JPS6180765A - Control method for fuel cell power generation system - Google Patents
Control method for fuel cell power generation systemInfo
- Publication number
- JPS6180765A JPS6180765A JP59202797A JP20279784A JPS6180765A JP S6180765 A JPS6180765 A JP S6180765A JP 59202797 A JP59202797 A JP 59202797A JP 20279784 A JP20279784 A JP 20279784A JP S6180765 A JPS6180765 A JP S6180765A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- air
- fuel cell
- pressure
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分計〕
この発明は燃料電池発電システムの制御方法に関し、特
にターボ圧縮機を含む燃料電池発電システムの制御方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Summary of the Invention] The present invention relates to a control method for a fuel cell power generation system, and particularly to a control method for a fuel cell power generation system including a turbo compressor.
燃料電池発電システムは、従来の汽力発電に比べ高効率
が期待できること、環境保全性が良い等の利点があり、
実用化を目指し近年盛んに開発が進められている。燃料
電池発電システムは、空気極、燃料極及び電解質層から
成る燃料電池本体と。Fuel cell power generation systems have advantages over conventional steam power generation, such as higher efficiency and better environmental protection.
In recent years, development has been actively underway with the aim of putting it into practical use. A fuel cell power generation system consists of a fuel cell body consisting of an air electrode, a fuel electrode, and an electrolyte layer.
天然ガス等の炭化水素系燃料を改質して燃料電池本体に
燃料となる水素ガスを供給する改質器と。A reformer that reforms hydrocarbon fuel such as natural gas and supplies hydrogen gas as fuel to the fuel cell body.
燃料電池本体及び改質器に空気を供給するターボ圧縮機
とを備えている。燃料電池本体の性能は反応ガスの圧力
の増大によって向上する傾向を示し。It is equipped with a turbo compressor that supplies air to the fuel cell body and a reformer. The performance of the fuel cell itself shows a tendency to improve as the pressure of the reactant gas increases.
このため燃料、空気、各反応ガスの動作圧力は例えば4
〜6kg/cゴg程度に加圧維持される。このとき、空
気の圧縮には多大の動力を必要とするが。For this reason, the operating pressure of fuel, air, and each reaction gas is, for example, 4
Pressure is maintained at ~6 kg/cg. At this time, compressing the air requires a large amount of power.
この動力は改質器からの燃焼排ガス及び燃料電池本体の
空気極からの余剰空気を導入するターボ圧縮機のタービ
ンによりまかなわれる。即ち、このターボ圧縮機は、シ
ステムの排ガスエネルギーをタービンで回収し、同軸上
のコンプレッサで必要な圧縮空気を供給することによっ
てシステム内部で動力を回収をし、システム効率の向上
を図るものである。This power is provided by the turbine of the turbo compressor, which introduces the combustion exhaust gas from the reformer and surplus air from the air electrode of the fuel cell main body. In other words, this turbo compressor uses a turbine to recover system exhaust gas energy, and a coaxial compressor supplies the necessary compressed air, thereby recovering power within the system and improving system efficiency. .
さて、このような燃料電池発電シスチームにおいて(、
?、いわゆる発電システムとして幅の広い且つ迅速な負
荷応答制御が要求される。燃料電池本体及び改質器に供
給される空気の量は例えば25〜100%の範囲の変動
制御を要求される。一方、燃料電池本体へ供給する空気
の圧力は、燃料電池本体の特性維持の点から、及び燃料
側の圧力との差圧を抑え両極間のガスのリーク、即ち、
クロスオーバ現象を防ぐため、負荷変動時においても一
定値に保つ制御が要求される。即ち、ターボ圧縮機は基
本的には定態圧可変風量制御が要求される。Now, in such a fuel cell power generation system team (,
? As a so-called power generation system, wide and quick load response control is required. The amount of air supplied to the fuel cell main body and the reformer is required to be controlled in a range of, for example, 25 to 100%. On the other hand, the pressure of the air supplied to the fuel cell main body is determined from the viewpoint of maintaining the characteristics of the fuel cell main body and by suppressing the differential pressure with the fuel side pressure to prevent gas leakage between the two electrodes.
In order to prevent the crossover phenomenon, control is required to maintain a constant value even when the load fluctuates. That is, the turbo compressor basically requires constant pressure variable air volume control.
この具体的な従来の方法として2例えば、特開昭58−
12268号に開示されているものがあり、そのシステ
ムを第1図に示す。図において、(1)は空気極(1m
)、燃料極(lb)、電解質層(IC)から成る燃料電
池本体、(2)は天然ガス等の炭化水素系燃料を改質し
てリッチな水素ガスを燃料電池本体(1)に供給する改
質器であり、バーナ部(2a)と反応部(2b)により
成る。(3)は例えば改質器(2)の排ガスと燃料電池
本体(1)の空気極(1a)出口の余剰空気の両方によ
って駆動され、燃料電池本体(1)の空気極(1a)と
改質器(2)のバーナ部(2a)に必要な圧縮空気を供
給するタービン(3a)とこのタービン(3a)と同軸
上に配置され 、:たコンプレッサ(3b)とから
成るターボ圧縮機。Two specific conventional methods include, for example, JP-A-58-
There is a system disclosed in No. 12268, and the system is shown in FIG. In the figure, (1) is the air electrode (1 m
), a fuel cell main body consisting of a fuel electrode (lb), and an electrolyte layer (IC), (2) reforming hydrocarbon fuel such as natural gas and supplying rich hydrogen gas to the fuel cell main body (1) It is a reformer and consists of a burner section (2a) and a reaction section (2b). (3) is driven, for example, by both the exhaust gas from the reformer (2) and the excess air at the outlet of the air electrode (1a) of the fuel cell main body (1), and the air electrode (1a) of the fuel cell main body (1) is A turbo compressor consisting of a turbine (3a) that supplies the necessary compressed air to the burner section (2a) of the compressor (2), and a compressor (3b) disposed coaxially with the turbine (3a).
