JPS6179443A - Automatic blood pressure measuring method and apparatus - Google Patents
Automatic blood pressure measuring method and apparatusInfo
- Publication number
- JPS6179443A JPS6179443A JP59200505A JP20050584A JPS6179443A JP S6179443 A JPS6179443 A JP S6179443A JP 59200505 A JP59200505 A JP 59200505A JP 20050584 A JP20050584 A JP 20050584A JP S6179443 A JPS6179443 A JP S6179443A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- blood pressure
- cuff
- sound
- sound signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は非観血式の自動血圧測定方法及びその装置に関
し、特に被験者の最高血圧を計測判定した後最低血圧付
近までの計測工程を中抜きする際に、被験者の血圧変動
を考慮し、再試行により最低血圧を確実に測定可能とし
た自動血圧測定方法及び装置に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a non-invasive automatic blood pressure measurement method and device, and in particular, the measurement process from measuring and determining the systolic blood pressure of a subject to the vicinity of the diastolic blood pressure is omitted. The present invention relates to an automatic blood pressure measuring method and device that takes into account blood pressure fluctuations of a subject and makes it possible to reliably measure the diastolic blood pressure by retrying the test.
[従来技術及びその問題点]
従来の非観血式自動血圧計にみられる計測工程は、始め
に設定値(150〜2001腸Hg)まで−律にカフ圧
を上昇させ1次に一定速度(2〜3鳳慕Hg/5ee)
でカフ圧を減少させてゆく過程で最高血圧と最低血圧の
判定をその区間の連続した計測により行うものでめった
。このため血圧測定1+要Tる時間はカフ排気速度を一
定とすると被験者の血圧値(脈圧)に依存することにな
り、この区間はほぼ血流が止められるためにうつ血の状
態が続き、これに起因して最低血圧の判定に誤りを生じ
ることが少なくなかった。しかも実際上意味のある計測
が行われるのは最高血圧及び最低血圧の付近の数心拍間
であり、それ以外の区間で定積計測をすることは事実上
不必要な測定時間をかけていることになり、患者に苦痛
を与えるばかりでなく、短時間の血圧変動を捕える為の
高速測定実現の障害ともなっていた。そこで本発明者は
、予めカフ加圧中に被験者の最低血圧を予測し、後の定
積計測において被験者の最高血圧を判定した後最低血圧
付近までの計測工程を中抜うする提案をする所であるが
、予測から最低血圧判定までの間に被験者の血圧が変動
すると前記方法も充分な効果を発揮し得ない場合が考え
られた。[Prior art and its problems] The measurement process in conventional non-invasive automatic blood pressure monitors is to first increase the cuff pressure to a set value (150 to 2001 intestinal Hg) and then increase it at a constant rate ( 2-3 FengmuHg/5ee)
In the process of decreasing the cuff pressure, the systolic and diastolic blood pressures were rarely determined by continuous measurements in that area. For this reason, the time required for blood pressure measurement 1 + T will depend on the subject's blood pressure value (pulse pressure) if the cuff pumping speed is constant, and in this section the blood flow is almost stopped, so the state of congested blood continues. This has often resulted in errors in determining the diastolic blood pressure. In addition, meaningful measurements are actually performed during a few heartbeats around the systolic and diastolic blood pressures, and measuring constant volume in other areas would actually take unnecessary measurement time. This not only caused pain to the patient, but also hindered the realization of high-speed measurement to capture short-term blood pressure fluctuations. Therefore, the present inventor proposes to predict the subject's diastolic blood pressure in advance during cuff inflation, determine the subject's systolic blood pressure in the subsequent constant volume measurement, and then omit the measurement process up to the vicinity of the diastolic blood pressure. However, if the blood pressure of the subject fluctuates between the prediction and the determination of the diastolic blood pressure, the above method may not be sufficiently effective.
また従来の自動血圧計は加圧手段としてダイヤプラム式
ポンプやピストン式ポンプ等を使用しており、測定の度
に加圧手段の発する騒音は被験者のみならず周囲の人々
へもストレスを加える原因となっていた。しかも夜間に
はこの騒音により長期血圧モニタ患者が眠りからさめる
為、睡眠中の血圧動態を捕えることができないという不
都合を生じていた。In addition, conventional automatic blood pressure monitors use diaphragm pumps, piston pumps, etc. as pressurizing means, and the noise emitted by the pressurizing means every time a measurement is made causes stress not only to the subject but also to the people around them. It became. Moreover, at night, this noise wakes patients on long-term blood pressure monitors from their sleep, resulting in the inconvenience that blood pressure dynamics during sleep cannot be captured.
[発明の目的]
本発明は上述した点に鑑みて成されたものであって、そ
の目的とする所は、最高血圧判定の後、最低血圧付近ま
での定積計測工程を中抜きすると共に、被験者の血圧変
動による最高血圧判定不使を考慮し、迅速かつ正確な血
圧測定の行なえる自動血圧測定方法及びその装置を提案
することにある。[Object of the Invention] The present invention has been made in view of the above-mentioned points, and its purpose is to eliminate the constant volume measurement process up to the vicinity of the diastolic blood pressure after determining the systolic blood pressure, and to The object of the present invention is to propose an automatic blood pressure measurement method and device that can quickly and accurately measure blood pressure, taking into consideration the unavailability of systolic blood pressure determination due to blood pressure fluctuations of subjects.
また本発明の他の目的は、カフ加圧騒音を一切なくした
自動血圧測定装置を提供することにある。Another object of the present invention is to provide an automatic blood pressure measuring device that eliminates cuff pressurization noise.
また本発明の他の目的は、小型軽量で長時間の連続使用
に耐える自動血圧測定装置を提供することにある。Another object of the present invention is to provide an automatic blood pressure measuring device that is small and lightweight and can be used continuously for long periods of time.
[発明の概要]
本発明の自動血圧測定方法は、上記目的を達成するため
、カフ加圧中のコロトコフ音信号をモニタして所定値を
設定する設定工程と、該加圧停止後のカフ定速減圧中に
検出したコロトコフ音信号を基に最高血圧を判定する最
高血圧判定工程と。[Summary of the Invention] In order to achieve the above object, the automatic blood pressure measurement method of the present invention includes a setting step of monitoring the Korotkoff sound signal during cuff pressurization and setting a predetermined value, and a cuff setting step after cuff pressurization is stopped. a systolic blood pressure determination step of determining systolic blood pressure based on the Korotkoff sound signal detected during rapid decompression;
該最高血圧判定後のカブ圧を前記所定値まで急減圧する
急減圧工程と、該急減圧後のカフ定速減圧中に検出した
コロトコフ音信号から最低血圧を判定する最低血圧判定
工程と、前記急減圧後のカフ定速減圧中の所定区間にコ
ロトコフ音信号が検出されないことを判別してカフ圧を
所定量増加し、該加圧後のカフ定速減圧中に検出したコ
ロトコフ音信号から最低血圧を判定する再試行工程を備
えることをその概要とする。a sudden pressure reduction step of rapidly reducing the Cub pressure after the systolic blood pressure determination to the predetermined value; a diastolic blood pressure determination step of determining the diastolic blood pressure from the Korotkoff sound signal detected during the cuff constant rate decompression after the sudden pressure reduction; It is determined that the Korotkoff sound signal is not detected in a predetermined period during constant-speed cuff decompression after rapid decompression, and the cuff pressure is increased by a predetermined amount, and the lowest Korotkoff sound signal detected during constant-speed cuff decompression after the said pressurization is detected. The outline of the method is to include a retrial step for determining blood pressure.
