JPS618854A - Cell and its manufacturing method - Google Patents
Cell and its manufacturing methodInfo
- Publication number
- JPS618854A JPS618854A JP59128843A JP12884384A JPS618854A JP S618854 A JPS618854 A JP S618854A JP 59128843 A JP59128843 A JP 59128843A JP 12884384 A JP12884384 A JP 12884384A JP S618854 A JPS618854 A JP S618854A
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- organic conductive
- cell
- composite
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/181—Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の分野〕
本発明は、有機導電性フィルムを少なくとも一つ電極と
して用いる充電可能な電池においてセパレークとして複
合化電解重合膜を用いた電池およびその製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a battery using a composite electropolymer membrane as a separator in a rechargeable battery using at least one organic conductive film as an electrode, and a method for manufacturing the same.
従来のこの種の導電性高分子を用いた電池として、ポリ
アセチレンを用いたもの(J、C,S、Chem、 。A conventional battery using this type of conductive polymer is one using polyacetylene (J, C, S, Chem.
594+1979.J、C,S、Chm、Commun
、、 317.1981) 、ポリチイフェンを用いた
もの(J、J、八ppl 、Phys、22. L56
7 (1983) )などが開発されている。このよ
うな導電性高分子を用いた電池は、従来の鉛電池に比較
してエネルギ密度および最大出力密度が大きいばかりで
なく、軽量であるなどの多くの優れた特性を示すことが
分かった。594+1979. J, C, S, Chm, Commun
,, 317.1981), using polythiphene (J, J, 8 ppl, Phys, 22. L56
7 (1983)) have been developed. It has been found that batteries using such conductive polymers not only have higher energy density and maximum output density than conventional lead batteries, but also exhibit many excellent properties such as being lightweight.
このように優れた特性を示すにもかかわらず、前述の電
池は電解液を用いた湿式の電池であるため完全に封止し
た構造にしなければならないという欠点があり、このた
め使用上および製造上程々の難点があった。Despite these excellent characteristics, the above-mentioned batteries are wet-type batteries that use an electrolyte, so they have the disadvantage of having to have a completely sealed structure, which makes them difficult to use and manufacture. There were some difficulties.
本発明は上述の欠点に鑑みなされたもので、複合化電解
重合膜を固体イオン導電体として使用することよって、
保守の簡便な薄膜状固体電池を提供することおよび前述
の薄膜状固体電池を容易に製造する方法を提供すること
を目的とするものである。The present invention was made in view of the above-mentioned drawbacks, and by using a composite electropolymerized membrane as a solid ionic conductor,
It is an object of the present invention to provide a thin-film solid-state battery that is easy to maintain, and to provide a method for easily manufacturing the thin-film solid-state battery described above.
るものである。It is something that
したがって、本発明による電池によれば、電極間にセパ
レータを挟着した電池であって、前記電極の内、少なく
とも一つは有機導電性フィルムであり、また前記セパレ
ータは複合化電解重合膜であることを特徴とするもので
ある。Therefore, according to the battery according to the present invention, a separator is sandwiched between the electrodes, at least one of the electrodes is an organic conductive film, and the separator is a composite electrolytic polymer membrane. It is characterized by this.
また本発明による電池の製造方法によれば、基板上に有
機導電性フィルムよりなる電極を形成し、この有艮導電
性フィルム電極上に汎用高分子膜を積層するとともに電
解酸化して複素環系導電性高分子を前記汎用高分子膜に
複合化させた複合化電解重合膜セパレークを形成する工
程を含むことを特徴とするものである。Further, according to the method for manufacturing a battery according to the present invention, an electrode made of an organic conductive film is formed on a substrate, a general-purpose polymer film is laminated on the conductive film electrode, and the heterocyclic polymer film is electrolytically oxidized. The present invention is characterized in that it includes a step of forming a composite electropolymerized membrane separator in which a conductive polymer is composited with the general-purpose polymer membrane.
本発明によれば、同一プロセスの電解重合法を駆使する
ことにより薄くて軽量であり、しがもフレキシブルでメ
ンテナンスフリーの二次電池を提供できる利点がある。According to the present invention, by fully utilizing the electrolytic polymerization method of the same process, there is an advantage that a secondary battery that is thin, lightweight, flexible, and maintenance-free can be provided.