(4)はこのターボ圧縮i (3)のコンプレッサ(3
b)により圧縮された空気を燃料電池本体(1)の空気
i [1a)に供給する空気供給配管、(5)は燃料電
池本体(1)の空気極(1a)からの余剰空気をターボ
圧縮m(3)のタービン(3a)へ導く余剰空気配管。(4) is the compressor (3) of this turbo compression i (3)
b) Air supply piping that supplies compressed air to the air i [1a) of the fuel cell main body (1), (5) turbo-compresses surplus air from the air electrode (1a) of the fuel cell main body (1) Excess air piping leading to the turbine (3a) of m(3).
(6)は改質器(2)からの燃焼排ガスをタービン(3
a)へ導く排ガス配管、(7)は余剰空気配管(5)と
排ガス配管(6)を合流してタービン(3a)へそれら
余剰空気及び燃焼排ガスを導くシステム排ガス配管、(
8)は天然ガス等の炭化水素系燃料を改質器(2)に供
給する燃料供給配管、(9)は改質器(2)で改質され
た水素リッチガスを燃料電池本体(1)の燃料極(1b
)に供給する改質燃料供給配管。(6) converts the combustion exhaust gas from the reformer (2) into the turbine (3).
(7) is a system exhaust gas pipe that merges the surplus air pipe (5) and the exhaust gas pipe (6) and leads the surplus air and combustion exhaust gas to the turbine (3a);
8) is a fuel supply pipe that supplies hydrocarbon fuel such as natural gas to the reformer (2), and (9) is a fuel supply pipe that supplies hydrogen-rich gas reformed in the reformer (2) to the fuel cell main body (1). Fuel electrode (1b
) Reformed fuel supply piping.
(10)は燃料電池本体(1)の燃料極(1b)からの
余剰燃料を改質器(2)のバーナ部(2a)に供給する
余剰燃料供給配管、 (11)は空気供給配管(4)に
分岐して設置された大気開放配管、 (12)はこの大
気開放配管(11)に設置され、燃料電池本体(1)の
空気11(la)に供給される空気の圧力を調整する大
気開放弁、 (13)は空気供給配管(4)内の圧力を
検出する圧力検出器、 (14)はこの圧力検出器(1
3)からの信号に応答して大気開放弁(12)の開閉制
御を行う圧力コントローラであり、Lれら(12)〜(
14)によりコンプレッサ(3b)の吐出空気圧力の制
御が行われる。(15)は空気供給配管(4)に設置さ
れ。(10) is a surplus fuel supply pipe that supplies surplus fuel from the fuel electrode (1b) of the fuel cell main body (1) to the burner part (2a) of the reformer (2), (11) is an air supply pipe (4 ), and (12) is an atmospheric vent pipe installed in this atmospheric vent pipe (11), which adjusts the pressure of the air supplied to the air 11 (la) of the fuel cell main body (1). (13) is a pressure detector that detects the pressure inside the air supply pipe (4); (14) is this pressure detector (1);
It is a pressure controller that controls the opening and closing of the atmosphere release valve (12) in response to signals from L (12) to (3).
14) controls the discharge air pressure of the compressor (3b). (15) is installed in the air supply pipe (4).
燃料電池本体(1)の空気極(1a )に供給される空
気の量を調整する流量調節弁、 (16)は空気供給配
管(4)内の流量を検出する流量検出器、 (17)は
この流量検出器(16)からの信号に応答して流量調節
弁(15)の開閉制御を行う流量コントローラであり。(16) is a flow rate detector that detects the flow rate in the air supply pipe (4); (17) is a flow rate control valve that adjusts the amount of air supplied to the air electrode (1a) of the fuel cell main body (1); This is a flow rate controller that controls the opening and closing of the flow rate regulating valve (15) in response to the signal from the flow rate detector (16).
これら(15)〜(17)により燃料電池本体(1)の
空気極(1a)に供給される空気の流量制御が行われろ
。These (15) to (17) control the flow rate of air supplied to the air electrode (1a) of the fuel cell main body (1).
(18)は余剰空気配管(5)に設置された圧力調節弁
。(18) is a pressure control valve installed in the surplus air pipe (5).
(19)はコンプレッサ(3b)の吐出空気圧力と反応
空気圧力との差圧を検出する差圧検出器、 (20)は
この差圧検出器(19)からの信号に応答して圧力調節
弁(18)の開閉制御を行う圧力コントローラであり、
これら(18)〜(20)により燃料電池本体(1)の
反応空気圧力の制御が行われる。(21)は余剰燃料供
給配管(10)に設置された圧力調節弁、 (22)は
反応空気圧力と反応燃料ガス圧力との差圧を検出する差
圧検出器、 (23)はこの差圧検出器(22)からの
信号に応答して圧力調節弁(21)の開閉制御を行う圧
力コントローラであり、これら(21)〜(23)によ
り燃料電池本体(1)の反応燃料ガス圧力の制御が行わ
れろ。(24)は燃料供給配管(8)に設置された流量
調節弁、 (25)は燃料供給配管(8)内の流量を検
出する流量検出器、 (26)はこの流量検出器(25
)からの信号に応答して流量調節弁(24)の開閉制御
を行う流量コントローラであり、これら(24)〜(2
6)により改質器(2)に供給される燃料の流量制御が
行われる。尚2図示しないが、空気供給配管(4)より
分岐して改質器(2)のバーナ部(2a)へ燃焼用空気
として供給されろバーナ空気供給配管が設けられている
。(19) is a differential pressure detector that detects the differential pressure between the discharge air pressure of the compressor (3b) and the reaction air pressure, and (20) is a pressure regulating valve that responds to the signal from this differential pressure detector (19). (18) A pressure controller that performs opening/closing control,
These (18) to (20) control the reaction air pressure in the fuel cell main body (1). (21) is a pressure control valve installed in the surplus fuel supply pipe (10), (22) is a differential pressure detector that detects the differential pressure between the reaction air pressure and the reaction fuel gas pressure, and (23) is this differential pressure. This is a pressure controller that controls the opening and closing of the pressure regulating valve (21) in response to a signal from the detector (22), and these (21) to (23) control the reaction fuel gas pressure in the fuel cell main body (1). be done. (24) is a flow rate control valve installed in the fuel supply pipe (8), (25) is a flow rate detector that detects the flow rate in the fuel supply pipe (8), and (26) is this flow rate detector (25).
