[go: up one dir, main page]

JPS6180881A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6180881A
JPS6180881A JP59201502A JP20150284A JPS6180881A JP S6180881 A JPS6180881 A JP S6180881A JP 59201502 A JP59201502 A JP 59201502A JP 20150284 A JP20150284 A JP 20150284A JP S6180881 A JPS6180881 A JP S6180881A
Authority
JP
Japan
Prior art keywords
layer
refractive index
coating layer
stripe
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59201502A
Other languages
Japanese (ja)
Other versions
JPH0568873B2 (en
Inventor
Naoto Mogi
茂木 直人
Motoyuki Yamamoto
山本 基幸
Yukio Watanabe
幸雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59201502A priority Critical patent/JPS6180881A/en
Publication of JPS6180881A publication Critical patent/JPS6180881A/en
Publication of JPH0568873B2 publication Critical patent/JPH0568873B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a semiconductor laser device capable of a lower threshold value with help of built-in waveguide effect attributable to the difference in effective refractive indexes by a method wherein two coating layers are formed, with the first coating layer provided with a refractive index higher than that of an clad layer and occupying the entire region except along the sides of a stripe-shaped groove and the second coating layer provided with a refractive index lower than that of the first coating layer. CONSTITUTION:On an n-GaAs substrate 21 of the facial orientation (100), a clad layer 22, undoped activation layer 23, p-clad layer 24, and n-GaAs current-impeding layer 25 are grown in that order. A photoresist 31 is placed on the current-impeding layer 25 by application, and a stripe-shaped window is provided. The current-impeding layer 25 is subjected to selective etching with the stripe-shaped window serving as a mask. Further, the clad layer 24 is exposed to etching until a stripe-shaped groove 32 is formed. On the entire surface, a first coating layer 26, second coating layer 27, and contact layer 28 are grown. On the contact layer 28, a Cr-Au electrode layer 29 is formed and, on the lower surface of the substrate 21, an Au-Ge electrode layer 30 is formed. An element obtained in this way operates on a threshold current that is as low as 35mA, and has an excellent differential.quantative efficiency of 50%.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、作り付け導波路構造を備えた半導体レーザ装
置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in semiconductor laser devices with built-in waveguide structures.

〔発明の技術的背景とその問題点] ディジタル・オーディオ・ディスク(DAD) 、ビデ
オ、ディスク、ドキュメント・ファイル等の光デイスク
装置や光通信用光源として半導体レーザの応用が開ける
につれ、半導体レーザの債産化技術が必要となってきた
。従来、半導体レーザ用の薄膜多層へテロ接合結晶製作
技術としては、スライディング・ボート方式による液相
エピタキシャル成長法(LPE法)が用いられてきたが
、LPE法ではウェハ面積の大型化に限度がある。この
ため、大面積で均−性及び制御性に優れた有機金属気相
成長法(MOCVD法)や分子線エピタキシー法(MB
B法)等の結晶成長技術が近年特に注目されるようにな
ってきた。
[Technical background of the invention and its problems] As the application of semiconductor lasers opens up as a light source for optical communication and optical disk devices such as digital audio disks (DAD), videos, disks, document files, etc., the debt of semiconductor lasers has increased. Industrialization technology has become necessary. Conventionally, a liquid phase epitaxial growth method (LPE method) using a sliding boat method has been used as a technology for manufacturing thin film multilayer heterojunction crystals for semiconductor lasers, but the LPE method has a limit in increasing the wafer area. For this reason, the metal organic chemical vapor deposition method (MOCVD method) and the molecular beam epitaxy method (MB
Crystal growth techniques such as method B) have been attracting particular attention in recent years.

MOCVD法の特徴を生かした作り付け導波路レーザと
言えるものに、(アプライド・フィジックスレター誌、
第37号3号262頁、1980年)に発表された第4
図に示す如き半導体レーザがある。なお、図中1はN 
−GaAs基板、2はN  GaAA!Asクラッド層
、3はGaAJAs活性層、4はP −GaA7Asク
ラッド層、5はN−GaAs電流阻止層、6はP−Ga
AJAs被覆層、7はP−GaAs27タクト層、8゜
9は金属電極を示している。この構造においては、異種
導電型の電流阻止層5により活性層への電流注入がスト
ライプ状に限定されると同時に、活性層に導波された光
が電流阻止層5及び被覆層まで滲み出し、その結果スト
ライプ直下とそれ以外の部分とで異った複屈折率差を生
じ、これによりストライプ直下部分に導波されたモード
が形成されることになる。すなわち、電流阻止層5によ
って、電流狭窄による利得導波路構造と作り付け屈折率
導波路構造とが自己整合的に形成されている。この構造
のレーザは著者等の報告によれば、室温パルス動作では
50(mA)程度とかなり低いしきい値で発振し、また
単一モード発振が達成され横モードが十分良く制御され
ることが示されている。
What can be called a built-in waveguide laser that takes advantage of the characteristics of the MOCVD method (Applied Physics Letters,
No. 37, No. 3, p. 262, 1980).
There is a semiconductor laser as shown in the figure. In addition, 1 in the figure is N
-GaAs substrate, 2 is N GaAA! As cladding layer, 3 GaAJAs active layer, 4 P-GaA7As cladding layer, 5 N-GaAs current blocking layer, 6 P-Ga
An AJAs coating layer, 7 a P-GaAs27 tact layer, and 8°9 a metal electrode. In this structure, current injection into the active layer is limited to a stripe pattern by the current blocking layer 5 of different conductivity types, and at the same time, light guided in the active layer leaks to the current blocking layer 5 and the coating layer. As a result, a different birefringence difference occurs between the portion directly below the stripe and the other portion, resulting in the formation of a guided mode in the portion directly below the stripe. That is, the current blocking layer 5 forms a gain waveguide structure by current confinement and a built-in refractive index waveguide structure in a self-aligned manner. According to a report by the authors, a laser with this structure oscillates at a fairly low threshold of about 50 (mA) in room temperature pulse operation, and single mode oscillation is achieved and the transverse mode is sufficiently well controlled. It is shown.