本発明をさらに詳しく説明する。 The present invention will be explained in more detail.
本発明による電池は、少なくとも電極の一つとして有機
導電性フィルムを用いる電池であって、この電池のセパ
レータとして汎用高分子膜に複素環系導電性高分子を複
合化させた複合化電解重合膜のセパレータを用いるもの
である。The battery according to the present invention is a battery that uses an organic conductive film as at least one of the electrodes, and the battery's separator is a composite electrolytic polymer film in which a general-purpose polymer membrane is composited with a heterocyclic conductive polymer. This uses a separator of
本発明において電極となる有機導電性フィルムは導電性
があれば、基本的に限定されるものではない。たとえば
、ポリピロール、n−メチルポリピロールなどのビロー
ル系高分子、ポリチオフェンなどのチオフェン系高分子
、ポリフランなどのフラン系高分子、ポリアズレンなど
のアズレン系高分子、ポリインドールなどのインドール
系高分子、、C
ポリセレノフェンなどのセレフェン系高分子あ
:)るいはこれらの共重合体などの導電性フ
ィルムを用いることができる。The organic conductive film serving as the electrode in the present invention is not fundamentally limited as long as it has conductivity. For example, birrole polymers such as polypyrrole and n-methylpolypyrrole, thiophene polymers such as polythiophene, furan polymers such as polyfuran, azulene polymers such as polyazulene, indole polymers such as polyindole, etc. Selephene polymers such as polyselenophene
:) or a conductive film such as a copolymer thereof can be used.
またセパレータの本体となる汎用高分子膜も絶縁性があ
りかつ透明なものであれば、本発明においていかなる高
分子フィルムも使用することができる。たとえば、ポリ
塩化ビニル、ポリスチレン、ポリメタクリル酸メチル、
フェノール樹脂、RT■シリコーン樹脂、ポリクロロエ
チルビニルエーテル・ポリグリシジルメタクリレートな
どを例としてあげることができる。Further, any general-purpose polymer film that forms the main body of the separator can be used in the present invention as long as it is insulating and transparent. For example, polyvinyl chloride, polystyrene, polymethyl methacrylate,
Examples include phenol resin, RT silicone resin, and polychloroethyl vinyl ether/polyglycidyl methacrylate.
またこの汎用高分子膜に複合される複素環系高分子材料
としては、たとえば、n−メチルポリピロール、ポリピ
ロールなどのピロール系高分子、ポリチオフェンなどの
チオフェン系高分子、ポリフランなどのフラン系高分子
、ポリアズレンなどのアズレン系高分子、ポリインドー
ルなどのインドール系高分子、ポリセレノフェンなどの
セレフェン系高分子あるいはこれらの共重合体などを用
いることができる。Examples of heterocyclic polymer materials to be composited into this general-purpose polymer membrane include pyrrole polymers such as n-methylpolypyrrole and polypyrrole, thiophene polymers such as polythiophene, furan polymers such as polyfuran, Azulene polymers such as polyazulene, indole polymers such as polyindole, selephene polymers such as polyselenophene, or copolymers thereof can be used.
次ぎに本発明による電池の製造方法について説明する。Next, a method for manufacturing a battery according to the present invention will be explained.
本発明による電池の製造方法によれば、まず基板上に有
機導電性フィルムを形成したのち、この有機導電性フィ
ルム上にセパレータの本体となる汎用高分子膜を形成す
る。According to the method for manufacturing a battery according to the present invention, first, an organic conductive film is formed on a substrate, and then a general-purpose polymer film, which will become the main body of the separator, is formed on this organic conductive film.
このような汎用高分子膜は従来の周知の方法、たとえば
スピンコード法、蒸着法、プラズマ重合法、高分子溶液
デツプ法などにより有機導電性フィルム上に形成するこ
とができる。Such a general-purpose polymer film can be formed on an organic conductive film by a conventional well-known method, such as a spin-coating method, a vapor deposition method, a plasma polymerization method, a polymer solution dip method, or the like.