また本発明の自動血圧測定装置は、上記目的を達成する
ため、カフ圧を上昇させる70圧手段と、カフ圧を所定
速度で減少させる第1の減圧手段と、カフ圧を前記所定
速度より速い速度で減少させる第2の減圧手段と、カフ
圧を検出する圧力検出手段と、コロトコフ音を検出して
に音信号を出力するに音検出手段と、前記加圧手段付勢
中の前記に音信号をモニタして所定値を設定する設定手
段と、該加圧停止後の前記第1の減圧手段付勢中に検出
した前記に音信号を基に最高血圧を判定する最高血圧判
定手段と、該最高血圧判定により前記第2の減圧手段を
付勢し、カフ圧を前記所定値まで減少させる減圧制御手
段と、該減圧停止後の前記第1の減圧手段付勢中に′検
出した前記に音信号を基に最低血圧を判定する最低血圧
判定手段と、前記減圧停止後の前記第1の減圧手段付勢
中の所定区間内に前記に@信号が検出されないことを判
別して前記加圧手段付勢によりカフ圧を所定量増加し、
該加圧停止後の前記第1の減圧手段付勢中に検出した前
記に音信号を基に最低血圧を判定する再試行手段を備え
ることをその概要とする。Further, in order to achieve the above object, the automatic blood pressure measuring device of the present invention includes a 70-pressure means for increasing the cuff pressure, a first pressure reducing means for decreasing the cuff pressure at a predetermined speed, and a first pressure reducing means for decreasing the cuff pressure at a speed higher than the predetermined speed. a second pressure reducing means for decreasing the pressure at a speed; a pressure detecting means for detecting the cuff pressure; a sound detecting means for detecting the Korotkoff sound and outputting a sound signal; a setting means for monitoring the signal and setting a predetermined value; a systolic blood pressure determining means for determining the systolic blood pressure based on the sound signal detected during activation of the first pressure reducing means after the stop of pressurization; a pressure reduction control means for energizing the second pressure reduction means to reduce the cuff pressure to the predetermined value based on the systolic blood pressure determination; diastolic blood pressure determination means for determining diastolic blood pressure based on a sound signal; and diastolic blood pressure determining means for determining diastolic blood pressure based on a sound signal; The cuff pressure is increased by a predetermined amount by means of biasing,
The outline of the present invention is to include a retry means for determining the diastolic blood pressure based on the sound signal detected during activation of the first pressure reducing means after the stop of pressurization.
また好ましくは、前記設定手段はに音信号を基に最低血
圧値を予測できるときは、該最低血圧値に第1の圧力値
を加えた値を所定値とすることをその一態様とする。Preferably, when the setting means can predict the diastolic blood pressure value based on the sound signal, one aspect thereof is to set a value obtained by adding the first pressure value to the diastolic blood pressure value as the predetermined value.
また好ましくは、前記設定手段はに音信号をモ二夕して
最低血圧値を予測できないときは、最高血圧判定時のカ
フ圧より第2の圧力値を減じた値を所定値とすることを
その一態様とする。Preferably, when the setting means cannot predict the diastolic blood pressure value by monitoring the sound signal, the predetermined value is set to a value obtained by subtracting the second pressure value from the cuff pressure at the time of determining the systolic blood pressure. This is one aspect of this.
また好ましくは、前記加圧手段は液化ガスボンベを圧力
源とすることをその一態様とする・[発明の実施例]
以下、添付図面に従って本発明に好適なる一実施例を詳
細に説明する。Preferably, one embodiment of the pressurizing means is a liquefied gas cylinder as a pressure source. [Embodiment of the Invention] Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
第1図は本発明に係る一実施例の自動血圧計を示すブロ
ック構成図である0図において、1は腕に巻かれたカフ
、2はコロトコフ音検出用のマイク、3はカフ圧を検出
及び制御するためカフェと装こ本体間を接続するパイプ
である0本体は大きく分けて3つの構成部分より成る。FIG. 1 is a block diagram showing an automatic blood pressure monitor according to an embodiment of the present invention. In FIG. 0, 1 is a cuff wrapped around the arm, 2 is a microphone for detecting Korotkoff sounds, and 3 is for detecting cuff pressure. The main body, which is a pipe connecting the cafe and the main body for control, is roughly divided into three components.
4はカフ圧を検出及び制御する圧力制御部、5はコロト
コフ音を検出するコロトコフ音検出部、6は装置本体の
王制W ヲ2るセントラルプロセツシングユニット(C
P U)である、更に7は被験者の最高最低血圧等を表
示する表示部であり通常は本体に常備されている。8は
同じく最高最低血圧等を記録する記録部であり長時間に
わたる自動測定をするような場合に接続される。4 is a pressure control unit that detects and controls cuff pressure, 5 is a Korotkoff sound detection unit that detects Korotkoff sounds, and 6 is a central processing unit (C
Further, numeral 7 is a display section for displaying the subject's systolic and diastolic blood pressure, etc., and is normally provided in the main body. Reference numeral 8 is a recording unit for recording systolic and diastolic blood pressure, etc., and is connected when automatic measurement is to be carried out over a long period of time.
圧力制御部4は液化酸素又は液化炭酸ガス(C02)等
を封入したボンベ、あるいは圧縮空気等を封入したポン
へから成る圧力源9と、圧力源9出力のガス圧を一定に
調整するレギュレータ10と、カフを加圧するための給
気弁11と、カフ圧を一定速度(2〜3 mmHg/5
ee)で減圧するための定排弁12と、カフ圧を急速度
で減圧するための急排弁13と、カフ圧を検出して電気
信号に変換する圧力センサ14と、圧力センサ14出力
のアナログ信号をデジタル信号に変換するA/D変換器
15から成っている0本実施例装匠が圧力源9にポンプ
類を用いない理由は加圧騒音を一切なくすためである。The pressure control unit 4 includes a pressure source 9 consisting of a cylinder filled with liquefied oxygen or liquefied carbon dioxide (C02), or a pump filled with compressed air, etc., and a regulator 10 that adjusts the gas pressure output from the pressure source 9 to a constant level. and an air supply valve 11 for pressurizing the cuff, and the cuff pressure is controlled at a constant rate (2 to 3 mmHg/5
ee), a constant release valve 12 for reducing the pressure at a rapid rate, a rapid release valve 13 for rapidly reducing the cuff pressure, a pressure sensor 14 for detecting the cuff pressure and converting it into an electrical signal, and a pressure sensor 14 for detecting the cuff pressure and converting it into an electrical signal. The reason why the design of this embodiment, which consists of an A/D converter 15 for converting an analog signal into a digital signal, does not use a pump as the pressure source 9 is to eliminate any pressure noise.
また本実施例装置がポンプ類の代りにガスボンベを用い
る理由はカフ圧を上昇させる際に無脈動の上昇特性が容
易に得られるからであり、カフ圧を直線上昇させる利点
は後述する説明により明らかとなろう、更にまた、好ま
しくは液化ガスボンベを用いることにより小型軽量で気
化容量の極めて大きい圧力源9を得ることができ、コノ
場合、直径30■、長す12081MノC02腋化ボン
ベを用いると、100回程度の連続使用が可能で、ボン
ベは被験者の腰部等に負担にならないように設訂可能で
ある。Furthermore, the reason why this embodiment uses a gas cylinder instead of a pump is that a pulsation-free increase characteristic can be easily obtained when increasing the cuff pressure, and the advantage of linearly increasing the cuff pressure will be clear from the explanation below. Moreover, by preferably using a liquefied gas cylinder, it is possible to obtain the pressure source 9 which is small and lightweight and has an extremely large vaporization capacity. It can be used continuously about 100 times, and the cylinder can be adjusted so as not to put strain on the subject's lower back.
コロトコフ音検出部5はマイク2で検出した微弱音信号
を前こ堵輻するアンプ16と、該アンプ16の出力信号
から各所定周波数成分を抽出して振幅を比較することに
よりコロトコフ音に相当する信号を分離し、これをパル
ス成形してに音信号k(以下、K音ともいう)を出力す
るに音フィルタ17と、圧力センサ14の出力信号に含
まれる血管の脈圧振動の振幅信号成分を分離し、これを
パルス成形して脈同期信号mを出力する脈フィルタ18
から成っている0派同期信号mはカフ1に加えた圧力を
徐々に減少させる際にカフにより圧迫された血管の伸縮
運動を捕えたものであり、一般にこの信号はに音より早
く発現しかつ遅く消滅することが知られている。よって
この振幅信号成分を脈フィルタ18で抽出し、に音検出
のためのゲート信号として使用することにより雑音の中
から微弱なに音を正確に検出している。The Korotkoff sound detection unit 5 includes an amplifier 16 that forwards the weak sound signal detected by the microphone 2, and extracts each predetermined frequency component from the output signal of the amplifier 16 and compares the amplitudes to generate a sound corresponding to the Korotkoff sound. A sound filter 17 separates the signal, pulse-forms it, and outputs a sound signal k (hereinafter also referred to as K sound), and an amplitude signal component of blood vessel pulse pressure vibration included in the output signal of the pressure sensor 14. a pulse filter 18 that separates the signal, pulse-forms it, and outputs a pulse synchronization signal m.
The 0-group synchronized signal m, which consists of , captures the expansion and contraction movement of the blood vessel compressed by the cuff when the pressure applied to the cuff 1 is gradually decreased, and generally this signal occurs earlier than the sound. It is known to disappear slowly. Therefore, this amplitude signal component is extracted by the pulse filter 18 and used as a gate signal for sound detection, thereby accurately detecting a weak sound from among the noise.