なお、上記構造のレーザは基板1から電流阻止層5まで
の第1回目の結晶成長と、電流阻止層5の一部をストラ
イプ状にエツチングしたのちの被覆層6及びコンタクト
層7を形成する第2回目の結晶成長とからなる2段階の
結晶成長プロセスにより作成される。ここで、第2回目
の結晶成長の開始時点におけるクラッド層7への成長は
、−足表面が空気中に晒された0 11 A I A 
s面上への成長である。このため、従来のLPE法では
成長がr4シ<、GaAlAs面上への成長が容易なM
OCVD法によって始めて制御性良く製作できるように
なったものである。
Note that the laser having the above structure requires the first crystal growth from the substrate 1 to the current blocking layer 5, and the second step of etching a part of the current blocking layer 5 in a stripe shape to form the covering layer 6 and the contact layer 7. It is created by a two-step crystal growth process consisting of a second crystal growth. Here, the growth on the cladding layer 7 at the start of the second crystal growth is -0 11 A I A when the foot surface is exposed to the air.
This is growth onto the s-plane. For this reason, in the conventional LPE method, growth is limited to r4<, M which is easy to grow on the GaAlAs surface.
This is the first time that it has become possible to manufacture it with good controllability using the OCVD method.

ところで、半導体レーザの発振しきい値は、動作電流の
減少、寿命特性の向上等の観点からも低いことが必要で
あり、しきい値の低さはレーザの構造、性能の良し悪し
をはかる目安にもなってい   する。低しきい値を示
すレーザ構造としては、作り付け導波構造である埋め込
み型(BH)や横方向接合型(TJ8)があり、これら
は10〜20(fflA)以下のしきい値を示す。これ
らに比べて第1図の構造のレーザのしきい値は、前述し
た様に50[mB)とBH,TJS型と比較して2倍以
上高い。本発明者等の実験によっても、現構造のままで
はこれ以上の低しきい値化を計ることははなはだ困難で
あることが確かめられた。この様なしきい値の違いは、
負34図構造とBH、TJ S型等との導波路効果の違
いにあると考えられる。すなわち、第4図構造は、活性
層3に導波された光がクラッド層4を通して電流阻止層
5までしみ出し、吸収を受けることによって接合面に水
平方向に等測的複素屈折率の虚数部分に差が形成されて
光がガイドされる吸収損失ガイドである。一方、BH構
造等の場合は複素屈折率の実数部分の差によって光がガ
イドされる屈折率ガイドである。つまり、第4図の構造
では、吸収損失の分だけ閾値が上昇してしまうと考えら
れる。
By the way, the oscillation threshold of a semiconductor laser needs to be low from the viewpoint of reducing operating current and improving life characteristics, and the low threshold is a measure of the structure and performance of the laser. It's also becoming. Laser structures that exhibit a low threshold include a built-in waveguide structure, such as a buried type (BH) and a lateral junction type (TJ8), which exhibit a threshold of 10 to 20 (fflA) or less. Compared to these, the threshold value of the laser having the structure shown in FIG. 1 is 50 [mB], which is more than twice as high as that of the BH and TJS types, as described above. Experiments conducted by the present inventors have confirmed that it is extremely difficult to lower the threshold voltage even further with the current structure. This difference in threshold values is
This is thought to be due to the difference in waveguide effect between the negative 34-diagram structure and the BH, TJ S type, etc. In other words, in the structure shown in FIG. 4, the light guided by the active layer 3 leaks through the cladding layer 4 to the current blocking layer 5 and is absorbed, so that the imaginary part of the isometric complex refractive index is This is an absorption loss guide in which light is guided by a difference formed between the two. On the other hand, in the case of a BH structure, etc., it is a refractive index guide in which light is guided by the difference in the real part of the complex refractive index. In other words, in the structure shown in FIG. 4, it is thought that the threshold value increases by the amount of absorption loss.