このような汎用高分子膜に複素環系高分子材料を電解酸
化により複合する。A heterocyclic polymer material is composited with such a general-purpose polymer membrane by electrolytic oxidation.
このような電解酸化は、重合すべき七ツマ−を含む電解
液中において、電解酸化を行い前記有機性高分子膜上に
形成された汎用高分子膜に複素環系高分子材料を複合せ
しめるものである。Such electrolytic oxidation is a method in which electrolytic oxidation is performed in an electrolytic solution containing the heptamer to be polymerized, and a heterocyclic polymer material is composited onto a general-purpose polymer film formed on the organic polymer film. It is.
このような電解液としては、たとえば、テトラ−n−ブ
チルアンモニウム・ヘキサフルオロポレート(nBu
4N −BFa ) 、テトラ−叶ブチルアンモニウ
ム・過塩素酸ホウ素(n−Bu4N −BCloa
)、テトラ−n−ブチルアンモニウム・六フッ化ヒ素(
n−Bu4N −F sへS)、テトラ−n−フ゛チ
ルアンモニウム・過塩素酸炭素(n−Bu4N−CC1
04)などの有機電解質あるいはAgBF4、LiBI
’a 、AgCl04などの無機電解質などの一種以上
を用いることができる。As such an electrolyte, for example, tetra-n-butylammonium hexafluoroporate (nBu
4N-BFa), tetra-butylammonium boron perchlorate (n-Bu4N-BCloa)
), tetra-n-butylammonium/arsenic hexafluoride (
n-Bu4N-Fs), tetra-n-butylammonium carbon perchlorate (n-Bu4N-CC1
Organic electrolytes such as 04) or AgBF4, LiBI
One or more types of inorganic electrolytes such as 'a, AgCl04, etc. can be used.
またこの電解液中に添加されるモノマーは、前述のよう
な複素環系高分子材料を形成するモノマーであればいか
なるものでもよい。Further, the monomer added to this electrolytic solution may be any monomer as long as it forms the above-mentioned heterocyclic polymer material.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
実施例1
厚さ0.1im、3 cmX5 Cmのニッケル板を陽
極とし、対局として白金板を用いてグローブボックス中
で電解重合を行った。Example 1 Electrolytic polymerization was carried out in a glove box using a 0.1-im thick, 3 cm x 5 cm nickel plate as an anode and a platinum plate as a counter electrode.
電解〆fνはアセトニトリル 80m1、ピロール3.
4ml、テトラ−n−ブチルアンモニウム・ヘキサフル
オロボレート(nBu 、l N −BF2 )
4.5gをビーカー中で混合して作製した。このなかに
電極を差込み、1.5 V 、100μへの電流を50
分通電した。こl れにより、黒色の
ポリピロール膜がニッケル板上に形成された。Electrolysis fν is acetonitrile 80ml, pyrrole 3.
4 ml, tetra-n-butylammonium hexafluoroborate (nBu, lN-BF2)
4.5g were mixed in a beaker. Insert the electrode into this and apply a current of 50 to 1.5 V and 100μ.
The power was turned on. As a result, a black polypyrrole film was formed on the nickel plate.
これをグローブボックスから取り出し、スピンコードに
より厚さ1μmのポリビニルカルバゾール(PVK )
をコートした。充分に乾燥させた後、再度同じ電解液に
浸漬し、1.8 V 、400μ八、6分間通電を行っ
た。このような操作によりポリカルバゾールにポリピロ
ールが複合化された状態になった複合化電解重合膜が形
成された。Take this out of the glove box and use a spin cord to make polyvinyl carbazole (PVK) with a thickness of 1 μm.
coated with. After sufficiently drying, it was immersed in the same electrolytic solution again and energized at 1.8 V and 400 μm for 6 minutes. Through such operations, a composite electropolymerized membrane in which polypyrrole was composited with polycarbazole was formed.