CPU6は本実施例の処理プログラムを内藏したROM
と、該プログラムを実行するマイクロプロセツサと、デ
ータ処理に必要なRAMと、処理データ入出力のための
PIOと、給排弁11〜13を駆動するドライバ回路等
を含み、該CPU6のブロック中には前記処理プログラ
ムの実行により実現される各種の機能がブロック化して
示されている。これらの機能ブロックについて簡単に説
明すると、19はCPU6の主制御を掌る制御手段、2
0はA/D変換器15出力のカフ圧検出信号Pを適時読
取ると共に、カフ内に所定の加圧、減圧状態を得べく給
排弁11〜13を制御する圧力制御手段、21は脈同期
信号m内で発現し消滅するに音信号kを調べ、被験者の
最高血圧と最低血圧を判定する血圧判定手段である。The CPU 6 is a ROM that stores the processing program of this embodiment.
, a microprocessor that executes the program, a RAM necessary for data processing, a PIO for inputting and outputting processed data, a driver circuit that drives the supply/discharge valves 11 to 13, etc., and is a block of the CPU 6. , various functions realized by executing the processing program are shown in blocks. To briefly explain these functional blocks, 19 is a control means that controls the main control of the CPU 6;
0 is a pressure control means that reads the cuff pressure detection signal P output from the A/D converter 15 in a timely manner and controls the supply and discharge valves 11 to 13 to obtain a predetermined pressurization and depressurization state in the cuff, and 21 is a pulse synchronization means. This is a blood pressure determination means for determining the systolic blood pressure and diastolic blood pressure of the subject by examining the sound signal k that appears and disappears within the signal m.
第2図〜第5図は本実施例装置の動作原理に係り、第2
図は血圧測定の典型的な一工程を示す図である1図にお
いて、給気弁11が開くとカフ圧は8点よりb点に向は
迅速かつ無脈動に上昇を始める。CPU6はこの区間に
に音をモニタし、最初のに音Pk、が現れた時点のカフ
圧をもって被験者の予測最低血圧PRED I^とする
。カフ圧力(上昇するにつれほぼ一定の周期でに音Pk
2゜Pk3・・・力検出される。CPU6はこの周期を
基に次にに音が現れるべき最大限の時間間隔tを求め、
その間隔内にに音があればこれを確認する。Figures 2 to 5 relate to the operating principle of the device of this embodiment.
In FIG. 1, which shows a typical step of blood pressure measurement, when the air supply valve 11 opens, the cuff pressure starts to rise quickly and without pulsation from point 8 toward point b. The CPU 6 monitors the sound during this interval and sets the cuff pressure at the time when the first sound Pk appears as the predicted diastolic blood pressure PRED I^ of the subject. Cuff pressure (sound Pk at almost constant intervals as it rises)
2°Pk3...Force is detected. Based on this cycle, the CPU 6 determines the maximum time interval t at which the next sound should appear,
Check if there is a sound within that interval.
やがてカフ圧が被験者の最高血圧を越えるとに音は消滅
するが、CPU6は最後のに音Pknが現われた時点の
カフ圧をもって被験者の予測最高血圧PRESYSとし
、同時に所定時間りを待ってもに音が発生しないことに
より給気弁11を閉じる。Eventually, the sound disappears when the cuff pressure exceeds the subject's systolic blood pressure, but the CPU 6 sets the cuff pressure at the time when the last sound Pkn appears as the subject's predicted systolic blood pressure PRESYS, and at the same time waits for a predetermined period of time. The air supply valve 11 is closed when no sound is generated.
この時点のカフ圧は、続く最高血圧の迅速な測定を可能
にする最適加圧点b (PRESYS+α)である0本
実施例では圧力源9に液化ガスボンベを使用しているの
でカフ圧の上昇に脈動成分を一切含まない、故にこの区
間はマイクに雑音が混入する心配もなく微弱なに音の検
出が正確に行なえる。The cuff pressure at this point is the optimal pressurization point b (PRESYS+α) that enables rapid measurement of the subsequent systolic blood pressure. In this example, a liquefied gas cylinder is used as the pressure source 9, so the cuff pressure does not increase. Since it does not contain any pulsating components, it is possible to accurately detect even the weakest sounds in this section without worrying about noise entering the microphone.
そこでカフ圧上昇中にに音の発現と消滅をモニタし、こ
れを基に被験者の最高血圧と最低血圧の目安を与え、以
下に述べるカフ減圧中の本計測工程を極めて効率良いも
のとしている。Therefore, we monitor the onset and disappearance of the sound while the cuff pressure is rising, and based on this we provide a guideline for the subject's systolic and diastolic blood pressure, making the main measurement process during cuff decompression described below extremely efficient.
次に定排弁12が開くとカフ圧はb点より0点に向は一
定速度(2〜3 mmHg/5ec)で減少する。Next, when the constant discharge valve 12 opens, the cuff pressure decreases from point b toward point 0 at a constant rate (2 to 3 mmHg/5ec).
この区間にCPU6は前よりも厳密な方法でに音の発現
、消滅をモニタする。即ち、脈同期信号mとの論理拉的
処理により真のに音信号を雑音から分離し、こうして最
初のに音に、が現れた時点のカフ圧をもって被験者の最
高血圧SYSとする。但しCPU6はこのことの確認の
ため最低3拍分のに音検出をもって最高血圧を判定して
いる。During this period, the CPU 6 monitors the appearance and disappearance of the sound in a more rigorous manner than before. That is, the true sound signal is separated from the noise by logical processing with the pulse synchronization signal m, and the cuff pressure at the time when the first sound appears is taken as the subject's systolic blood pressure SYS. However, to confirm this, the CPU 6 determines the systolic blood pressure by detecting sounds for at least three beats.
最高血圧を判定すると急排弁13を開き、カフ圧は0点
から急排目標値d点(予測最低血圧PREDIA+β)
に向けて急減する。実際上この区間のに音検出は不必要
だからである。同時にCPU6はカフ圧検出信号Pをモ
ニタし、カフ圧がd点に達すると急排弁13を閉じる。When the systolic blood pressure is determined, the sudden evacuation valve 13 is opened, and the cuff pressure is changed from 0 point to the sudden evacuation target value d point (predicted diastolic blood pressure PREDIA+β).
It decreases rapidly towards . This is because sound detection is actually unnecessary in this section. At the same time, the CPU 6 monitors the cuff pressure detection signal P, and closes the quick discharge valve 13 when the cuff pressure reaches point d.
これによりカフ圧の減少は再び定排弁12によるものと
なり前記同様の方法で厳密なに音検出が可能になる。こ
の区間にCPU6は少なくとも1個のに音を検出すれば
急排目標値d点の圧力が最低血圧を上まわっていたこと
を確認できる。やがてカフ圧が被験者の最低血圧よりも
下がるとに音も消滅するが、CPU6はこのことの確認
ため最低2拍分の脈同期信号m内にに音がないことをも
ってに音消減を[認し、最後のに@kmが現われた時点
のカフ圧をもって被験者の最低血圧111Aと判定して
いる。最低血圧を判定すると直ちに2排弁13を開き、
カフ圧はe点からf点に向けて急減し、一工程を縫子す
る。As a result, the cuff pressure is reduced again by the constant discharge valve 12, and it becomes possible to accurately detect the sound using the same method as described above. If the CPU 6 detects at least one sound during this period, it can confirm that the pressure at the sudden evacuation target value point d exceeds the diastolic blood pressure. When the cuff pressure eventually falls below the subject's diastolic blood pressure, the sound disappears, but in order to confirm this, the CPU 6 confirms that the sound has disappeared when there is no sound within the pulse synchronization signal m for at least two beats. , the cuff pressure at the time when @km appears at the end is determined to be the subject's diastolic blood pressure 111A. Immediately after determining the diastolic blood pressure, the second valve 13 is opened,
The cuff pressure rapidly decreases from point e to point f, completing one step.
以上述へた本実施例の一工程を従来のに音発現から消滅
までを連続的にモニタする工程(第2図中に一点鎖点で
示す)と比較されたい、従来は。The process of this embodiment described above can be compared with the conventional process of continuously monitoring the sound from its appearance to extinction (indicated by a chain dot in FIG. 2).
