
公知の通常の方法を用いれば良く特に限定は無いが、特
に本触媒系の特徴が際立つのは、エチレンとα−オレフ
ィンの共重合である。即ち粉体性状の良さ、チタンおよ
び/またはバナジウムのハロゲン化物当りの重合活性の
高さが、軟質共重合体を比較的低温で重合するのに適し
ている。
The method for polymerizing olefins using these catalyst systems is not particularly limited, and any known ordinary method may be used, but the feature of this catalyst system in particular stands out is the copolymerization of ethylene and α-olefin. . That is, good powder properties and high polymerization activity per halide of titanium and/or vanadium are suitable for polymerizing soft copolymers at relatively low temperatures.

エチレンと共重合あるいはされるα−オレフィンとして
は、炭素数20以下のα−オレフィン及びα−不飽和ジ
オレフィンをあげうるが、共重合のし易さ等の経済的な
面から炭素数12以下のα−モノオレフィンが好ましく
、具体的にはプロピレン、ブテン−1、ヘキセン−1,
4−メチルペンテン−1、オクテン−1′sをあげつる
α-olefins copolymerized or copolymerized with ethylene include α-olefins having 20 or less carbon atoms and α-unsaturated diolefins; α-monoolefins are preferred, specifically propylene, butene-1, hexene-1,
List 4-methylpentene-1 and octene-1's.

実施例 1 [固形触媒成分の調製] H型TiC吏30.309 (1,97FLモル)及び
テトラヒドロフラン1.59(21mモル)をキシレン
100−に入れ70℃に加温し全体を均一な溶液とした
。この溶液中に塩化マグネシウムとテトラヒドロフラン
のfit比110.3の8合共粉砕物5グを入れ、50
℃で10分間bl J’r後、固体を炉別し、50−の
キシレン、次いで100rdのヘキサンで洗浄した。減
圧下、20℃でこの固体を乾燥し、固形触媒成分を得た
。分析の結果この固形触媒成分中には4.5%のTiC
吏3を含んでいた。
Example 1 [Preparation of solid catalyst component] 30.309 (1,97 FL mol) of H-type TiC and 1.59 (21 mmol) of tetrahydrofuran were placed in 100 mmol of xylene and heated to 70°C to form a homogeneous solution. did. Into this solution, 5 g of a co-pulverized mixture of magnesium chloride and tetrahydrofuran with a fit ratio of 110.3 was added.
After 10 min bl J'r at <RTIgt;C,</RTI> the solids were filtered off and washed with 50 ml of xylene and then 100 ml of hexane. This solid was dried at 20° C. under reduced pressure to obtain a solid catalyst component. As a result of analysis, this solid catalyst component contained 4.5% TiC.
It included three officials.

[重 合] 1.5文のオートクレーブに上記の固形触媒成分1:l
lyを入れ、プロピレン360び及び水素170ONd
を入れ撹拌する。この中にトリエチルアルミニウム0.
349とテトラヒドロフラン0.11 Jの混合物をエ
チレンガスで圧入し、重合を開始させた。温度を30℃
に保ち、系内の圧力をエチレンガスを導入することによ
り18Ky/ciGに保った。60分後、メタノールを
圧入して重合を終了し、ガスをパージした。得られた重
合体の口と性質について表1に記した。
[Polymerization] Add 1:1 of the above solid catalyst component to a 1.5-liter autoclave.
ly, propylene 360 ONd and hydrogen 170ONd
Add and stir. This contains 0.0% triethylaluminum.
A mixture of 349 and 0.11 J of tetrahydrofuran was injected under pressure with ethylene gas to initiate polymerization. Temperature 30℃
The pressure inside the system was maintained at 18 Ky/ciG by introducing ethylene gas. After 60 minutes, methanol was injected under pressure to terminate polymerization, and the gas was purged. Table 1 shows the composition and properties of the obtained polymer.