つぎに、新たなニッケル板を用意゛し、この上に同一の
電解液を用いてポリピロールフィルムを1゜5 V 、
100μへの通電を50分行うことにより作製した。次
ぎにピロールを除去した電解液(アセトニトリル80m
1、テトラ−n−ブチルアンモニウム・ヘキサフルオロ
ボレート (nBu 4 N −BFa ) l’。Next, prepare a new nickel plate, and apply a polypyrrole film on top of it using the same electrolyte at 1°5 V.
It was produced by applying current to 100μ for 50 minutes. Next, the electrolyte from which pyrrole was removed (acetonitrile 80ml
1. Tetra-n-butylammonium hexafluoroborate (nBu4N-BFa) l'.
5g)を用いて、逆電圧1.5ν印加し、1時間通電を
行った。これをアセトニトリルで洗浄した。5 g), a reverse voltage of 1.5 ν was applied, and the current was applied for 1 hour. This was washed with acetonitrile.
このような有機導電性フィルムはBo3 N ”がドー
プされたポリピロールフィルムになっている。Such an organic conductive film is a polypyrrole film doped with Bo3N''.
このように作製したものを、先に製造したポリピロール
複合フィルムを含むじソケル基板に、前ス記ポリピロー
ルフィルムを挟着するように圧着した。このようにして
製造された電池の断面図を第1図に示す。The product thus produced was pressure-bonded to the same Sokel substrate containing the previously produced polypyrrole composite film so that the polypyrrole film was sandwiched therebetween. A cross-sectional view of the battery manufactured in this manner is shown in FIG.
この第1図より明らかなように、この実施例にける電池
は最外側にニッケル板1を有し、このニッケル板1にポ
リピロールフィルム(有1a 4 t 性フィルム)2
がそれぞれ形成され、この二つのポリピロールフィルム
2にポリピロール複合化電解重合I5i!(セパレータ
)3が挟着された構造を有している。As is clear from FIG. 1, the battery in this example has a nickel plate 1 on the outermost side, and a polypyrrole film (a 1a 4 t film) 2 is attached to this nickel plate 1.
are respectively formed, and polypyrrole composite electropolymerization I5i! is formed on these two polypyrrole films 2. It has a structure in which (separators) 3 are sandwiched.
このような電池に50μA/cJの充電電流で、2時間
通電した。セル電圧2.8vが得られ、50μA/ c
ntの放電電流で放電を行ったところ、理論エネルギ密
度56Wh/Kgが得られた。Such a battery was energized for 2 hours with a charging current of 50 μA/cJ. Cell voltage 2.8v obtained, 50μA/c
When discharging was performed with a discharge current of nt, a theoretical energy density of 56 Wh/Kg was obtained.
実施例2
実施例1において使用したピロールのかわりにチオフェ
ノンをモノマーとして同様の電池を作製した。Example 2 A similar battery was produced using thiophenone as a monomer instead of pyrrole used in Example 1.
電解液は、アセトニトリル80m1、チオフェノン3.
6ml、Bo3 N ・BFA 4.5 gをビーカ
ー中で混合して作製した。4,1v、2 mAで10分
間充電を行った。有機導電性フィルムであるポリチオフ
ェノンがニッケル板上に形成された。これをグローブボ
ックスより取り出し、この有機導電性フィルム上にスピ
ンコーク−でポリビニルカルバゾールをコートし、充分
乾燥させた。The electrolyte was 80 ml of acetonitrile, 3.0 ml of thiophenone.
It was prepared by mixing 6 ml of Bo3N.BFA and 4.5 g of Bo3N.BFA in a beaker. Charging was performed at 4.1 V and 2 mA for 10 minutes. An organic conductive film, polythiophenone, was formed on a nickel plate. This was taken out from the glove box, polyvinyl carbazole was coated on this organic conductive film with spin coke, and it was thoroughly dried.
このようにして汎用高分子膜を積層した基板をチオフェ
ノンを含む電解液のなかに再度浸漬し、5.5 V 、
1 mAで5分間通電を行った。この結果、ポリチオフ
ェノンとポリビニルカルバゾールの複合化電解重合膜が
ポリチオフェノンフィルム上に形成された。The substrate on which the general-purpose polymer film was laminated in this way was immersed again in an electrolytic solution containing thiophenone, and a voltage of 5.5 V was applied.