一般に行われているように150〜200 mmHHの
範囲内で一律に定められるg点まで加圧して後足排に入
るものであった。これに対して本実施例は被験者の最高
血圧SYSより僅かに高いb点を自動検出し、定積に入
るための最適加圧点の自動決定を行っている。これによ
り最高血圧の計測が直ちに行える利点がある。また従来
は加圧後のg点から1点に向けての定積中にに音の連続
的な計測を行っていた。これに対して本実施例は定積中
に最高血圧を判定したC点に至ると、直ちに急排して計
測の中抜きをし、更にd点からe 、4の定積中に最低
適圧を判定すると、もはや測定の一工程は糾了する。As is generally practiced, the hind leg was ejected by applying pressure to the g point, which is uniformly determined within the range of 150 to 200 mmHH. In contrast, this embodiment automatically detects point b, which is slightly higher than the subject's systolic blood pressure SYS, and automatically determines the optimal pressurization point for entering the constant volume. This has the advantage that systolic blood pressure can be measured immediately. Furthermore, in the past, the sound was continuously measured during constant volume from point g to one point after pressurization. On the other hand, in this embodiment, when the systolic blood pressure is determined at point C during constant volume, the blood pressure is immediately discharged and the measurement is omitted, and then from point d to e, the lowest appropriate pressure during constant volume in 4. Once this is determined, one step of the measurement is completed.
今、仮に加圧点が共にb点である場合を想定して本実施
例による計測工程と従来方法による計測工程との一計測
昌りの時間差Δtを考える。この場合の従来の計測工程
は同図中2点鎖線で示されている。ここでカフ圧の定積
速度を共にP exm+*)Ig/secとすると、被
験者の最高血圧SYS及び最低血圧DIAには相違がな
いから、両工程の一計測当りの時間差Δtは
w t = (5YS−DIA ) / Pe1− (
Tk2+β/Pet)
で表わされ、本実施例が極めて短時間の計測を行ってい
ることが解る。Now, assuming that the pressurizing points are both point b, we will consider the time difference Δt in one measurement between the measurement process according to this embodiment and the measurement process according to the conventional method. The conventional measurement process in this case is shown by a two-dot chain line in the figure. Here, if the constant volume velocity of the cuff pressure is both P exm + *) Ig/sec, there is no difference in the subject's systolic blood pressure SYS and diastolic blood pressure DIA, so the time difference Δt per measurement in both processes is w t = ( 5YS-DIA) / Pe1- (
Tk2+β/Pet), and it can be seen that this embodiment performs measurement in an extremely short time.
第3図(a)及び(b)は本実施例の最適AO圧点すが
決定される詳細を示す図である。同図(a)において、
カフ圧が上昇する際に最初のに音Pk、が検出されると
その時点のカフ圧をもって被験者の予測最低血圧PRE
DIAとすることは前lこ述へた。更に二つ目のに音P
k2が検出されるとこの時点からに音発生周期の上限り
が予測可能になる。即ち、CPU6は最初の周期t1を
基に遅くとも次のに音Pk、がt=(1±γ)1+以内
に発生することを予測できる。このγは心拍ゆらぎを多
数被験者のデータを拍出・比較することで決定される臨
床学的な経験則で決定される数値で、該実施例において
は2例えばγ=0.1〜0.5の固定値が選択されてい
るが、knのス゛クールに応じた段階分けした値で良く
、この場合はテーブルに6Q〜±0.5のイ偵がγとし
て用意される。FIGS. 3(a) and 3(b) are diagrams showing details of how the optimum AO pressure point of this embodiment is determined. In the same figure (a),
When the first sound Pk is detected when the cuff pressure increases, the predicted diastolic blood pressure PRE of the subject is calculated using the cuff pressure at that time.
I mentioned earlier what it means to be a DIA. Furthermore, the second sound P
When k2 is detected, the upper limit of the sound generation period can be predicted from this point on. That is, the CPU 6 can predict that the next sound Pk will occur within t=(1±γ)1+ at the latest based on the first period t1. This γ is a value determined by a clinical empirical rule that is determined by comparing heart rate fluctuation data from a large number of subjects. Although a fixed value is selected, it may be a graded value according to the scale of kn, and in this case, values from 6Q to ±0.5 are prepared as γ in the table.
長年の経験により被験者のに音発生周期が例え短時間に
大きく変動したとしても、上記γが適正値であればこれ
をカバーできる。そして現実にに音Pk2が発生したと
きは新たな周期t2を基に遵くとも次のに音Pk3がt
=(1±γ)tz以内に発生することを予測できる。勿
論、この場合にtlとtlとの平均をとってに音Pk3
発生の予測に用いてもよい、こうしてPk3 、Pk、
と続き、次の時間t:(1土γ)t3以内にに音が発生
しないときは直ちに給気弁11を閉じ、この時点のカフ
圧をもって最適加圧点すとする。に音Pk4に対応する
カフ圧PRESYSが被験者の蛙高血圧SYSと予測さ
れるからでる。Even if the subject's sound generation cycle fluctuates greatly over a short period of time due to many years of experience, this can be covered if the above-mentioned γ is an appropriate value. When the sound Pk2 actually occurs, the next sound Pk3 will be t based on the new period t2.
It can be predicted that this will occur within = (1±γ)tz. Of course, in this case, taking the average of tl and tl, the sound Pk3
may be used to predict the occurrence of Pk3, Pk,
Then, if no sound is generated within the next time t: (1 day γ) t3, the air supply valve 11 is immediately closed, and the cuff pressure at this point is assumed to be the optimum pressurization point. This is because the cuff pressure PRESYS corresponding to the sound Pk4 is predicted to be the subject's frog hypertension SYS.
同図(b)はカフ加圧中にに音1個しか検出されなかっ
た状態を示している。この場合は蚊初のに音Pk1の検
出をもってその時点のカフ圧を被験者の予測最低血圧P
REDIAとはしない、最低血圧付近のに音は相対的に
微弱なために音が検出されずに失われたと考えられるか
らである。またこの場合はPREDIAが決定されない
ので最高血圧判定後の急排目標値を求める圧力差を所定
値(例えば40 +*mHg)としている、脈圧振幅は
平均しh腸H8程度あることが長年の臨床により確認さ
れているからである。更にまたこの場合は前述した時間
tなるものが求められないので現実の周期t1の代りに
所定値(例えば1 、65ec)をもって最適加圧点す
の決定をしている。所定値1 、6 secの値は脈
拍が38 beat /+*inの場合の最大周期を想
定したものである。Figure (b) shows a state in which only one sound was detected during cuff pressurization. In this case, when the first mosquito sound Pk1 is detected, the cuff pressure at that point is calculated as the predicted diastolic blood pressure P of the subject.
REDIA is not used because the sound near the diastolic blood pressure is relatively weak and is thought to be lost without being detected. Also, in this case, since PREDIA is not determined, the pressure difference for determining the sudden evacuation target value after determining the systolic blood pressure is set to a predetermined value (for example, 40 + * mHg).It has been known for many years that the pulse pressure amplitude is on average about h8 H8. This is because it has been clinically confirmed. Furthermore, in this case, since the aforementioned time t cannot be determined, the optimum pressurizing point is determined using a predetermined value (for example, 1,65 ec) instead of the actual period t1. The predetermined values of 1 and 6 sec are assumed to be the maximum period when the pulse rate is 38 beats/+*in.
更にに音が1個も検出されなかったときの安全策は同図
(a)及び(b)に示す如くb′点の所定カフ圧Pa(
例えば150〜200mmHg)をもって上昇限度とす
ることである。CPU5は適時カフ圧検出信号Pを読取
ることでこの制御を容易に行なえる。Furthermore, when no sound is detected, the safety measure is to set the predetermined cuff pressure Pa (at point b') as shown in FIGS.
For example, the increase limit is set at 150 to 200 mmHg). The CPU 5 can easily perform this control by reading the cuff pressure detection signal P at appropriate times.
第4図は被験者の血圧測定が1回の試行で正常に行なわ
れた場合を示すタイミングチャートである。同図に示す
ところの大部分は既に第2図の説明において述べた。こ
こでは脈同期信号mとに音信号にとの関係について述べ
る。脈同期信号mは前述した如くカフにより圧迫された
血管の伸1ii運動を捕えたものであり、一般にこの信
号はに音より早く発現しかつ遅く消滅することが知られ
ているから、本実施例ではカフ定積中の脈同期信号m内
で発生したに音のみを真のに音信号と判定し、K音に混
入する雑音除去の目的で使用している。尚、本実施例で
は採用していないがこの方法をカフ加圧時のに音検出に
用いてもよい。FIG. 4 is a timing chart showing a case where blood pressure measurement of a subject is successfully performed in one trial. Most of what is shown in this figure has already been described in the explanation of FIG. Here, the relationship between the pulse synchronization signal m and the sound signal will be described. As mentioned above, the pulse synchronization signal m captures the elongation movement of the blood vessel compressed by the cuff, and it is generally known that this signal appears earlier and disappears later than the sound. In this method, only the sound generated within the pulse synchronization signal m during cuff constant volume is determined to be a true sound signal, and is used for the purpose of removing noise mixed in the K sound. Although not adopted in this embodiment, this method may also be used to detect sound during cuff pressurization.