) is a flow controller that controls the opening and closing of the flow control valve (24) in response to signals from (24) to (2).
6) controls the flow rate of fuel supplied to the reformer (2). Although not shown, a burner air supply pipe is provided which branches from the air supply pipe (4) and is supplied as combustion air to the burner section (2a) of the reformer (2).
次いて、上記のように構成された従来のシステムにおい
て、負荷変動時の動作について説明する。Next, the operation of the conventional system configured as described above when the load fluctuates will be explained.
燃料電池本体(1)の負荷を減少させる過程において、
コンプレッサ(3b)からの供給空気流量の減少に伴い
コンプレッサ(3b)の吐出空気圧力も減少するが2次
の方法により反応空気圧力又は反応空気圧力と反応燃料
ガス圧力との差圧の維持を保っている。先ず、定格負荷
より成る負荷領域までの範囲は、大気開放弁(12)の
絞り調節によってコンプレッサ(3b)の吐出空気圧力
を一定に保ち反応空気圧力を維持する。大気開放弁(1
2)の調節代がなくなる負荷領域以下の範囲では、コン
プレッサ(3b)の吐出空気圧力の低下に反応空気圧力
を連動させて、即ち、圧力調節弁(18)によりコンプ
レッサ(3b)の吐出空気圧力に対する反応空気圧力の
差圧を維持させて、又圧力調節弁(21)により反応燃
料ガス圧力を反応空気圧力との差圧が一定になるように
制御il!整する。これにより燃料電池本体(1)の空
気極(1a)に安定して空気を供給することができ、さ
らに反応空気圧力と反応燃料ガス圧力との差圧を維持し
クロスオーバを防止することができろ。即ち、このシス
テムは基本的には大気開放弁(12)の調節によって定
態圧を維持するが、大気開放弁(12)の調節代がな(
なればコンプレッサ(3bl !の吐出空気圧力
が降下するのに連動して燃料電池本体(1)の反応ガス
の圧力を下げようとするものである。In the process of reducing the load on the fuel cell main body (1),
As the supply air flow rate from the compressor (3b) decreases, the discharge air pressure of the compressor (3b) also decreases, but the reaction air pressure or the differential pressure between the reaction air pressure and the reaction fuel gas pressure is maintained by the following method. There is. First, in the range up to the load range consisting of the rated load, the discharge air pressure of the compressor (3b) is kept constant by adjusting the throttle of the atmosphere release valve (12) to maintain the reaction air pressure. Atmospheric release valve (1
In the range below the load range where the adjustment allowance of 2) disappears, the reaction air pressure is linked to the decrease in the discharge air pressure of the compressor (3b), that is, the discharge air pressure of the compressor (3b) is adjusted by the pressure control valve (18). The pressure difference between the reaction air pressure and the reaction air pressure is maintained, and the pressure regulating valve (21) controls the reaction fuel gas pressure so that the pressure difference between the reaction air pressure and the reaction air pressure is constant. Arrange. As a result, air can be stably supplied to the air electrode (1a) of the fuel cell main body (1), and the differential pressure between the reaction air pressure and the reaction fuel gas pressure can be maintained to prevent crossover. reactor. That is, this system basically maintains a steady pressure by adjusting the atmosphere release valve (12), but there is no adjustment allowance for the atmosphere release valve (12).
In this case, the pressure of the reactant gas in the fuel cell main body (1) is lowered in conjunction with the lowering of the discharge air pressure of the compressor (3bl!).