比較例 1 MjIC文230gとH型Ti C132,0シとステ
ンレス製ボールの見かけ5割量とを11容器に入れ、両
振巾9騎の振動ミルで30時間粉砕し淡褐色の固形粉末
を得た。キシレン100d中に上記の固形物3.5g及
びテトラヒドロフラン2.7gを入れ、50℃10分間
撹拌後、固形物を戸別し、実施例1と同様に洗浄し、乾
燥し、固形触媒成分をえた。
Comparative Example 1 230 g of MjIC, H-type Ti C132,0, and 50% of the apparent amount of stainless steel balls were placed in 11 containers and ground in a vibrating mill with a double swing width of 9 for 30 hours to obtain a light brown solid powder. Ta. 3.5 g of the above solid material and 2.7 g of tetrahydrofuran were placed in 100 d of xylene, and after stirring at 50°C for 10 minutes, the solid material was taken from door to door, washed in the same manner as in Example 1, and dried to obtain a solid catalyst component.

比較例 2 MgC交23.5SFとH型TiC文30.30gを5
0℃のテトラヒドロフランに溶解させた。テトラヒドロ
フランは約200dを要した。この中にキシレン500
dを入れ生じた沈殿を枦別し、実施例1と同様に洗浄乾
燥した。
Comparative example 2 MgC cross 23.5 SF and H type TiC cross 30.30g 5
It was dissolved in tetrahydrofuran at 0°C. Tetrahydrofuran required approximately 200 d. In this, xylene 500
d was added and the resulting precipitate was separated, washed and dried in the same manner as in Example 1.

実施例 2 AA型T! C10(組成はTiC吏3 ・1/3AI
Ci3)0.409(2,0mモル)をH型1”1cj
L3に代えて用い、担体として塩化マグネシウムとテト
ラブトキシチタンのff1ffl比で110.3の混合
共粉砕物を用い、処理温度を室温に変えた以外は実施例
1と同様に行なった。
Example 2 AA type T! C10 (composition is TiC 吏3 ・1/3 AI
Ci3) 0.409 (2.0 mmol) in H type 1”1cj
The same procedure as in Example 1 was carried out, except that L3 was replaced with a co-pulverized mixture of magnesium chloride and tetrabutoxytitanium with an ff1ffl ratio of 110.3 as a carrier, and the treatment temperature was changed to room temperature.

実施例 3 [固形触媒成分の調製] V C130,9g(5,7TrL−Eル)とテトラヒ
ドロフラン203をキシレン、100−とヘキサン50
mの混合溶媒に50℃で溶解させた。この中に実施例1
で用いたと同じ固形担体3びを加え、50℃で30分m
撹拌後、沈殿を枦別し、キシレン100d、次いでヘキ
サン200dで洗浄後、30℃で減圧乾燥した。この固
体はVCu324%を含んでいた。
Example 3 [Preparation of solid catalyst component] V C130.9 g (5,7 TrL-E) and tetrahydrofuran 203 were mixed with xylene, 100- and hexane 50-
It was dissolved in a mixed solvent of m at 50°C. Example 1
Add the same solid carrier as used in step 3 and incubate at 50°C for 30 minutes.
After stirring, the precipitate was separated, washed with 100 d of xylene, then 200 d of hexane, and dried under reduced pressure at 30°C. This solid contained 324% VCu.

[重 合] 1.5吏のオートクレーブに上記の固形触媒成分40■
を入れ、プロピレン360g及び水素100ONdを入
れ、撹拌する。この中に1゜2−ジクロロエタン(1,
30g、次いでトリn−ヘキシルアルミニウム0.85
 SFをエチレンガスで圧入し、重合を開始させた。温
度を20℃に保ち、系内の圧力をエチレンガスを導入す
ることにより、16Ny/cIAGに保った。60分後
、メタノールを圧入して重合を終了し、ガスをパージし
た。
[Polymerization] 40 μm of the above solid catalyst component was placed in a 1.5 μm autoclave.
Then, 360 g of propylene and 100 ONd of hydrogen were added and stirred. In this, 1°2-dichloroethane (1,
30g, then 0.85 tri-n-hexylaluminum
SF was pressurized with ethylene gas to initiate polymerization. The temperature was maintained at 20° C., and the pressure within the system was maintained at 16 Ny/cIAG by introducing ethylene gas. After 60 minutes, methanol was injected under pressure to terminate polymerization, and the gas was purged.