損失ガイド構造の以上のような欠点に鑑みるとき、低し
きい(tlJ化を実現するためにはこうした損失のペナ
ルティ−を払う必要のない屈折率等波型レーザに改良す
ることが考えられる。この考え方をもとに考案された半
導体レーザが、第5図に示すようなものである。すなわ
ち、電流阻止層5は電流阻止効果を得るために残すもの
の、この層よりも屈折率の小さいクラッド層4を充分厚
くすることによって、屈折率が高く且つレーザ光を吸収
する電流阻止層5にまで光が滲み出すのを防ぐ変りにス
トライプ状溝部分には、クラッド層4よりもわずかに屈
折率高く、かつ、レーザ光を吸収しない被覆層6を設け
たものである。この構造では、活性層3に導波された光
は、ストライプ直下部分では屈折率の大きい被覆層6を
感じる一方、ストライプの両側では屈折率の小さい層を
感じ、結果としてストライプの内側・外側では実効屈折
率の実数部分に差が生じ、屈折率導波効果によって光が
ガイドされることになる。
In view of the above-mentioned drawbacks of the loss guide structure, in order to realize a low threshold (tlJ), it is possible to improve the laser to a constant refractive index wave type laser that does not need to pay the penalty for such loss. A semiconductor laser devised based on this idea is as shown in Figure 5.That is, although the current blocking layer 5 is left in order to obtain a current blocking effect, a cladding layer with a smaller refractive index than this layer is added. By making the cladding layer 4 sufficiently thick, it is possible to prevent light from seeping into the current blocking layer 5, which has a high refractive index and absorbs laser light. , and is provided with a coating layer 6 that does not absorb laser light.With this structure, the light guided into the active layer 3 senses the coating layer 6 with a high refractive index directly below the stripe, while A layer with a low refractive index is felt on both sides, and as a result, a difference occurs in the real part of the effective refractive index between the inside and outside of the stripe, and light is guided by the refractive index waveguide effect.

ところが、第5図に示すレーザは、意に反して低しきい
値が達成されないことがしばしば生じることが判ってき
た。そして、この原因が構造そのものに内在したもので
あることも判ってきた。すなわち、第5図の構造の場合
、ストライプ状溝部の両側では被覆層6にレーザ光が異
常に洩れ出し、これがこの種のレーザ特有の新たな損失
となるためであることが判った。この事情を第6図によ
って示す。まず、p型・n型クラッド層2,4が充分厚
い場所の接合面に垂直方向のモードの実効屈折率をne
ffoとし、被覆層6の屈折率nはn>neff’の関
係があるとする。ところでP−クラッド層の厚みが充分
薄い場所では、活性1fj 3に導波された光は被覆層
6の高い屈折率を感じ、この時の導波モードのn ef
fはn 6ff’より大きいある値となる。そして、こ
の状態でP−クラッド層の厚みを仮想的に厚くしてゆく
と、活性層3に導波された光は被覆層6を感じなくなる
ためn effは小さくなりn eff’にだんだん近
づくことになる。そしてさらに被覆層6が遠ざかると、
n eff’は被覆層6のnよりも小さくなる。こうし
た導波モードのn eff’よりも屈折率の大きい層が
比較的近接して存在すると、それ迄活性層3に4波され
ていた光が被覆層6の方に、参み出し、活性層3から散
逸してしまう事態が生じる。こうした現象が、被覆層6
が活性層3に近い場合に起こらず、ある適当な距離能れ
たところで発生する点が問題で第2図のレーザの場合に
はストライプ溝部では光が活性層に導波されていても、
ストライプ溝部両側では光が被覆層6に逃げだすという
現象となって現われている。以上のような導波路光がス
トライプ両1u11で、散逸してしまう現象は、この種
のレーザの端面な赤外顕微鏡で観察したとき、活性層上
部のストライプ両側部分で放射状の輝点が見出されるこ
とからも明らかである。ストライプ両側部分でもnef
f)nの関係が常に満たされるようにするためには、被
覆層6の屈折率nをn 、eff’ ) nの関係が満
たされるよう充分小さく選べば良い。しかしながら、こ
れでは、ストライプ直下の領域で実効屈折率を大きくと
ることが逆に難しくなるという欠点が生じる。
However, it has been found that the laser shown in FIG. 5 often fails to achieve a low threshold value unexpectedly. It has also become clear that the cause of this is inherent in the structure itself. That is, in the case of the structure shown in FIG. 5, it has been found that the laser light abnormally leaks into the coating layer 6 on both sides of the striped groove, and this causes a new loss peculiar to this type of laser. This situation is illustrated in FIG. First, the effective refractive index of the mode perpendicular to the junction surface where the p-type and n-type cladding layers 2 and 4 are sufficiently thick is ne.
It is assumed that the refractive index n of the coating layer 6 has a relationship of n>neff'. By the way, in a place where the thickness of the P-cladding layer is sufficiently thin, the light guided by the active layer 1fj3 senses the high refractive index of the covering layer 6, and the nef of the guided mode at this time is
f takes on a certain value greater than n 6ff'. Then, when the thickness of the P-cladding layer is virtually increased in this state, the light guided into the active layer 3 no longer senses the coating layer 6, so that n eff becomes smaller and gradually approaches n eff'. become. And when the coating layer 6 moves further away,
n eff' is smaller than n of the covering layer 6. When such a layer with a refractive index higher than n eff' of the waveguide mode is present relatively close to each other, light that has been transmitted into the active layer 3 in four waves flows toward the coating layer 6, and the active layer A situation arises in which the signal is dissipated from 3. This phenomenon is caused by the coating layer 6
The problem is that this does not occur close to the active layer 3, but occurs at a certain distance, and in the case of the laser shown in Figure 2, even though the light is guided to the active layer in the stripe groove,
A phenomenon appears in which light escapes into the coating layer 6 on both sides of the striped groove. The above phenomenon in which the waveguide light is dissipated at both stripes 1u11 is caused by the fact that when this type of laser is observed with an infrared microscope, radial bright spots are found on both sides of the stripe above the active layer. It is clear from this. nef on both sides of the stripe
f) In order to ensure that the relationship n is always satisfied, the refractive index n of the coating layer 6 may be selected to be sufficiently small so that the relationship n , eff' ) n is satisfied. However, this has the disadvantage that it becomes difficult to increase the effective refractive index in the region immediately below the stripe.