第5図は被験者の血圧測定が1回の日動再試行により行
なわれた場合を示すタイミングチャートである0図にお
いて、カフ加圧から定積に移り、最高血圧SYSを決定
する0点までの工程は第2図に示したものと同様である
。第5図は予測最低血圧PRED[Aが実際の最低血圧
DIAよりもかなり低かったため0点から急排目標値d
′点(例えばPREDIA +L O+emHg)まで
急排したときは既にカフ圧が最低血圧DIAを下まわっ
てしまっている場合を示している。急排目標値の設定に
用いる定数β(実施例では10m厘Hgを選択)は、例
えばPREII IAからDIAまでの測定時間内にあ
る血圧変動幅(DIAの標準偏1sD)を基準にした場
合に、2SDをカバーする場合は61111HKを、3
SDをカバーする場合は10m+*Hgを選択すること
になる。さて、第5図の場合CPU6はd′点からe′
点までの定検区間に脈同期信号mを2拍分針数するかに
音は検出されない、そこでこの持点(e’点)のカフ圧
に約20 mmHHの加圧を行ないd ”点までカフ圧
を上昇させる。このときのカフ圧は経験的にほぼPRE
DIA + 20 mmHHの値になることが図示され
ている。従ってこの様な再試行を3回行えば結果として
カフはPFiE[lIA + 40=mHgのところま
で加圧されることになり最低血圧DIAを十分にカバー
できる。脈圧振幅が平均40 mmHg程度あることは
前にも述へた0次にd ”点まで力)圧が上昇すると再
び定積に移る67申この圧力は最低血圧DIAをカバー
しているから脈同期信号m内にに音がいくつか検出され
る。やがてカフ圧が被験者の最低血圧01Aよりも下が
るとに音も消滅するが、CPU6はこのことの確認ため
最低2拍分の脈同期信号m内にに音がないことをもって
に音消滅を確認し、最後のK @ kI:Oが現われた
時点のカフ圧をもって被験者の最低血圧DIAと判定し
ている。最低血圧を決定すると直ちに急排弁13を開き
、力2圧はe点からf点に向けて急減し、一工程を終了
する。Figure 5 is a timing chart showing the case where the subject's blood pressure is measured by one diurnal retry. is similar to that shown in FIG. Figure 5 shows that the predicted diastolic blood pressure PRED[A was much lower than the actual diastolic blood pressure DIA, so it suddenly changed from 0 to the target value d.
When the cuff pressure is suddenly discharged to point ' (for example, PREDIA + L O + emHg), this indicates a case where the cuff pressure has already fallen below the diastolic blood pressure DIA. The constant β (10 mHg is selected in the example) used for setting the sudden evacuation target value is based on the blood pressure fluctuation range (standard deviation of DIA 1 sD) within the measurement time from PREII IA to DIA, for example. , 61111HK to cover 2SD, 3
When covering SD, 10m+*Hg will be selected. Now, in the case of Fig. 5, the CPU 6 moves from point d' to e'.
No sound is detected even if the pulse synchronization signal m is repeated for 2 beats during the periodic inspection interval up to point d.Therefore, the cuff pressure at this point (point e') is increased to approximately 20 mmHH, and the cuff is increased to point d''. Increase the cuff pressure.Experience shows that the cuff pressure at this time is approximately PRE.
It is shown that the value is DIA + 20 mmHH. Therefore, if such a retrial is repeated three times, the cuff will be pressurized to PFiE[lIA + 40=mHg, which can sufficiently cover the diastolic blood pressure DIA. As mentioned earlier, the pulse pressure amplitude is about 40 mmHg on average.When the pressure rises to the d'' point, the pulse pressure changes to a constant volume again.67 This pressure covers the diastolic blood pressure DIA, so the pulse pressure is Some sounds are detected within the synchronization signal m.The sounds disappear as the cuff pressure eventually drops below the subject's diastolic blood pressure 01A, but the CPU 6 detects a pulse synchronization signal m of at least two beats to confirm this. The disappearance of the sound is confirmed when there is no sound inside, and the cuff pressure at the time when the last K @ kI:O appears is determined to be the subject's diastolic blood pressure DIA. Immediately after determining the diastolic blood pressure, the sudden evacuation valve is activated. 13 is opened, the force 2 pressure decreases rapidly from point e to point f, and one process is completed.
第6図〜第9図は上述した動作原理に従って制御を実行
する本実施例装置のプログラム制御手順に係り、第6図
は血圧測定一工程の制御手順を示すフローチャートであ
る。ステップS1では給気弁11を開さ、ステップ51
00では最適加圧制御処理を実行する。最適加圧制御処
理の詳細は後述するが、カフの最適加圧点すを決定する
処理である。該処理から戻ると、ステップS2では給気
弁11を閉じ、ステップS3では定排弁12を開く、該
加圧後の定積中にステップ5200では最高血圧判定処
理を行ない、ステップS4では最高血圧を表示する。最
高血圧が判定されると直ちにステップS5でご排弁13
を開き、カフ圧を急減させる。ステップS6では前記最
適加圧制御処理において予測最低血圧PREDIAが決
定されたか否かを判別する。該判別がYESならステッ
プS7でカフ−圧が急排目標値(PREDIA + l
Os+mHg) !で下るのを待つ、また該判別がN
oのときはステップS8に進み代りの急排目標値(急排
開始圧−40taHg)まで減圧されるのを待つ、目e
4値に達すると、ステップS9では急排弁13を閉じ、
そのままの状態で定積に移ることができる。勿論、前述
した急排中に定排弁12を閉じておく制御でもよい、ス
テップSlOではリトライカウンタRCt−0に初期化
する。リトライカウンタRCは最低血圧測定の試行が1
回でうまくいかない場合の再試行回数を計数するカウン
タである。該急排後の定積中に、ステップ5300では
最低血圧判定処理を実行する。該処理から戻る条件は2
拍分の脈同期信号m内にに音が検出されなかった場合で
ある。ステップSllではに音カウンタKCの値を調べ
、KCがOでないときは1以上のに音検出があったこと
を示し、フローはステップ512に進み最低血圧を表示
して一工程を終了する。しかしステップSllの判別で
KCがOときは再試行が必要であり、フローはステップ
S13に進んでリトライを3回行ったか否かを調べる。6 to 9 relate to the program control procedure of the apparatus of this embodiment which executes control according to the above-mentioned operating principle, and FIG. 6 is a flowchart showing the control procedure of one step of blood pressure measurement. In step S1, the air supply valve 11 is opened, and in step 51
At 00, optimal pressurization control processing is executed. The details of the optimum pressurization control process will be described later, but it is a process for determining the optimum pressurization point of the cuff. When returning from this process, the intake valve 11 is closed in step S2, and the constant discharge valve 12 is opened in step S3. During the constant volume after pressurization, a systolic blood pressure determination process is performed in step 5200, and in step S4, the systolic blood pressure is determined. Display. Immediately after the systolic blood pressure is determined, the drain valve 13 is opened in step S5.
Open the cuff and rapidly reduce the cuff pressure. In step S6, it is determined whether the predicted diastolic blood pressure PREDIA has been determined in the optimum pressurization control process. If the determination is YES, the cuff pressure is set to the rapid evacuation target value (PREDIA + l) in step S7.
Os+mHg)! Wait for it to go down, and the judgment is N again.
If o, the process advances to step S8 and waits for the pressure to be reduced to the alternative rapid evacuation target value (sudden evacuation start pressure - 40 taHg).
When the value reaches 4, the quick discharge valve 13 is closed in step S9,
You can move on to definite volume in this state. Of course, the constant discharge valve 12 may be closed during the above-mentioned sudden discharge. In step SlO, the retry counter RCt-0 is initialized. Retry counter RC indicates 1 attempt to measure diastolic blood pressure.