しかるに、このような従来のシステムのものは次の理由
により必ずしも燃料電池の特性が維持されないという欠
点を有する。即ち、燃料電池本体(1)は2通常燃料電
池本体(1)に取り付けられる各反応ガスのマニホール
ドのシール耐圧の問題から窒素ガスで加圧された筐体の
中に設置され、窒素ガス圧力が反応ガス圧力にほぼ等し
くなるように維持されるが、筐体内の窒素ガスのバッフ
ァ容積が大きいため2反応ガス圧力の変化速度に追従さ
せて筐体内の窒素ガス圧力を変化させるのは困難である
。つまり、負荷変動時に、燃料電池本体(1)の反応ガ
ス圧力を変化させれば筐体内の窒素ガス圧力との間に大
きな圧力差を生じ、マニホールドのシールが破れて反応
ガス中に窒素ガスが漏れ込んt: リ、逆に反応ガスが
筐体中に漏れ込んで燃料電池の特性を劣化させる。さら
に、定格負荷付近で大気開放弁(12)の調節によって
走風圧制御を行っており、コンプレッサ必要動力に対し
タービン動力が余る場合を想定しているが、実際のシス
テムにおいてはタービン動力はコンプレッサ必要動力に
対し同等かむしろ不足するので、大気開放弁(12)の
調節代を利用した制御は困難である。However, such conventional systems have the disadvantage that the characteristics of the fuel cell are not necessarily maintained for the following reason. That is, the fuel cell main body (1) is normally installed in a casing pressurized with nitrogen gas due to sealing pressure problems of the manifolds for each reaction gas attached to the fuel cell main body (1), and the nitrogen gas pressure is The pressure is maintained almost equal to the reaction gas pressure, but because the nitrogen gas buffer volume inside the housing is large, it is difficult to change the nitrogen gas pressure inside the housing to follow the rate of change of the reaction gas pressure. . In other words, if the reactant gas pressure in the fuel cell main body (1) is changed during load fluctuations, a large pressure difference will be created between the reactant gas pressure in the fuel cell body (1) and the nitrogen gas pressure in the housing, and the manifold seal will be broken and nitrogen gas will be released into the reactant gas. Leakage: On the contrary, the reaction gas leaks into the casing and deteriorates the characteristics of the fuel cell. Furthermore, air travel pressure is controlled by adjusting the atmosphere release valve (12) near the rated load, and it is assumed that the turbine power is surplus to the compressor's required power, but in an actual system, the turbine power is not required for the compressor. Since the power is equal to or even insufficient for the power, control using the adjustment allowance of the atmosphere release valve (12) is difficult.
タービン動力の不足は特に部分負荷において顕著であり
、このようなタービン動力の不足を補うためにシステム
排ガス配管の途中に助燃炉を設置することが考えられ1
例えば特公昭58−56231号に開示されたものがあ
る。又例えば特開昭59−18577号に開示されたタ
ーボ圧縮機のコンプレッサの吐出空気をバイパス弁(大
気開放弁(12)に相当する)によりバイパスして系外
の大気中に放出するすることによりターボ圧縮機のコン
プレッサの吐出空気圧力を制御するものがあるが、この
場合においても同様にバイパス弁の調節代を利用した刷
部は困難である。即ち2この場合、一般に助燃炉の燃焼
応答性が遅いため、負荷変動時において、システムへの
必要空気の供給が追い付かずバイパス弁が全閉となり、
一時的にターボ圧縮機のコンプレッサの吐出空気圧力が
低下するという欠点があった。The lack of turbine power is particularly noticeable at partial loads, and in order to compensate for this lack of turbine power, it is considered to install an auxiliary combustion furnace in the middle of the system exhaust gas piping1.
For example, there is one disclosed in Japanese Patent Publication No. 58-56231. Also, for example, by bypassing the discharge air of the compressor of the turbo compressor disclosed in Japanese Patent Application Laid-open No. 18577/1982 using a bypass valve (corresponding to the atmosphere release valve (12)) and releasing it into the atmosphere outside the system. There is a method for controlling the discharge air pressure of the compressor of a turbo compressor, but in this case as well, it is difficult to create a printing section that utilizes the adjustment allowance of the bypass valve. Namely, 2 In this case, since the combustion response of the auxiliary combustion furnace is generally slow, the supply of necessary air to the system cannot keep up with the load fluctuations, and the bypass valve is fully closed.
There was a drawback that the discharge air pressure of the turbo compressor's compressor temporarily decreased.
この発明は上記のようなものの欠点に鑑みてなされたも
のであり、システムの定常運転時は大気開放弁を全閉又
は微開にした状態で助燃炉の燃焼量制御をターボ圧縮機
のコンプレッサの吐出空気圧力一定のフィードバック制
御で行い、システムの負荷変動時は助燃炉の燃焼量制御
をプログラムに基づくフィードフォワード制御で行う一
方大気開放弁によりターボ圧wi機のコンプレッサの吐
出空気圧力一定のフィードバック制御を行うことによφ
、ターボ圧縮機のコンプレッサの吐出空気圧力を常に一
定に保つことができる燃料電池発電システムの制御方法
を提供することを目的としている。This invention was made in view of the drawbacks of the above-mentioned systems, and during steady operation of the system, the combustion amount of the auxiliary furnace is controlled by the compressor of the turbo compressor with the atmosphere release valve fully closed or slightly opened. Feedback control is used to keep the discharge air pressure constant, and when the system load fluctuates, the combustion amount of the auxiliary combustion furnace is controlled by feedforward control based on the program, while feedback control is used to keep the discharge air pressure of the compressor of the turbo pressure wi machine constant using the atmosphere release valve. By doing φ
It is an object of the present invention to provide a control method for a fuel cell power generation system that can always keep the discharge air pressure of a compressor of a turbo compressor constant.
以下、この発明の一実施例を第2図に基づいて説明する
。図において、 (3) 、 (4) 、 +7)
、 (1t)〜(15L (17)は上述した従来のシ
ステムの構成と同様てある。(27)は第1図に示す燃
料電池本体(1)。Hereinafter, one embodiment of the present invention will be described based on FIG. 2. In the figure, (3), (4), +7)
, (1t) to (15L) (17) are the same as the configuration of the conventional system described above. (27) is the fuel cell main body (1) shown in FIG.