! 以上のように第5図の構造のレーザでは、第1図の構造
のレーザにくらべ損失導波構造から屈折率導波構造にし
た分しきい値電流は低下するが、一方では新たな損失が
生じているために第4図とくらべ十分に低しきい値化す
ることはできていなかった。
! As described above, in the laser with the structure shown in Fig. 5, the threshold current is lowered by changing from the loss waveguide structure to the refractive index waveguide structure compared to the laser with the structure shown in Fig. 1, but on the other hand, there is a new loss. Because of this, the threshold value could not be lowered sufficiently compared to FIG. 4.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、実効屈折率差による作り付け導波路効
果を確実に生じせしめることができ、低しきい値化をは
かり得る半導体レーザ装置を提供することにある。
An object of the present invention is to provide a semiconductor laser device that can reliably produce a built-in waveguide effect due to an effective refractive index difference and can achieve a low threshold.

〔発明の概要] 本発明は、ストライプ直下における実効屈折率がストラ
イプ両何部のそれよりも十分大きく保持しながらも被覆
層への異常なしみ出しによる光の損失を極力抑えたレー
ザを提供せんことを目的とする。
[Summary of the Invention] The present invention provides a laser in which the effective refractive index immediately below the stripe is kept sufficiently larger than that at both parts of the stripe, while minimizing loss of light due to abnormal seepage into the coating layer. The purpose is to

すなわち本発明は、活性層に対し基板と反対側のクラッ
ド層上に該クラッド層とは導電型の異なる層がストライ
プ状部分を除いて形成され、且つこの上に上記クラッド
層と同じ導電型の被覆層が形成され電流狭窄効果及び作
り付け導波路効果を有するヘテロ接合型半導体レーザ装
置において、前記被覆層は少なくとも2層に形成され、
前記活性層に近い方の第1の被覆層は前記クラッド層よ
りも屈折率が大きい層であって、且つ、ストライプ状溝
部側面を除いて形成されたものであり第1の被fσ層よ
り上記活性層に遠い方の第2の被覆層は第1の被覆層よ
りも屈折率が小さくなるようにされたものである。
That is, in the present invention, a layer having a conductivity type different from that of the cladding layer is formed on the opposite side of the substrate from the active layer, excluding the striped portion, and a layer having the same conductivity type as the cladding layer is formed on the cladding layer on the side opposite to the substrate. In a heterojunction semiconductor laser device in which a coating layer is formed and has a current confinement effect and a built-in waveguide effect, the coating layer is formed in at least two layers,
The first coating layer closer to the active layer is a layer having a higher refractive index than the cladding layer, and is formed excluding the side surfaces of the striped groove, and has a higher refractive index than the first fσ layer. The second coating layer that is farther from the active layer has a refractive index smaller than that of the first coating layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ストライプ状溝部に埋め込む層を高屈
折率層と低屈折率層の少くとも2層とすることにより、
ストライプ状溝部に♂み出した光が高屈折率層を感じ、
接合面に水平方向に実効屈折率分布を生ずることになる
。ここにおいて被覆層の低屈折率層の屈折率nを前述し
た活性層1=導波されたモードの実効屈折率n eff
’に充分近い値とするかもしくはn eff−よりも小
さい値とするならばストライプ状溝部側面直下の領域に
おいても、前述した議論に基づき活性層に導波された光
が被3 P fl?llへ逸散することは生じえない。
According to the present invention, by setting at least two layers, a high refractive index layer and a low refractive index layer, to be embedded in the striped groove,
The light that spills out into the striped grooves senses the high refractive index layer,
This results in an effective refractive index distribution in the horizontal direction on the cemented surface. Here, the refractive index n of the low refractive index layer of the coating layer is defined as the active layer 1 = effective refractive index of the guided mode n eff
If the value is sufficiently close to neff- or is smaller than neff-, then the light guided into the active layer will be affected by 3Pfl? based on the above discussion, even in the area directly under the side surface of the striped groove. Dissipation to ll cannot occur.