比較例 3 MQ C1225!FとVCJL310gをLt、較N
2と同様の条件下に粉砕して得られた固形粉末49とテ
トラヒドロフラン2(lをキシレン100mとヘキサン
50mの混合溶媒に加え、50℃、10分間撹拌後固形
物を枦別し、実施例3と同様に洗浄、乾燥した。
Comparative example 3 MQ C1225! F and VCJL310g, Lt, comparison N
Solid powder 49 obtained by crushing under the same conditions as in Example 2 and 2 (l) of tetrahydrofuran were added to a mixed solvent of 100 m of xylene and 50 m of hexane, and after stirring at 50°C for 10 minutes, the solid was separated. Washed and dried in the same manner.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】 (A)主としてハロゲン化マグネシウムよりなる固形物
を (B) I )そのハロゲン化マグネシウムと付加物を形
成しうる電子供与体と II)チタン及び/またはバナジウムのハロ ゲン化物との付加物の炭化水素もしくはハロゲン化炭化
水素溶液で処理することを特徴とするオレフィン重合用
触媒成分の製造方法。
[Scope of Claims] (A) A solid mainly consisting of magnesium halide, (B) I) an electron donor capable of forming an adduct with the magnesium halide, and II) a halide of titanium and/or vanadium. 1. A method for producing a catalyst component for olefin polymerization, which comprises treating with an adduct hydrocarbon or halogenated hydrocarbon solution.
JP20980784A 1984-10-08 1984-10-08 Preparation of catalytic component Pending JPS6189210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20980784A JPS6189210A (en) 1984-10-08 1984-10-08 Preparation of catalytic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20980784A JPS6189210A (en) 1984-10-08 1984-10-08 Preparation of catalytic component

Publications (1)

Publication Number Publication Date
JPS6189210A true JPS6189210A (en) 1986-05-07

Family

ID=16578925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20980784A Pending JPS6189210A (en) 1984-10-08 1984-10-08 Preparation of catalytic component

Country Status (1)

Country Link
JP (1) JPS6189210A (en)

Similar Documents

Publication Publication Date Title
US5324698A (en) New carrier catalyst for the polymerization of ethylene
US4347158A (en) Supported high efficiency polyolefin catalyst component and methods of making and using the same
US4548915A (en) Olefin polymerization catalyst composition
JPH10502951A (en) Procatalyst for ethylene polymer production, its production method and use
EP0291958A2 (en) Process for producing stereoregular polymers having a narrow molecular weight distribution
JPS59196302A (en) Preparation of active solid hydrocarbon useful for olefin polymerization and synthesis of olefinnic polymer or copolymer using same as catalyst
JP3174366B2 (en) Olefin polymerization catalyst
JPH05239141A (en) Multiple site olefin polymerization catalyst and method thereof
EP0004789A2 (en) Catalyst component for alpha-olefin polymerization and use thereof
JPS5919565B2 (en) Method for producing catalyst component for polymerization of α-olefin
JPS633009A (en) Improving catalyst productivity in olefin polymerization
JPS59138206A (en) Manufacture of catalyst for olefin polymerization and olefinpolymerization
US4422957A (en) Methods of producing polyolefins using supported high efficiency polyolefin catalyst components
JPH04234407A (en) Co-catalyst composition that can be used for polymerization of α-olefins
JPH0119407B2 (en)
CS264327B2 (en) Process for preparing solid catalyst for the polymerization of olefines
US4618661A (en) Supported high efficiency polyolefin catalyst component and methods of making and using the same
EP0004791A2 (en) Catalyst component for alpha-olefin polymerization and use thereof
US4680351A (en) Supported polyolefin catalyst components and methods of making and using same
JPS6189210A (en) Preparation of catalytic component
US4415713A (en) High activity supported catalytic components and method for homo- or co-polymerization of α-olefin
US4626519A (en) Supported polyolefin catalyst components and methods of making and using same
JPH0625347A (en) Production of spherical catalyst component
JP2908866B2 (en) Solid catalyst component for olefin polymerization and olefin polymerization method
CS198216B2 (en) Process for preparing activated titanium component