改質器(2)及びその他関連機器をまとめてブロンつて
示したものである。(28)はターボ圧縮機(3)のタ
ービン動力の不足を補うためにシステム排ガス配管(7
)の途上に設置された助燃炉、 (29)はこの助燃炉
(28)に例えば燃料供給配管(8)から燃料を導いて
供給する燃料配管、 (301は乙の燃料配管(29
)に設置された流量制御弁、 (31)は燃料配管(
29)内を流れろ燃料流量を検出し流量制御弁(30)
を調節する流量コントローラ、 (32)は空気供給配
管(4)から分岐して助燃炉(28)に接続された空気
配管、 (33)はこの空気配管(32)に設置された
流量制御弁、 (34)は空気配管(32)内を流れる
空気流量を検出して流量制御弁(33)を調節する流量
コントローラ、 (35)は圧力検出器(13)によっ
て検出されたコンプレッサ(3b)の吐出空気圧力に応
じて流量コントローラ(31)及び流量コントローラ(
34)ニ対する制御信号を与える圧力コントローラ、
(36)は圧力コントローラ(14)から大気開放弁
(12)に与丸られる操作信号をターボ圧縮機(3)の
定常運転時、過渡運転時に応じて調整する演算器である
。 1次いで動作について説明する。システムの定
常運転時、即ち、ターボ圧1′1機(3)の定常運転時
には、演算器(36)の働きによって大気開放弁(12
)は全閉あるいは成る一定の微少な開度に保持され。The reformer (2) and other related equipment are shown in one block. (28) is the system exhaust gas pipe (7) to compensate for the lack of turbine power of the turbo compressor (3).
), (29) is a fuel pipe that leads and supplies fuel from, for example, the fuel supply pipe (8) to this auxiliary combustion furnace (28), (301 is the fuel pipe of B (29)
), the flow control valve (31) is installed in the fuel pipe (
29) Detects the flow rate of fuel flowing through the flow rate control valve (30)
(32) is an air pipe branched from the air supply pipe (4) and connected to the auxiliary combustion furnace (28); (33) is a flow control valve installed in this air pipe (32); (34) is a flow controller that detects the flow rate of air flowing in the air pipe (32) and adjusts the flow rate control valve (33); (35) is the discharge of the compressor (3b) detected by the pressure detector (13); The flow controller (31) and the flow controller (
34) a pressure controller that provides a control signal for;
(36) is a computing unit that adjusts the operation signal given from the pressure controller (14) to the atmosphere release valve (12) depending on whether the turbo compressor (3) is in steady operation or transient operation. First, the operation will be explained. During steady operation of the system, that is, during steady operation of the turbo pressure 1'1 machine (3), the operation of the computing unit (36)
) is either fully closed or held at a certain minute opening.
圧力コントローラ(14)は実際上機能しない。大気開
放弁(12)を全開あるいは微少な一定開度に保持する
のは定常運転時のエネルギー損失を最少とするためであ
る。このとき、システムは定常運転であるから本来シス
テム内の全てのプロセス量が一定値に維持されろ筈であ
るが、運転中の外気温。The pressure controller (14) is practically non-functional. The reason why the atmosphere release valve (12) is kept fully open or at a slightly constant opening is to minimize energy loss during steady operation. At this time, since the system is in steady operation, all process quantities in the system should be maintained at constant values, but the outside temperature during operation.
湿度の変化等によるコンプレッサ(3b)の吸い込み条
件の変化、システム放熱量の変化等により。Due to changes in the suction conditions of the compressor (3b) due to changes in humidity, changes in system heat radiation, etc.
実際には温度、圧力等のプロセス量が徐々に変化する。In reality, process variables such as temperature and pressure change gradually.
このような変化に対してもコンプレッサ(3b)の吐出
空気圧力を常に一定に保つことが重要である。このとき
、コンプレッサ(3b)の吐出空気圧力の制御は圧力コ
ントローラ(35)によって圧力検出器(13)により
検出される圧力が目標の一定値になるよう助燃炉(28
)の燃焼量を流量コントローラ(31’)、 (34
)を通して制御することにより行う。即ち、システム定
常皿転時、助燃炉(28)の燃焼量はコンプレッサ(3
b)の吐出空気圧力一定のフィードバック制御を行う。Even in response to such changes, it is important to always keep the discharge air pressure of the compressor (3b) constant. At this time, the discharge air pressure of the compressor (3b) is controlled by the pressure controller (35) so that the pressure detected by the pressure detector (13) becomes a constant target value.
) is controlled by the flow rate controller (31'), (34
). In other words, during steady disc rotation of the system, the combustion amount of the auxiliary combustion furnace (28) is equal to that of the compressor (3).
Feedback control of b) to keep the discharge air pressure constant is performed.
一方、システムの負荷変動時においては次のような動作
が行われろ。On the other hand, when the system load fluctuates, the following operations should be performed.
先ず、負荷指令の直前に演算器(36)内の制御回路を
操作することにより大気開放弁(12)を圧力コントロ
ーラ(14)の制御支配下にしておく。次に、負荷指令
として助燃炉(28)への燃料流量及び空気流量の設定
値を直接流量コントローラ(31) 、 (34)に
対して与えてタービン動力を増加させる。乙の結果、コ
ンプレッサ(3b)の吐出空気圧力が上昇しようとする
が、コンプレッサ(3b)の吐出空気圧力は圧力コント
ローラ(14)の働きによって大気開放弁(12)の調
節、即ち、大気開放配管(11)を経由する放出空気流
量の調整により一定制御が行われる。このようにして負
荷指令時にはタービン動力を助燃炉(28)の燃焼量の
フィードフォワード操作により増加させ、これによりコ
ンプレッサ(3b)の吐出空気流量の増量分の一部をコ
ンプレッサ(3b)の吐出空気圧力を一定に保つtこめ
にコンブレジす(3b)出口の大気開放配管(11)か
ら大気開放弁(12)を介して大気へ放出している状態
でターボ圧縮機(3)のパワーアップが計られてシステ
ム要求空気量が満足される。大気開放弁(12)からの
放出量。First, the atmospheric release valve (12) is placed under the control of the pressure controller (14) by operating the control circuit in the computing unit (36) immediately before a load command is issued. Next, set values for the fuel flow rate and air flow rate to the auxiliary combustion furnace (28) are directly given to the flow rate controllers (31) and (34) as load commands to increase the turbine power. As a result of (B), the discharge air pressure of the compressor (3b) tends to rise, but the pressure controller (14) adjusts the atmosphere release valve (12), that is, the atmosphere release piping. Constant control is achieved by adjusting the discharge air flow rate via (11). In this way, at the time of load command, the turbine power is increased by the feedforward operation of the combustion amount of the auxiliary combustion furnace (28), and as a result, a part of the increase in the discharge air flow rate of the compressor (3b) is transferred to the discharge air of the compressor (3b). The power-up of the turbo compressor (3) is planned while the pressure is kept constant and the air is discharged from the atmosphere release pipe (11) at the outlet of the compressor (3b) to the atmosphere via the atmosphere release valve (12). system air requirement is satisfied. Amount released from the atmosphere release valve (12).