This is a counter that counts the number of retries when the first attempt fails. During the fixed volume after the sudden evacuation, a diastolic blood pressure determination process is executed in step 5300. The conditions for returning from this process are 2
This is a case where no sound is detected within the pulse synchronization signal m corresponding to one beat. In step Sll, the value of the sound counter KC is checked, and when KC is not O, it indicates that one or more sounds have been detected, and the flow proceeds to step 512, where the diastolic blood pressure is displayed and one step is completed. However, if KC is O in the determination at step Sll, a retry is necessary, and the flow advances to step S13 to check whether retry has been performed three times.
3回行っていればステップS20に進みエラー処理とな
る。しかし3回行っていなければステップ514に進み
リトライカウンタRCの内容に+1する。If the process has been repeated three times, the process advances to step S20 and an error process occurs. However, if the process has not been repeated three times, the process advances to step 514 and the content of the retry counter RC is incremented by 1.
ステップ515.S16では定排弁12を閉じ。Step 515. In S16, the constant discharge valve 12 is closed.
給気弁11を開く、ステップ517ではカフ圧が加圧開
始圧+20 mmHHになるのを待つ、ステップS18
.S19では給気弁11を閉じ、定排弁12を開き、更
にステップ5300に戻って最低血圧判定処理を実行す
る。Open the air supply valve 11. In step 517, wait until the cuff pressure reaches the pressurization start pressure + 20 mmHH. Step S18
.. In S19, the air supply valve 11 is closed, the constant discharge valve 12 is opened, and the process returns to step 5300 to execute the diastolic blood pressure determination process.
第7図は最適加圧制御処理手順を示すフローチャートで
ある。ステップ5101では一連の初期化処理を行なう
、即ち、K音カウンタKCはOに、圧力レジスタPRは
カフ加圧の上限値Paに、タイマレジスタTRは定数1
.8secに、K音検出フラグKFはOに初期化される
。に音検出フラグKFはに音信号にの立上で論理1にな
り、CPU6がこれをセンスするとリセットされるフラ
グである。ステップ5102ではカフ圧検出信号Pが加
圧リミタ)PR(この場合は上限値Pa)に達したか否
かを判別する。達していなければステップ5103でタ
イマtがタイムアウトしたか否かを判別する。タイマは
先行するに音から所定時間内に次のに音があるか否かを
検出するためのものであり、最初は付勢されない、よっ
てフローはステップ5104に進みに音カウンタKCを
調べる。一つ目のに音Pk、かみつかるまではKCは0
である。フローはステップ5107に飛び、K音検出フ
ラグKFを調べる。KFが1でなければステップ510
2に戻り、最初のに音発生まで上述のループを緑り返す
、ステップ5107の判別でに音がみつかると、ステッ
プ3108に進みそのときのカフ圧検出信号pの値を予
測血圧メモリ(PREメモリ)に格納しておく、後に予
測最低血圧PREDIAとして使用するからである。ス
テップ5109ではKCを+1する。ステップ5llO
ではKCが2以上か否かを判別する。KCが2より小さ
いときは次のに音が発生する周期の上限tを計算できな
いのでステップ5112に進みタイマを付勢する。FIG. 7 is a flowchart showing the optimum pressurization control processing procedure. In step 5101, a series of initialization processing is performed, namely, the K sound counter KC is set to O, the pressure register PR is set to the upper limit value Pa of cuff pressurization, and the timer register TR is set to the constant 1.
.. At 8 seconds, the K sound detection flag KF is initialized to O. The sound detection flag KF becomes logic 1 when the sound signal rises, and is reset when the CPU 6 senses this. In step 5102, it is determined whether the cuff pressure detection signal P has reached the pressure limiter) PR (in this case, the upper limit Pa). If not, it is determined in step 5103 whether or not timer t has timed out. The timer is for detecting whether there is a next sound within a predetermined time from the previous sound, and is initially not activated, so the flow advances to step 5104 to check the sound counter KC. Sound Pk of the first one, KC is 0 until it bites.
It is. The flow jumps to step 5107 and checks the K sound detection flag KF. If KF is not 1, step 510
2, repeat the above loop until the first sound occurs. If a sound is found in step 5107, proceed to step 3108 and store the value of the cuff pressure detection signal p at that time in the predictive blood pressure memory (PRE memory). ) and later used as the predicted diastolic blood pressure PREDIA. In step 5109, KC is incremented by 1. Step 5llO
Then, it is determined whether KC is 2 or more. If KC is smaller than 2, it is not possible to calculate the upper limit t of the period at which the next sound will occur, so the process proceeds to step 5112 and the timer is activated.
再びステップ5102では加圧リミットか否かを謂へ、
満足しなければステップ5103でタイムアウトか否か
を調べる。この時点ではTRに定数1.6secが入っ
ており、それまでに次のに音がないときはタイムアウト
と判断され、処理を抜け。Again in step 5102, it is determined whether or not there is a pressurization limit.
If not satisfied, it is checked in step 5103 whether a timeout has occurred. At this point, TR contains a constant of 1.6 seconds, and if there is no next sound by then, it is determined that it has timed out and the process is exited.
カフ加圧中にに音が一つしか検出されなかった場合の最
適加圧点すを決定する。またタイムアウト前であればフ
ローはステップ5104に進みKCを調べる。に音が一
つ以上発生していれば常にステップ5105に進み、雑
音からに音を分離する処理が行われる。即ち、ステップ
5105では夕′イマが300m5以上か否かを判別し
、先行するに音から300m5以内(心拍数200 b
eat/ll1n以上に相当する)には次のに音が発生
しない経験則を利用してそれ以前のに音信号を無視する
。ステップ5106ではタイマtが1.6secを越え
ているか否かを調べ、先行するに音から1.6secを
越えるところ(心拍数38 beat/win以下に相
当する)には次のに音が発生しない経験則を利用してそ
れ以後のに音信号を無視する。よってステップ5105
.5106を共に満足する範囲内でのみに音が調べられ
、ステップ5107でに音、が検出されるとステップ3
108でその時点のカフ圧Pをメモリに格納し、ステッ
プ5109でKCを+1し、ステップ5110でKCを
調べる。KCが2以上になると、次にに音が発生すべき
周期の上限を計算できることになる。フローはステップ
5111に進み、時間レジスタTRに(1±γ)Lをセ
ットする。これまでTRは定数1.6secを含んでい
たが、次の時点からは直前の周期しに(1±γ)倍した
値が使用され、被験者の状態に即した更に迅速かつ正確
な本測定のための最適加圧制御が行われる。ステップ5
112では再びタイマがスタートされ、ステ・ツブ51
02°に戻る。やがてに音が消滅するとステップ510
3でタイムアウトが検出され、処理を抜け、カフ加圧中
にに音が二つ以上検出された場合の最適加圧点すを決定
する。To determine the optimal inflation point when only one sound is detected during cuff inflation. If the timeout has not yet occurred, the flow advances to step 5104 to check the KC. If one or more sounds are occurring, the process always proceeds to step 5105, where processing for separating sounds from noise is performed. That is, in step 5105, it is determined whether or not the evening time is 300 m5 or more.
eat/ll1n or higher), the previous sound signal is ignored using the empirical rule that no sound occurs in the next time. In step 5106, it is checked whether or not the timer t exceeds 1.6 seconds, and the next sound is not generated beyond 1.6 seconds from the previous sound (corresponding to a heart rate of 38 beats/win or less). Use a rule of thumb to ignore subsequent sound signals. Therefore step 5105
.. Sounds are checked only within a range that both satisfy 5106, and if a sound is detected in step 5107, step 3
In step 108, the cuff pressure P at that time is stored in the memory, in step 5109, KC is incremented by 1, and in step 5110, KC is checked. When KC becomes 2 or more, it becomes possible to calculate the upper limit of the period at which the next sound should be generated. The flow advances to step 5111, where (1±γ)L is set in the time register TR. Until now, TR included a constant of 1.6 sec, but from the next point on, a value multiplied by (1±γ) of the previous period will be used, making this measurement even faster and more accurate in accordance with the subject's condition. Optimal pressurization control is performed for this purpose. Step 5
At 112, the timer is started again and Ste.
Return to 02°. When the sound eventually disappears, step 510
3, a timeout is detected, the process is exited, and the optimal pressure point is determined when two or more sounds are detected during cuff pressure.