Electricity was applied at 1 mA for 5 minutes. As a result, a composite electropolymerized membrane of polythiophenone and polyvinylcarbazole was formed on the polythiophenone film.
この複合膜を中心にして、実施例1と同様にポリチオフ
ェノンフィルムに逆電圧を印加し、Bu4N1をドープ
したフィルムを有するニッケル基板に貼合することによ
り電池を製造した。A battery was manufactured using this composite film as the center by applying a reverse voltage to the polythiophenone film in the same manner as in Example 1 and bonding it to a nickel substrate having a film doped with Bu4N1.
ポリチオフェノンフィルムの膜厚を10.+1m以上と
することにより、ニッケル板より容易に剥離させること
ができ、剥離したものはフレキシブルな電池となった。The thickness of the polythiophenone film was 10. By setting the length to +1 m or more, it could be peeled off more easily than a nickel plate, and the peeled off material became a flexible battery.
このように製造された電池に50μA/clの充電電流
で、2時間充電を行った。この結果、セル電圧として、
2.9vが得られた。つぎに50μA/crAで放電を
行い、理論エネルギ密度を求めたところ、45Wh/K
gが得られた。The battery thus manufactured was charged for 2 hours with a charging current of 50 μA/cl. As a result, the cell voltage is
2.9v was obtained. Next, a discharge was performed at 50 μA/crA, and the theoretical energy density was determined to be 45 Wh/K.
g was obtained.
一方、完全にアセトニトリルを除去しても電池作用があ
り、セル電圧2.4V、理論エネルギ密度8 Wh/K
gが得ら、屯た。On the other hand, even if acetonitrile is completely removed, there is a battery effect, with a cell voltage of 2.4 V and a theoretical energy density of 8 Wh/K.
I got it and went back.
以上説明したように、本発明によれば同一プロセスの電
解重合法を駆使することにより、薄く、軽量で、しかも
フレキシブルであり、かつメンテナンスフリーの二次電
池を提供できるので、移動パーソナル通信機の電源、太
陽電池付電卓などの二次電池として使用することができ
る。特にアセトニトリルを完全に除去した電池はペーパ
バッテリーとして使用でき、特に切断が可能なこと、任
意l の曲線に装着可能なこと、薄膜であ
ること、全固体であることから小電力用の個人携帯用移
動通信機などの電源として有用である。As explained above, according to the present invention, by making full use of the electrolytic polymerization method in the same process, it is possible to provide a thin, lightweight, flexible, and maintenance-free secondary battery, which can be used for mobile personal communication devices. It can be used as a power source, a secondary battery for calculators with solar batteries, etc. In particular, a battery from which acetonitrile has been completely removed can be used as a paper battery, and because it can be cut, can be attached to any curve, is a thin film, and is completely solid, it can be used for personal portable use with low power. It is useful as a power source for mobile communication devices, etc.
がある。There is.
【図面の簡単な説明】
第1図は本発明による実施例1における電池の断面図で
ある。
1 ・・・ニッケル板、2 ・・・有機導電性フィルム
、3 ・・・複合化電解重合膜。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a battery in Example 1 according to the present invention. 1...Nickel plate, 2...Organic conductive film, 3...Composite electrolytic polymer membrane.
Claims (2)
記電極の内、少なくとも一つは有機導電性フィルムであ
り、また前記セパレータは複合化電解重合膜であること
を特徴とする電池。(1) A battery comprising a separator sandwiched between electrodes, wherein at least one of the electrodes is an organic conductive film, and the separator is a composite electrolytic polymer membrane.