即ち、大気開放弁(12)の開度がほぼ一定になった状
態でシステムの要求量に応してシステムへの空気供給配
管(4)に設置した流量調節弁(15)が開かれてター
ボ圧縮機(3)のコンプレッサ(3b)からの空気がシ
ステムに対して供給される。このとき。That is, while the opening degree of the atmosphere release valve (12) is kept almost constant, the flow rate control valve (15) installed in the air supply piping (4) to the system is opened according to the amount required by the system, and the turbo is released. Air from the compressor (3b) of the compressor (3) is supplied to the system. At this time.
圧力コントローラ(14)の制御動作により大気開放弁
(12)の調整2即ち、大気への開放風量の絞り込みが
行われ、コンプレッサ(3b)の吐出空気圧力が常に一
定に維持される。負荷指令に対する状態変化が終了して
システムが整定すれば2次に、コンプレッサ(3b)の
吐出空気圧力の制御を圧力コントローラ(35)に移す
とともに演算器(36)によって大気開放弁(12)の
開度を現在の開度がら徐々に絞り込み最終的に全閉させ
ろがあるいは微少な開度に保持させる。この動作はシス
テムのエネルギー損失を最少にする目的であり、大気開
放弁(12)の絞り込みはターボ圧縮機(3)及びシス
テムの制御バランスを崩さないよう微調整によって行わ
れろ。The control operation of the pressure controller (14) performs adjustment 2 of the atmosphere release valve (12), that is, narrows down the amount of air released to the atmosphere, and the discharge air pressure of the compressor (3b) is always maintained constant. When the state change in response to the load command is completed and the system is stabilized, control of the discharge air pressure of the compressor (3b) is transferred to the pressure controller (35), and the arithmetic unit (36) controls the air release valve (12). The opening degree is gradually narrowed down from the current opening degree until it is finally fully closed or kept at a very small opening degree. The purpose of this operation is to minimize the energy loss of the system, and the restriction of the atmosphere release valve (12) should be performed by fine adjustment so as not to upset the control balance of the turbo compressor (3) and the system.
この間、コンプレッサ(3b)の吐出空気圧力は流量コ
ントローラ(31’l、 (34)を通じtこ助燃炉
(28)の燃焼量の調整によって一定制御が行われる。During this time, the discharge air pressure of the compressor (3b) is constantly controlled by adjusting the combustion amount of the auxiliary combustion furnace (28) through the flow rate controller (31'l, (34)).
大気開放弁(]2)を絞り込んだ後は負荷定常時の状態
に戻る。After the atmosphere release valve (2) is closed, the state returns to the state when the load is steady.
第3図はシステムの負荷変動時におけるプロセス量の変
化を表したものであり2時刻T1に負荷指令が与えられ
ると、助燃炉(28)の燃料流量F1が負荷指令に応じ
たフィードフォワード制御操作によって増加することに
より、システム排ガスに助燃炉(28)からの燃焼排ガ
スが加わってタービン動力が増大し、ターボ圧縮機(3
)の回転数が増加する。このとき、システムへの空気流
量F4はまだ負荷指令前の値を維持継続させているため
コンプレッサ(3b)の吐出空気圧力P1が上昇しよう
とする。これに対して圧力コントローラ(14)による
圧力一定制御が働き、過剰空気量を大気開放空気流量F
3として大気へ放出させることによって 1コンプ
レツサ(3b)の吐出空気圧力P1が一定に維持される
。助燃炉(28)に対するフィードフォワード操作が安
定した時点でシステムへの空気流量F4を負荷指令に基
づく目標値まで増加させると。Figure 3 shows the change in the process amount when the system load fluctuates.When a load command is given at time T1, the fuel flow rate F1 of the auxiliary combustion furnace (28) is controlled by feedforward control according to the load command. As a result, the combustion exhaust gas from the auxiliary combustion furnace (28) is added to the system exhaust gas, the turbine power increases, and the turbo compressor (3
) rotation speed increases. At this time, since the air flow rate F4 to the system is still maintained at the value before the load command, the discharge air pressure P1 of the compressor (3b) is about to increase. In response to this, constant pressure control by the pressure controller (14) operates, and the excess air amount is released to the atmosphere.
By discharging the air to the atmosphere as 1 compressor (3b), the discharge air pressure P1 of compressor 1 (3b) is maintained constant. When the feedforward operation to the auxiliary combustion furnace (28) becomes stable, the air flow rate F4 to the system is increased to the target value based on the load command.