また披QDの高屈折率層の屈折率を充分大きくするか若
しくは充分厚くすることによってストライプ状溝部直下
にモードを閉じ込めるに必要とされる実効屈折率層が存
在しないがゆえに、仮に高屈折率層の屈折率を充分大き
くとったとしても、従来のレーザのように被覆された光
が散逸することは起り得ない。したがって本発明のレー
ザでは過剰閾値電流増加を極力抑えることができ、屈折
率導波型レーザによる低閾値化を充分達成できるように
なった。
In addition, there is no effective refractive index layer required to confine the mode directly under the striped groove by increasing the refractive index of the high refractive index layer of the QD sufficiently or making it sufficiently thick. Even if the refractive index of the laser is made sufficiently large, the coated light cannot be dissipated as in conventional lasers. Therefore, in the laser of the present invention, excessive increase in threshold current can be suppressed as much as possible, and a low threshold value can be sufficiently achieved using a refractive index guided laser.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例に係わる半導体レーザの概略
構造を示す断面図である。図中21はN−G a A 
s基板、22はN−Ga6.as Alo、ss A3
クラッド層、23はG” o ot Al 06@ A
 s活性層、24はP  G a (1,65AI!o
 、5sAsクラッド層、5はN −GaAa電流阻止
層、26はP −Ga、、 klo、、As第1被覆層
、27はP  oao、61 ””、B5 As第2被
覆屑、四はP−QaAs コンタクト層、29.30は
金属電極層をそれぞれ示している。
FIG. 1 is a sectional view showing a schematic structure of a semiconductor laser according to an embodiment of the present invention. 21 in the figure is N-Ga A
s substrate, 22 is N-Ga6. as Alo, ss A3
Cladding layer, 23 is G" o ot Al 06@A
s active layer, 24 is P G a (1,65 AI!o
, 5sAs cladding layer, 5 is N-GaAa current blocking layer, 26 is P-Ga, , klo, , As first coating layer, 27 is Poao, 61 "", B5 As second coating scrap, 4 is P- 29 and 30 indicate a QaAs contact layer and a metal electrode layer, respectively.

上記構造のレーザは、第2図(a)〜(C)に示す工程
によって実現される。まず、第5図(a)に示す如く、
面方位(100)のN−GaAs基板21(SLドープ
I X 10m8m ’ ) 上1−1li−サ1.5
 Cμm) (7) N −Gao、as AA!6.
B5 Asクラッド層22、(8eドープ1×101?
cIIv” ) 、厚!: o、Os (μm、l (
7)7:/ F −フG” o、ss AJ 6.6@
 As活性層23、厚さ1.5Cμm〕のP−Ga、、
、 kl、、、 Asクラッド層24 (Znドープ7
×IQ”cm−” )及び厚さ1 (、um)のN −
GaAs 電流阻止層(異種層) 25(Beドープ5
 X l□”c’m−” )を順次成長した。この第1
回目の結晶成長にはMOCVD法を用い、成長条件は基
板温度750 C”O)、V/m=20、キャリアガス
(Hl)の流量”=10 (A!/min )、原料は
トリメチルガリウA (TMG : (CH)、Ga 
) 、 )リメチルアルミニウム(TMA : (CH
,)、AJ ) 、  アルシン(A”s) 、p−ド
ーパント:ジエチル亜鉛(DEZ : (C,H@)t
 Zn )、n−ドーパント:セレン化水素(H,8e
 )で、成長速度は0.25 (μm/min )であ
った。なお、第1回目の結晶成長では必ずしも瞥 MO−CVD法を用いる必要はないが、大面積で均一性
の良い結晶成長が可能なMO−CVD法を用いることは
、量産化を考えた場合LPE法に比べて有利である。
The laser having the above structure is realized by the steps shown in FIGS. 2(a) to 2(C). First, as shown in Figure 5(a),
N-GaAs substrate 21 with plane orientation (100) (SL doped I x 10m8m') Upper 1-1li-sa 1.5
Cμm) (7) N-Gao, as AA! 6.
B5 As cladding layer 22, (8e doped 1×101?
cIIv”), thickness!: o, Os (μm, l (
7) 7: / F - ふ G” o, ss AJ 6.6@
As active layer 23, thickness 1.5 Cμm] of P-Ga,
, kl, , As cladding layer 24 (Zn doped 7
×IQ"cm-") and N- of thickness 1 (, um)
GaAs current blocking layer (heterogeneous layer) 25 (Be doped 5
Xl□"c'm-") were grown sequentially. This first
The MOCVD method was used for the second crystal growth, and the growth conditions were a substrate temperature of 750 C (O), V/m = 20, a carrier gas (Hl) flow rate of 10 (A!/min), and a raw material of trimethyl gallium. A (TMG: (CH), Ga
), )limethylaluminum (TMA: (CH
), AJ), arsine (A”s), p-dopant: diethylzinc (DEZ: (C,H@)t
Zn), n-dopant: hydrogen selenide (H, 8e
), and the growth rate was 0.25 (μm/min). Although it is not necessarily necessary to use the grain MO-CVD method for the first crystal growth, using the MO-CVD method, which allows crystal growth with good uniformity over a large area, is advantageous when considering mass production. It is more advantageous than the law.

次に、第2図(b)に示す如く電流阻止層25上にフォ
トレジスト31を塗布し、該レジスト31に幅3〔μm
〕のストライプ状窓を形成し、これをマスクとして電流
阻止層25を選択エツチングし、さらにクラッド層24
を途中までエツチングしてストライプ状の溝32を形成
した。次いで、レジスト31を除去し表面洗浄処理を施
したのち、第2回目の結晶成長をMOCVD法で行った
。すなわち、第6図(C)に示す如く全面に厚さ0.3
[μm]P−Ga0. AJ、、 As第1被覆層26
、P  Ga 6.65 A16.16 As第2 +
’l i’U % 27及びP−GaAs被薫層(Zn
ドープ5×IQ” cm−3)四を成長形成した。
Next, as shown in FIG. 2(b), a photoresist 31 is coated on the current blocking layer 25, and the resist 31 has a width of 3 μm.
], and using this as a mask, the current blocking layer 25 is selectively etched, and then the cladding layer 24 is etched.
was etched halfway to form striped grooves 32. Next, after removing the resist 31 and performing a surface cleaning treatment, a second crystal growth was performed using the MOCVD method. That is, as shown in FIG. 6(C), the entire surface is coated with a thickness of 0.3
[μm] P-Ga0. AJ, As first coating layer 26
, P Ga 6.65 A16.16 As 2nd +
'l i'U % 27 and P-GaAs smoked layer (Zn
A doped 5×IQ” cm−3) was grown.