し、この有機導電性フィルム電極上に汎用高分子膜を積
層するとともに電解酸化して複素環系導電性高分子を前
記汎用高分子膜に複合化させた複合化電解重合膜セパレ
ータを形成する工程を含むことを特徴とする電池の製造
方法。(2) An electrode made of an organic conductive film is formed on the substrate, a general-purpose polymer film is laminated on the organic conductive film electrode, and electrolytically oxidized to transfer the heterocyclic conductive polymer to the general-purpose polymer film. A method for manufacturing a battery, comprising the step of forming a composite electropolymerized membrane separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59128843A JPS618854A (en) | 1984-06-22 | 1984-06-22 | Cell and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59128843A JPS618854A (en) | 1984-06-22 | 1984-06-22 | Cell and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS618854A true JPS618854A (en) | 1986-01-16 |
Family
ID=14994754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59128843A Pending JPS618854A (en) | 1984-06-22 | 1984-06-22 | Cell and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS618854A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61211963A (en) * | 1985-03-18 | 1986-09-20 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary cell |
JPS63141271A (en) * | 1986-12-04 | 1988-06-13 | Tokuyama Soda Co Ltd | battery |
WO1999019920A1 (en) * | 1997-10-10 | 1999-04-22 | Ultralife Batteries, Inc. | Lithium ion polymer cell separator |
CN1087810C (en) * | 1995-09-01 | 2002-07-17 | 雅马哈发动机株式会社 | Suction device for supercharged engine |
KR100522675B1 (en) * | 1998-12-18 | 2005-12-21 | 삼성에스디아이 주식회사 | Electrodes for lithium secondary battery and lithium secondary battery employing the same |
JP2013157266A (en) * | 2012-01-31 | 2013-08-15 | Yamagata Univ | Separator for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery |
-
1984
- 1984-06-22 JP JP59128843A patent/JPS618854A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61211963A (en) * | 1985-03-18 | 1986-09-20 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary cell |
JPS63141271A (en) * | 1986-12-04 | 1988-06-13 | Tokuyama Soda Co Ltd | battery |
CN1087810C (en) * | 1995-09-01 | 2002-07-17 | 雅马哈发动机株式会社 | Suction device for supercharged engine |
WO1999019920A1 (en) * | 1997-10-10 | 1999-04-22 | Ultralife Batteries, Inc. | Lithium ion polymer cell separator |
US5962162A (en) * | 1997-10-10 | 1999-10-05 | Ultralife Batteries Inc. | Lithium ion polymer cell separator |
KR100522675B1 (en) * | 1998-12-18 | 2005-12-21 | 삼성에스디아이 주식회사 | Electrodes for lithium secondary battery and lithium secondary battery employing the same |
JP2013157266A (en) * | 2012-01-31 | 2013-08-15 | Yamagata Univ | Separator for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6706441B1 (en) | Paste-like masses for electrochemical components, layers produced therefrom, and electrochemical components | |
TWI291256B (en) | Films for electrochemical components and method for producing the same | |
US6413676B1 (en) | Lithium ion polymer electrolytes | |
JPH0454350B2 (en) | ||
JPH09309173A (en) | Ion conductive laminated matter, its manufacture, and use thereof | |
JP5219320B2 (en) | Paste material body having electrochemical structural element and nanocrystalline material for layer and electrochemical structural element produced therefrom | |
US8460831B2 (en) | Paste-like mass with inorganic, liquid conductors and layers and electrochemical elements produced therefrom | |
JPS618854A (en) | Cell and its manufacturing method | |
JPS6289749A (en) | electrode material | |
JPS6298577A (en) | Conductive polymer electronic material | |
JPS59173944A (en) | Secondary battery | |
JPS62296376A (en) | Manufacture of polymer solid electrolyte battery | |
JPS63205063A (en) | Battery manufacturing method | |
JPS61206170A (en) | Secondary battery and its electrode | |
JPS618855A (en) | Cell and its manufacture | |
JPS63110561A (en) | battery | |
US3783025A (en) | Method of making a thin cadmium oxide electrode with an ionic polymer and subsequent removal of the polymer | |
JPS63181273A (en) | Battery manufacturing method | |
JPH02168578A (en) | Electrochemical device and its manufacturing method | |
JPH10162832A (en) | Thin lithium battery, and manufacture thereof | |
Changzhi et al. | An all-solid-state lithium/polyaniline rechargeable cell | |
JP3344152B2 (en) | Manufacturing method of electrode plate for lead-acid battery | |
JPS63164176A (en) | Organic secondary cell | |
JPH04540Y2 (en) | ||
JPH0528825A (en) | High-molecular compound electrode |