この過程で、コンプレッサ(3b)の吐出空気圧力P1
の一定制御動作により大気開放弁(12)が絞り込まれ
大気開放空気流量F3が減少する。システムへの空気流
量F4が目標値に達した時点(時刻T2)が負荷変動に
対する第1次整定時点であり、この時点てコンプレッサ
(3b)の吐出空気圧力Plの制御が大気開放弁(12
)からの放出風量調節による制御から助燃炉(28)の
燃焼量調節による制御に切り替丸られる。このあと2演
算器(36)からの指令で大気開放弁(12)の漸開動
作が行われ、大気開放弁(12)が完全に絞り込まれた
時点(時刻T31が第2次(最終)整定時点となる。時
刻T2から時刻T3に至る過程ではコンプレッサ(3b
)の吐出空気圧力P1の一定制御動作を介して助燃炉(
28)への燃料?liE 旦F 1の絞り込む方向での
制御が行われる。このようにシステムの負荷変動時に積
極的にターボ圧縮機(3)のタービン動力を助燃炉(2
8)の燃焼量によって操作し、この操作によるコンプレ
ッサ(3b)の吐出空気圧力の変動を大気開放弁(12
)の制御によって抑えコンプレッサ(3b)の吐出空気
圧力を一定制御するようにしているので、負荷速応性が
よく且つ圧力の変動のない安定した空気供給をシステム
に対して行うことができる。又、定常時には大気開放弁
(12)を全閉あるいは微開とするようにしたので、タ
ーボ圧縮機(3)のコンプレッサ動力を最少限にして維
持でき、それによってシステム効率の向上を図ることが
できる。In this process, the discharge air pressure P1 of the compressor (3b)
Due to the constant control operation, the atmosphere release valve (12) is throttled down and the atmosphere release air flow rate F3 is reduced. The time when the air flow rate F4 to the system reaches the target value (time T2) is the first settling time for load fluctuations, and at this time, the control of the discharge air pressure Pl of the compressor (3b) is controlled by the atmosphere release valve (12).
) to control by adjusting the combustion amount of the auxiliary combustion furnace (28). After this, the atmosphere release valve (12) is gradually opened in response to a command from the second computing unit (36), and the time when the atmosphere release valve (12) is completely throttled down (time T31 is the second (final) settling time). In the process from time T2 to time T3, the compressor (3b
) through a constant control operation of the discharge air pressure P1 of the auxiliary combustion furnace (
28) Fuel for? Control is performed in the direction of narrowing down F1. In this way, when the system load fluctuates, the turbine power of the turbo compressor (3) is actively transferred to the auxiliary furnace (2).
8), and changes in the discharge air pressure of the compressor (3b) due to this operation are controlled by the atmospheric release valve (12).
), the discharge air pressure of the suppressor compressor (3b) is controlled at a constant level, so that a stable air supply with good load response and no pressure fluctuation can be provided to the system. In addition, since the atmosphere release valve (12) is fully closed or slightly opened during steady state, the compressor power of the turbo compressor (3) can be maintained at a minimum, thereby improving system efficiency. can.
この発明は以上説明した通り、システムの定常運転時は
大気開放弁を全閉あるいは微開にした状態で助燃炉の燃
焼量制御をターボ圧縮機のコンブレジすの吐出空気圧力
一定のフィードバック制御で行い、システムの負荷変動
時は助燃炉の燃焼量制御をプログラムに基づくフィード
フォワード制御で行う一方大気開放弁によりターボ圧縮
機のコンブレジすの吐出空気圧力一定のフィードバック
制御を行うようにしたことにより、ターボ圧縮機のコン
プレッサの吐出空気圧力を簡易に常に一定に保つことが
できる燃料電池発電システムの制御方法を得ることがで
きる。 ゛As explained above, in this invention, during steady operation of the system, the combustion amount in the auxiliary combustion furnace is controlled by feedback control to keep the discharge air pressure of the turbo compressor constant with the atmosphere release valve fully closed or slightly opened. When the system load fluctuates, the combustion amount of the auxiliary furnace is controlled by feedforward control based on the program, while the atmosphere release valve performs feedback control to keep the discharge air pressure of the turbo compressor's combination constant. It is possible to obtain a control method for a fuel cell power generation system that can easily keep the discharge air pressure of a compressor constant at all times.゛
第1図は従来の燃料電池発電システムの制御方法を示す
系統図、第2図はこの発明の一実施例による燃料電池発
電システムの制御方法を示す系統図、第3図はこの発明
に係る負荷変動時におけるプロセス量の変化を表す特性
図である。
図において、(1)は燃料電池本体、(2)は改質器。
(3)はターボ圧縮機、 (3mlはタービン、
(3b)はコンプレッサ、(4)は空気供給配管、(7
)はシステム排ガス配管、 (11)は大気開放配管、
(12)は大気開放弁、 (14)は圧力コントロ
ーラ、 (15)は流量調節弁。
(17)は流量コントローラ、 (27)は負荷、
(28)は助燃炉、 (30)は流量制御弁、 (3
1)は流量コントローラ、(33)は流量制御弁、 (
34)は流量コントローラ。
(35)は圧力コントローラ、 (36)は演算器であ
る。
尚2図中同一符号は同−又は相当部分を示す。FIG. 1 is a system diagram showing a control method for a conventional fuel cell power generation system, FIG. 2 is a system diagram showing a control method for a fuel cell power generation system according to an embodiment of the present invention, and FIG. 3 is a system diagram showing a control method for a fuel cell power generation system according to an embodiment of the present invention. FIG. 2 is a characteristic diagram showing changes in process amount during fluctuations. In the figure, (1) is the fuel cell main body, and (2) is the reformer. (3) is a turbo compressor, (3ml is a turbine,
(3b) is a compressor, (4) is an air supply pipe, (7
) is the system exhaust gas piping, (11) is the atmospheric release piping,
(12) is an atmosphere release valve, (14) is a pressure controller, and (15) is a flow rate control valve. (17) is the flow controller, (27) is the load,
(28) is an auxiliary combustion furnace, (30) is a flow control valve, (3
1) is a flow controller, (33) is a flow control valve, (
34) is a flow rate controller. (35) is a pressure controller, and (36) is a computing unit. Note that the same reference numerals in the two figures indicate the same or equivalent parts.