ところでストライプ状溝32は面方位(100) Ga
Aa基板平方晶を用いたときには通称逆メサ方向に形成
する゛必要がある。逆メサ方向とは酸化剤を含む硫酸素
エッチャント等の面異方性の強いエッチャントを用い、
フォトレジスト等をマスクとしてメサを形成したとき、
上方にゆくに従い幅が狭くなるメサが形成される(01
月に等価な方向、すなわち頴メサ方向に対し直交する(
011)に等価な面方位のことである。ストライプ状溝
をいわゆる逆メサ方向に選びMOCVD法により成長を
行うと、溝部底部の(100)面には成長が進むが溝部
側面にはほとんど成長が行われない。MOCVD成長と
おけるこの現象は比較的良く知られた事実である。これ
は、ストライプ状溝をいわゆる順メサ方向にス!びMO
CVD成長を行った場合には溝部底部のみならず溝部側
面にも同じように成長するのと好対照である。本発明の
構造は(100)面方位基板を用いた場合には逆メサ方
向に選ぶことによって実現できる。これ以降は通常の電
極材は工程によりコンタクト層28上にCr −Au電
極層29を、基板21下面にAu −Ge電極30を被
着して前記第1図に示す構造を得た。
By the way, the striped grooves 32 have a plane orientation (100) Ga
When a square crystal Aa substrate is used, it is necessary to form it in the so-called reverse mesa direction. In the reverse mesa direction, an etchant with strong plane anisotropy such as a sulfuric acid etchant containing an oxidizing agent is used.
When a mesa is formed using photoresist as a mask,
A mesa is formed that becomes narrower as it goes upwards (01
Orthogonal to the direction equivalent to the moon, i.e. the Mesa direction (
011). When striped grooves are selected in the so-called reverse mesa direction and grown by MOCVD, growth progresses on the (100) plane at the bottom of the groove, but almost no growth occurs on the side surfaces of the groove. This phenomenon in MOCVD growth is a relatively well-known fact. This causes the striped grooves to move in the so-called forward mesa direction! BiMO
In contrast, when CVD growth is performed, growth occurs not only on the bottom of the groove but also on the sides of the groove. The structure of the present invention can be realized by selecting the reverse mesa direction when using a (100) plane orientation substrate. From this point on, a Cr--Au electrode layer 29 was deposited on the contact layer 28 and an Au--Ge electrode 30 was deposited on the lower surface of the substrate 21 in the usual steps to obtain the structure shown in FIG. 1.

かくして得られた試料をへき開により共振器長250〔
μm〕のファプリベロー型レーザに切り出した素子の特
性は、しきい値亀流35〔m人〕、と低く、微分・量子
効率も50〔%〕と良好であった。また、出力12〔m
W〕以上までキンクのない線形性の良い電流−光出力特
性が得られた。また、レーザ端面より放射されたレーザ
光ビームの接合面に水平方向、垂直方向のビームウェス
トは端面に一致しており、屈折率ガイドが充分におこな
われていることが確認できた。
The sample thus obtained was cleaved to create a resonator with a cavity length of 250 [
The characteristics of the device cut out into a Fabry Bellows laser with a wavelength of 35 [μm] were as low as a threshold current of 35 [m], and the differential/quantum efficiency was also good at 50 [%]. Also, output 12 [m
W] and above, a kink-free current-light output characteristic with good linearity was obtained. Furthermore, the beam waist of the laser light beam emitted from the laser end facet in the horizontal and vertical directions coincided with the end facet, confirming that the refractive index guide was sufficiently performed.