第8図は最高血圧判定処理手順を示すフローチャートで
ある。ステップ5201では一連の初期化処理を行なう
、即ち、脈カウンタMCはOに、Kf力’7ンタはOに
、圧力レジスタPRは減圧の下限値pbに、脈検出フラ
グMFはOに、K音検出フラグはOに初期化される。下
限値Pbは、例えばそれ以下では最高血圧の存在し得な
いような値である。脈検出フラグMFは脈同期信号mの
立上りを検出したときに論理1となり、CPU6がこれ
をセンスするとリセットされるフラグである、ステラP
S202でカフ圧が減圧リミットを越えたときはステッ
プ214に進みエラー処理する。しかしこのような状態
は実際上はとんど起こらない、ステップ5203では脈
カウンタMCを調べる。ステップ5204〜5206の
処理は対象が脈同期信号mである以外は第7図のステッ
プ5104〜5106で述べたものと同様である。FIG. 8 is a flowchart showing the procedure for determining systolic blood pressure. In step 5201, a series of initialization processes are performed, that is, the pulse counter MC is set to O, the Kf force '7 counter is set to O, the pressure register PR is set to the lower limit value of decompression pb, the pulse detection flag MF is set to O, and the K sound is set to O. The detection flag is initialized to O. The lower limit value Pb is, for example, a value below which systolic blood pressure cannot exist. The pulse detection flag MF becomes logical 1 when the rising edge of the pulse synchronization signal m is detected, and is reset when the CPU 6 senses this.
If the cuff pressure exceeds the decompression limit in S202, the process advances to step 214 to process an error. However, such a situation rarely occurs in practice, and in step 5203 the pulse counter MC is checked. The processing in steps 5204 to 5206 is the same as that described in steps 5104 to 5106 in FIG. 7, except that the target is the pulse synchronization signal m.
ステップ5206では脈検出フラグMFを調べ、最初の
MFがみつかるまでは以上のループを繰り返す、最初の
MFがみつかると、ステップ5207でに音フラグKF
を調べる。KFが検出されればステップ5208でその
時点のカフ圧Pをメモリに格納し、ステップ5209で
KCを+1する。またに音が検出されない間はステップ
5210に進み、生の脈同期信号mのレベルを調べる。In step 5206, the pulse detection flag MF is checked, and the above loop is repeated until the first MF is found. When the first MF is found, the sound flag KF is checked in step 5207.
Find out. If KF is detected, the cuff pressure P at that time is stored in the memory in step 5208, and KC is incremented by 1 in step 5209. Further, while no sound is detected, the process proceeds to step 5210, and the level of the raw pulse synchronization signal m is checked.
該信号レベルが論理1である間はに音検出を繰り返す、
脈同期信号m内のに音のみを検出することにより雑音を
除去するためである。やがて脈同期信号mのレベルが論
理0になるとステップ5211に進み、MCに+1する
。ステップ5212ではKCを調べ、KC=3なら最高
血圧SISを決定し、処理を抜ける。またKCが3より
小さいときはステップ5213でタイマを付勢し、ステ
ップ5202に戻る。以後の処理は第7図で述べたもの
と同様であるので説明を省略する。repeating sound detection while the signal level is logic 1;
This is to remove noise by detecting only the sound within the pulse synchronization signal m. Eventually, when the level of the pulse synchronization signal m becomes logic 0, the process proceeds to step 5211, where MC is incremented by +1. In step 5212, KC is checked, and if KC=3, the systolic blood pressure SIS is determined, and the process exits. If KC is smaller than 3, the timer is activated in step 5213, and the process returns to step 5202. The subsequent processing is the same as that described in FIG. 7, so the explanation will be omitted.
第9図は最低血圧判定処理手順を示すフローチャートで
ある。ステップ5301では一連の初期化処理を行なう
、圧力レジスタPRは更に低い減圧の下限値Pcに初期
化される。他は第8図のステップ5201と同様である
。更にステップ3302〜ステツプ5307までの処理
は、第8図のステップ3202〜ステツプ3207tで
の処理と同様であり、説明を省略する。FIG. 9 is a flowchart showing the procedure for determining diastolic blood pressure. In step 5301, a series of initialization processes are performed, and the pressure register PR is initialized to an even lower lower limit value Pc of reduced pressure. The rest is the same as step 5201 in FIG. Further, the processing from step 3302 to step 5307 is the same as the processing from step 3202 to step 3207t in FIG. 8, and the explanation thereof will be omitted.
さて、ステップ5307でに音フラグKFを検出すると
、ス・テップ5308でその時点のカフ圧Pをメモリに
格納し、ステップ5309でKCを+1し、ステップ5
310でMCをリセットする。最低血圧は、少なくとも
1のKFが検出された後に、連続して2拍分のMFのみ
が検出されることをもって判定しているから、KF検出
後はMCをリセットしている。また、ステップ5307
でに音が検出されないのにステップ5311で脈同期信
号工のレベル論理0を検出すると、フローはステップ5
312に進みMCを+1する。Now, when the sound flag KF is detected in step 5307, the cuff pressure P at that time is stored in the memory in step 5308, KC is incremented by 1 in step 5309, and
The MC is reset at 310. Since the diastolic blood pressure is determined by detecting only two consecutive beats of MF after at least one KF is detected, the MC is reset after KF is detected. Also, step 5307
If a level logic 0 of the pulse synchronization signal generator is detected in step 5311 even though no sound has already been detected, the flow proceeds to step 5.
Proceed to 312 and add 1 to MC.
このルートを通ったときは脈同期信号m中にに音が発生
しない状態を示している。ステップ5313ではMCが
2か否かを調べる。MCが2であれば処理を抜ける。ま
たMCが2より小さいときはステップ5314でタイマ
を付勢し、ステップ5302に戻る。以後の処理は第7
図又は第8図において述へたものと同様である。When this route is passed, a state in which no sound is generated in the pulse synchronization signal m is shown. In step 5313, it is checked whether MC is 2 or not. If MC is 2, the process exits. If MC is smaller than 2, the timer is activated in step 5314, and the process returns to step 5302. The subsequent processing is the 7th
This is the same as that described in FIG.
尚、本願装置全体は小型・軽量であり、前述した如く、
ボンベを被験者が腰部等に携行することによって寝たき
りの被験者以外でも、A常生活に支障のないように被験
者が装置全体を携行可能である。従って、例えば丸−日
のデータを30分おきに計測することが、被験者が所定
の場所に赴くことなしに可能となる。この場合、前述し
たCPU等に内蔵したタイマ手段が所定の時刻毎に計測
開始を制御することになる。この際、最初の計測時刻が
OO時OO分といっ九区切の恕い時間である場合には、
以後のデータ収集時刻を区切の良い00時、又は00時
30分とするようにすることもめる。何となれば、こう
することによって、被験者の計測に対する受入体制も整
い易く、多数被験者のデータ比較も同一時間軸で行なえ
て、変動パターン、再現性の検討も容易となる。The entire device of the present application is small and lightweight, and as mentioned above,
By carrying the cylinder on the waist of the subject, even subjects other than those who are bedridden can carry the entire device without interfering with their daily lives. Therefore, for example, it is possible to measure data for a whole day every 30 minutes without the subject going to a predetermined location. In this case, the timer means built into the CPU or the like described above controls the start of measurement at every predetermined time. At this time, if the first measurement time is a nine-part time such as OO hours and OO minutes,
It is also possible to set the subsequent data collection time to 00:00 or 00:30, which is a good time. By doing this, it is easier to prepare a system for accepting measurements from test subjects, data from multiple test subjects can be compared on the same time axis, and fluctuation patterns and reproducibility can be easily examined.
[発明の効果]
以上述へた如く本発明によれば、最高血圧判定の後、最
低血圧付近までの定検計測を中抜きする際に被験者の血
圧が変動しても効率良い再試行によりカフ圧が自動的に
最低血圧をカバーするから、実質−回の計測工程で確実
に高速血圧lIi定が行なえる。[Effects of the Invention] As described above, according to the present invention, even if the subject's blood pressure fluctuates during periodic measurements up to the vicinity of the diastolic blood pressure after determining the systolic blood pressure, the cuff can be fixed by efficient retrials. Since the blood pressure automatically covers the diastolic blood pressure, high-speed blood pressure IIi determination can be reliably performed in the actual measurement process.
また本発明によれば、加圧源にダイヤフラム式ポンプや
ピストン式ポンプ等の脈動源、騒音源を一切使用しない
からカフ圧を無脈動(直線的)に上昇させることができ
る。よってカフ加圧、カフ減圧の制御が簡単であり、コ
ロトコフ音の発現。Further, according to the present invention, since no pulsation source or noise source such as a diaphragm pump or a piston pump is used as a pressurization source, the cuff pressure can be increased without pulsation (linearly). Therefore, cuff pressurization and cuff decompression can be easily controlled and Korotkoff sounds can be produced.