Claims (1)
給する改質器と、この改質器からの燃焼排ガス、又は上
記燃料電池本体の空気極からの余剰空気及び上記改質器
からの燃焼排ガスの両方によって駆動され、上記燃料電
池本体及び改質器に必要な圧縮空気を供給するタービン
とコンプレッサから成るターボ圧縮機と、このターボ圧
縮機のタービンへ至るシステム排ガス配管に設置された
上記タービンの不足動力を補う助燃炉と、上記ターボ圧
縮機のコンプレッサにより圧縮された空気を上記燃料電
池本体に供給する空気供給配管に分岐して設置された大
気開放配管と、この大気開放配管に設置された大気開放
弁を備えた燃料電池発電システムにおいて、システムの
定常運転時は上記大気開放弁を全閉又は微開にした状態
で上記助燃炉の燃焼量制御を上記ターボ圧縮機のコンプ
レッサの吐出空気圧力一定のフィードバック制御で行い
、システムの負荷変動時は上記助燃炉の燃焼量制御をプ
ログラムに基づくフィードフォワード制御で行う一方上
記大気開放弁により上記ターボ圧縮機のコンプレッサの
吐出空気圧力一定のフィードバック制御を行うことを特
徴とする燃料電池発電システムの制御方法。A fuel cell main body, a reformer that supplies reformed fuel to the fuel cell main body, and a combustion exhaust gas from the reformer, or surplus air from the air electrode of the fuel cell main body, and a reformer that supplies reformed fuel to the fuel cell main body. A turbo compressor consisting of a turbine and a compressor that is driven by both combustion exhaust gas and supplies the compressed air necessary for the fuel cell main body and the reformer, and the system installed in the exhaust gas piping leading to the turbine of this turbo compressor. An auxiliary combustion furnace that makes up for the insufficient power of the turbine, an air release pipe that is branched from the air supply pipe that supplies the air compressed by the compressor of the turbo compressor to the fuel cell main body, and an air release pipe that is installed on this air release pipe. In a fuel cell power generation system equipped with an atmosphere release valve, during steady operation of the system, the combustion amount of the auxiliary combustion furnace is controlled with the atmosphere release valve fully closed or slightly opened. Feedback control is used to keep the air pressure constant, and when the system load fluctuates, the combustion amount of the auxiliary combustion furnace is controlled by feedforward control based on a program, while the air release valve provides feedback to keep the discharge air pressure of the turbo compressor's compressor constant. A control method for a fuel cell power generation system, characterized by performing control.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59202797A JPS6180765A (en) | 1984-09-26 | 1984-09-26 | Control method for fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59202797A JPS6180765A (en) | 1984-09-26 | 1984-09-26 | Control method for fuel cell power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6180765A true JPS6180765A (en) | 1986-04-24 |
JPH0317354B2 JPH0317354B2 (en) | 1991-03-07 |
Family
ID=16463347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59202797A Granted JPS6180765A (en) | 1984-09-26 | 1984-09-26 | Control method for fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6180765A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4838020A (en) * | 1985-10-24 | 1989-06-13 | Mitsubishi Denki Kabushiki Kaisha | Turbocompressor system and method for controlling the same |
US9997874B2 (en) | 2013-10-23 | 2018-06-12 | Conti Temic Microelectronic Gmbh | Electrical connection |
-
1984
- 1984-09-26 JP JP59202797A patent/JPS6180765A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4838020A (en) * | 1985-10-24 | 1989-06-13 | Mitsubishi Denki Kabushiki Kaisha | Turbocompressor system and method for controlling the same |
US9997874B2 (en) | 2013-10-23 | 2018-06-12 | Conti Temic Microelectronic Gmbh | Electrical connection |
Also Published As
Publication number | Publication date |
---|---|
JPH0317354B2 (en) | 1991-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4838020A (en) | Turbocompressor system and method for controlling the same | |
JP4338914B2 (en) | Fuel circulation fuel cell system | |
JPH0129029B2 (en) | ||
JPS6180765A (en) | Control method for fuel cell power generation system | |
JPS6229869B2 (en) | ||
JPS6180764A (en) | Control method for fuel cell power generation system | |
JPH0652665B2 (en) | Fuel cell operation method | |
JPH0316750B2 (en) | ||
JP2922209B2 (en) | Fuel cell power generation system | |
JPH0317352B2 (en) | ||
JPH0317353B2 (en) | ||
JPS6332868A (en) | Fuel cell power generating system | |
JPS6039771A (en) | System for controlling interelectrode pressure of fuel cell | |
JPS6298571A (en) | Controlling method for fuel cell power generating system | |
JPS60160574A (en) | Turbo-compressor system for fuel cell power generation | |
JPS6231954A (en) | Fuel cell differential pressure control device | |
US12015180B2 (en) | Fuel cell valve configuration | |
JPS61267273A (en) | Control method for power generation plant of fuel cell and its apparatus | |
JPH09237634A (en) | Fuel cell generator | |
JPH0579813B2 (en) | ||
JPH0348625B2 (en) | ||
JPH0812782B2 (en) | Fuel cell generator | |
JPS6298572A (en) | Controlling method for turbocompressor system | |
JPH11317234A (en) | Fuel cell power generation system | |
JPH036623B2 (en) |