第3図は他の実施例に係わる半導体レーザの概略構造を
示す断面図である。なお、第1図と同一部分には同一符
号を付してその詳しい説明は省略する。この実施例が先
に説明した実施例と異なる点は、前記異種層を2層にし
たことにある。すなわち、p−GaA/Asクラッド層
24とn−GaAa第1異種層25との間1: n −
Ga6.4 Alo、11 As第2異種層2saが挿
入されている。これはストライプ両伺の領域における活
性層23に導波されたモードの実効屈折率を小さくする
ことに寄与する。したがって、第1被覆層26の効果と
あいまって、ストライプ直下に大きな実効屈折率分布を
生じせしめることができる。実際には、単−基本横モー
ド発振を安定に得るための実効屈折率差は適当量あれば
良く、大きすぎても高次横モードを発振させる原因とな
りて好ましいことではなく、実効屈折率差を大きくとる
ことができるようになる利点はストライプ直下のp−ク
ラッド層の厚みを厚くし、工程の歩留り、信頼性の確保
等に振り向けるようにするのが良い。第2糧異種層25
aを尋人したことによる他のメリットは第1図の実施例
でのp−クラッド層24を通して広がる無効電流成分を
、p−クラッド層24が薄、くなる分だけ少なくするこ
とができる点である。
FIG. 3 is a sectional view showing a schematic structure of a semiconductor laser according to another embodiment. Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. This embodiment differs from the previously described embodiments in that the number of different layers is two. That is, between the p-GaA/As cladding layer 24 and the n-GaAa first heterogeneous layer 25 1: n −
A second heterogeneous layer 2sa of Ga6.4 Alo, 11 As is inserted. This contributes to reducing the effective refractive index of the mode guided by the active layer 23 in the regions on both sides of the stripe. Therefore, in combination with the effect of the first coating layer 26, a large effective refractive index distribution can be generated directly under the stripe. In reality, in order to stably obtain single-fundamental transverse mode oscillation, an appropriate amount of effective refractive index difference is sufficient. The advantage of being able to increase the thickness of the p-cladding layer directly under the stripe is to increase the thickness of the p-cladding layer, which can be used to ensure process yield and reliability. 2nd food heterogeneous layer 25
Another advantage of reducing a is that the reactive current component that spreads through the p-cladding layer 24 in the embodiment of FIG. 1 can be reduced as the p-cladding layer 24 becomes thinner. be.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば構成材料としてはG1AlAsに限るもの
ではな(InGaAmPやAJGaInP等の他の化合
物半導体材料を用いてもよい。さらに、結晶成長法とし
てMOCVD法のかわりにMBE法を用いることも可能
である。また、基板としてP型基板を用い、各層の導電
型を逆にすることも可能である。その他、本発明の要旨
を逸脱しない範囲    1で、種々変形して実施する
ことができる。
Note that the present invention is not limited to the embodiments described above. For example, the constituent material is not limited to G1AlAs (other compound semiconductor materials such as InGaAmP and AJGaInP may also be used.Furthermore, it is also possible to use the MBE method instead of the MOCVD method as the crystal growth method. It is also possible to use a P-type substrate as the substrate and reverse the conductivity type of each layer.In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例C二係わる半導体レーザの概
略構造を示す概面図、第2図(1)〜(c)は上記実施
例レーザの製造工程を示す断面図、第3図は他の実施例
の概略構造を示す断面図、第4図は従来の半導体レーザ
の概略構造を示す断面図、第5図はストライプ状の実効
屈折率差を、大きくした半導体レーザの概略構造を示す
断面図、第6図は第5図に示すレーザの導波路特性を示
す模式図である。 21 、、、 n −GaAs基板、 22− ’  Gao、as klo、ms ”クラッ
ド層、23− oaoj! Al o、o s ”活性
層、24 、、、 p −Gao、61I)J、、、A
sクラッド層、25・・・n = GaA s電流阻止
層(異種層)、26− pGaoo、AA!o、t ”
第1被覆層、27− poa06ff人lo3.As第
2被覆層、28・・・p −GaAsコンタクト層、2
9 、30・・・電極 31・・・レジスト、 32・・・ストライプ状溝。 代理人 弁理士 則 近 憲 佑(ほか1名)第  1
 図 第  2 図 (C) 第  3 図 第  4  図 ブ 第  6 図
FIG. 1 is a schematic diagram showing a schematic structure of a semiconductor laser according to an embodiment C2 of the present invention, FIGS. 2(1) to (c) are sectional views showing the manufacturing process of the laser of the above embodiment, and FIG. 4 is a cross-sectional view showing the schematic structure of another embodiment, FIG. 4 is a cross-sectional view showing the schematic structure of a conventional semiconductor laser, and FIG. 5 is a schematic structure of a semiconductor laser with a large striped effective refractive index difference. The cross-sectional view shown in FIG. 6 is a schematic diagram showing waveguide characteristics of the laser shown in FIG. 5. 21,,, n-GaAs substrate, 22-' Gao, as klo, ms'' cladding layer, 23- oaoj! Alo, os'' active layer, 24,, p-Gao, 61I) J,,,A
s cladding layer, 25...n = GaAs s current blocking layer (heterogeneous layer), 26- pGaoo, AA! o,t”
First coating layer, 27-poa06ff person lo3. As second covering layer, 28...p-GaAs contact layer, 2
9, 30... Electrode 31... Resist, 32... Striped groove. Agent: Patent Attorney Noriyuki Chika (and 1 other person) No. 1
Figure 2 (C) Figure 3 Figure 4 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)活性層に対し基板と反対側のクラッド層上に該ク
ラッド層とは導電型の異なる異種層をストライプ状部分
を除いて形成し、且つこの上に上記クラッド層と同じ導
電型の被覆層を形成して電流狭窄効果及び作り付け導波
路効果を持たせたヘテロ接合型半導体レーザ装置におい
て、前記被覆層は少なくとも2層に形成され、前記活性
層に近い方の第1の被覆層は前記クラッド層よりも屈折
率が大きい層であつて、且つ、ストライプ状溝部側面を
除いて形成されたものであり、第1の被覆層より上記活
性層に遠い方の第2の被覆層は第1の被覆層より屈折率
が小さいものであることを特徴とする半導体レーザ装置
(1) On the cladding layer on the side opposite to the substrate with respect to the active layer, a layer of a different type having a conductivity type different from that of the cladding layer is formed except for the striped portion, and on top of this, a coating of the same conductivity type as the cladding layer is formed. In a heterojunction semiconductor laser device in which layers are formed to have a current confinement effect and a built-in waveguide effect, the coating layer is formed in at least two layers, and the first coating layer closer to the active layer is The second coating layer, which is a layer having a higher refractive index than the cladding layer and is formed excluding the side surfaces of the striped grooves, is further away from the active layer than the first coating layer. A semiconductor laser device having a refractive index smaller than that of a coating layer.
(2)前記クラッド層は、前記ストライプ状部分に対応
する溝がその途中まで形成されたものであることを特徴
とする特許請求の範囲第1項記載の半導体レーザ装置。
(2) The semiconductor laser device according to claim 1, wherein the cladding layer has grooves corresponding to the striped portions formed halfway therein.
JP59201502A 1984-09-28 1984-09-28 Semiconductor laser device Granted JPS6180881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201502A JPS6180881A (en) 1984-09-28 1984-09-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201502A JPS6180881A (en) 1984-09-28 1984-09-28 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS6180881A true JPS6180881A (en) 1986-04-24
JPH0568873B2 JPH0568873B2 (en) 1993-09-29

Family

ID=16442114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201502A Granted JPS6180881A (en) 1984-09-28 1984-09-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6180881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196688A (en) * 1989-12-26 1991-08-28 Matsushita Electric Ind Co Ltd Semiconductor laser and its manufacture
US5114877A (en) * 1991-01-08 1992-05-19 Xerox Corporation Method of fabricating quantum wire semiconductor laser via photo induced evaporation enhancement during in situ epitaxial growth
US5138625A (en) * 1991-01-08 1992-08-11 Xerox Corporation Quantum wire semiconductor laser

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110949U (en) * 2004-03-04 2005-07-07 萬國電脳股▲ふん▼有限公司 USB connector with card detector
JP2009059052A (en) * 2007-08-30 2009-03-19 Seiko Instruments Inc Portable electronic equipment
US20090176383A1 (en) * 2008-01-07 2009-07-09 Einam Yitzhak Amotz Apparatus and method for transferring power from a stationary unit to a mobile unit
JP2011113727A (en) * 2009-11-25 2011-06-09 Sharp Corp Dc power supply device, dc power supply method, dc power supply receptacle, dc power supply plug, and combination of dc power supply plug and dc power supply receptacle
KR101204510B1 (en) * 2012-07-09 2012-11-26 (주)에스피에스 Charging device for mobile phone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110949U (en) * 2004-03-04 2005-07-07 萬國電脳股▲ふん▼有限公司 USB connector with card detector
JP2009059052A (en) * 2007-08-30 2009-03-19 Seiko Instruments Inc Portable electronic equipment
US20090176383A1 (en) * 2008-01-07 2009-07-09 Einam Yitzhak Amotz Apparatus and method for transferring power from a stationary unit to a mobile unit
JP2011113727A (en) * 2009-11-25 2011-06-09 Sharp Corp Dc power supply device, dc power supply method, dc power supply receptacle, dc power supply plug, and combination of dc power supply plug and dc power supply receptacle
KR101204510B1 (en) * 2012-07-09 2012-11-26 (주)에스피에스 Charging device for mobile phone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196688A (en) * 1989-12-26 1991-08-28 Matsushita Electric Ind Co Ltd Semiconductor laser and its manufacture
JP2743540B2 (en) * 1989-12-26 1998-04-22 松下電器産業株式会社 Semiconductor laser and method of manufacturing the same
US5114877A (en) * 1991-01-08 1992-05-19 Xerox Corporation Method of fabricating quantum wire semiconductor laser via photo induced evaporation enhancement during in situ epitaxial growth
US5138625A (en) * 1991-01-08 1992-08-11 Xerox Corporation Quantum wire semiconductor laser

Also Published As

Publication number Publication date
JPH0568873B2 (en) 1993-09-29

Similar Documents

Publication Publication Date Title
US4635268A (en) Semiconductor laser device having a double heterojunction structure
JPH0118590B2 (en)
JPS6050983A (en) Manufacture of semiconductor laser element
JP2997573B2 (en) Semiconductor laser device
JPH067618B2 (en) Semiconductor laser device
US6639926B1 (en) Semiconductor light-emitting device
JP3892637B2 (en) Semiconductor optical device equipment
JPS6180881A (en) Semiconductor laser device
JPS603178A (en) Semiconductor laser device
JPS6349396B2 (en)
JP2000353849A (en) Optical semiconductor device and its manufacture
JPH07254750A (en) Semiconductor laser
JPH0644661B2 (en) Semiconductor laser device
JPS641952B2 (en)
JPH09266349A (en) Optical semiconductor device
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPH0574957B2 (en)
JP2973215B2 (en) Semiconductor laser device
JPS621290A (en) Hetero-junction type semiconductor laser
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JP3277711B2 (en) Semiconductor laser and manufacturing method thereof
JP2804533B2 (en) Manufacturing method of semiconductor laser
JP2908480B2 (en) Semiconductor laser device
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6347277B2 (en)