消滅が正確に検出できる。シv)も騒音発生源がないの
で周囲の患者にストレスを与えることもないし、夜間の
辻統測定をしても長期血圧モニタ、iと渚が眠りからさ
めることもなく、睡眠中の血圧動態を正確に捕えること
ができる。Disappearance can be detected accurately. Since there is no noise source, there is no stress on surrounding patients, and even if blood pressure is measured at night, long-term blood pressure monitoring will not wake I and Nagisa from sleep, and blood pressure dynamics during sleep. can be captured accurately.
また本発明によれば、加圧源に液化ガスボンベを使用す
るから装置が小型軽量化でき、しかも気化容量が大きい
から装置を携帯型とした場合でも長時間の使用に耐える
。Further, according to the present invention, since a liquefied gas cylinder is used as a pressurization source, the device can be made smaller and lighter, and since the vaporization capacity is large, it can be used for a long time even when the device is made portable.
第1図は本発明に係る一実施例の自動血圧計を示すブロ
ック構成図。
第2図は血圧測定の典型的な一工程を示す図、第3図(
a)及び(b)は本実施例の最適加圧点すが決定される
詳細を示す図、
第4図は被験者の血圧測定が1回の試行で正常に行なわ
れた場合を示すタイミングチャート。
第5図は被験者の血圧測定が1回の目動再試行により行
iわれだ場合を示すタイミングチャート。
第6図は血圧測定一工程の制御手順を示すフローチャー
ト。
第7区は@過加圧制御処理手順を示すフローチャート。
第8図は最高血圧判定処理手順を示すフローチーτデー
ト、
第9図は最低血圧判定処理手順を示すフローチャートで
ある。
ここで、1・・・カフ、2・・・フイク、3・・・パイ
プ。
4・−・圧力制御部 5・・・コロトコフ音検出部、6
・・・セントラルプロセツシングユニッ) (CPU)
。
7・・・表示部、8・・・記録部である。
第3図(0)
時間□
第3図(b)
吟閣□
手続補正書
昭和60年3月5日
特 許 庁 長 官 殿
1、事件の表示
特願昭59−200505号
2、発明の名称
自動血圧測定方法及びその装置
発明の詳細な説明の横FIG. 1 is a block diagram showing an automatic blood pressure monitor according to an embodiment of the present invention. Figure 2 shows a typical step in blood pressure measurement, Figure 3 (
a) and (b) are diagrams showing the details of determining the optimal pressurization point of this embodiment, and FIG. 4 is a timing chart showing the case where the blood pressure measurement of the subject is normally performed in one trial. FIG. 5 is a timing chart showing a case where blood pressure measurement of a subject is performed by retrying eye movements once. FIG. 6 is a flowchart showing the control procedure for one step of blood pressure measurement. The seventh section is a flowchart showing @overpressure control processing procedure. FIG. 8 is a flowchart showing the systolic blood pressure determination processing procedure, and FIG. 9 is a flowchart showing the diastolic blood pressure determination processing procedure. Here, 1... cuff, 2... hook, 3... pipe. 4... Pressure control section 5... Korotkoff sound detection section, 6
...Central processing unit) (CPU)
. 7...display section, 8...recording section. Figure 3 (0) Time □ Figure 3 (b) Ginkaku □ Procedural amendment dated March 5, 1985 Patent Office Director General 1, Indication of the case Patent application No. 1983-200505 2, Title of the invention Next to a detailed description of the automatic blood pressure measurement method and device invention
Claims (5)
値を設定する設定工程と、該加圧停止後のカフ定速減圧
中に検出したコロトコフ音信号を基に最高血圧を判定す
る最高血圧判定工程と、該最高血圧判定後のカフ圧を前
記所定値まで急減圧する急減圧工程と、該急減圧後のカ
フ定速減圧中に検出したコロトコフ音信号から最低血圧
を判定する最低血圧判定工程と、前記急減圧後のカフ定
速減圧中の所定区間にコロトコフ音信号が検出されない
ことを判別してカフ圧を所定量増加し、該加圧後のカフ
定速減圧中に検出したコロトコフ音信号から最低血圧を
判定する再試行工程を備えることを特徴とする自動血圧
測定方法。(1) A setting step in which the Korotkoff sound signal during cuff inflation is monitored and a predetermined value is set, and a step in which the systolic blood pressure is determined based on the Korotkoff sound signal detected during cuff constant rate decompression after the cuff is stopped. a high blood pressure determination step; a rapid depressurization step of rapidly reducing the cuff pressure to the predetermined value after the systolic blood pressure determination; and a diastolic blood pressure determining the diastolic blood pressure from the Korotkoff sound signal detected during constant speed cuff decompression after the rapid pressure reduction. In the determination step, the cuff pressure is increased by a predetermined amount by determining that the Korotkoff sound signal is not detected in a predetermined interval during constant speed cuff decompression after said rapid decompression, and the cuff pressure is detected during constant speed cuff decompression after said pressurization. An automatic blood pressure measurement method characterized by comprising a retry step of determining diastolic blood pressure from a Korotkoff sound signal.
度で減少させる第1の減圧手段と、カフ圧を前記所定速
度より速い速度で減少させる第2の減圧手段と、カフ圧
を検出する圧力検出手段と、コロトコフ音を検出してK
音信号を出力するK音検出手段と、前記加圧手段付勢中
の前記K音信号をモニタして所定値を設定する設定手段
と、該加圧停止後の前記第1の減圧手段付勢中に検出し
た前記K音信号を基に最高血圧を判定する最高血圧判定
手段と、該最高血圧判定により前記第2の減圧手段を付
勢し、カフ圧を前記所定値まで減少させる減圧制御手段
と、該減圧停止後の前記第1の減圧手段付勢中に検出し
た前記K音信号を基に最低血圧を判定する最低血圧判定
手段と、前記減圧停止後の前記第1の減圧手段付勢中の
所定区間内に前記K音信号が検出されないことを判別し
て前記加圧手段付勢によりカフ圧を所定量増加し、該加
圧停止後の前記第1の減圧手段付勢中に検出した前記K
音信号を基に最低血圧を判定する再試行手段を備えるこ
とを特徴とする自動血圧測定装置。(2) a pressurizing means for increasing cuff pressure; a first depressurizing means for decreasing cuff pressure at a predetermined rate; and a second decompressing means for decreasing cuff pressure at a faster rate than the predetermined rate; A pressure detection means for detecting and a K for detecting Korotkoff sound.
K sound detection means for outputting a sound signal; setting means for monitoring the K sound signal while the pressurizing means is being energized and setting a predetermined value; and energizing the first pressure reducing means after the pressurization is stopped. systolic blood pressure determining means for determining the systolic blood pressure based on the K sound signal detected during the systolic blood pressure; and pressure reduction control means for energizing the second pressure reducing means based on the systolic blood pressure determination to reduce the cuff pressure to the predetermined value. and diastolic blood pressure determining means for determining the diastolic blood pressure based on the K sound signal detected while the first pressure reducing means is energized after the decompression is stopped; and diastolic blood pressure determining means for energizing the first pressure reducing means after the decompression is stopped. cuff pressure is increased by a predetermined amount by energizing the pressurizing means, and the cuff pressure is detected while the first decompressing means is energizing after the pressurization is stopped. Said K
An automatic blood pressure measurement device characterized by comprising a retry means for determining diastolic blood pressure based on a sound signal.
るときは、該最低血圧値に第1の圧力値を加えた値を所
定値とすることを特徴とする特許請求の範囲第2項記載
の自動血圧測定装置。(3) When the setting means can predict the diastolic blood pressure value based on the K sound signal, the setting means sets a value obtained by adding the first pressure value to the diastolic blood pressure value as the predetermined value. The automatic blood pressure measuring device according to item 2.
測できないときは、最高血圧判定時のカフ圧より第2の
圧力値を減じた値を所定値とすることを特徴とする特許
請求の範囲第2項又は第3項記載の自動血圧測定装置。(4) A patent characterized in that the setting means monitors the K sound signal and when the diastolic blood pressure value cannot be predicted, sets the predetermined value to a value obtained by subtracting the second pressure value from the cuff pressure at the time of determining the systolic blood pressure. An automatic blood pressure measuring device according to claim 2 or 3.
特徴とする特許請求の範囲第2項記載の自動血圧測定装
置。(5) The automatic blood pressure measuring device according to claim 2, wherein the pressurizing means uses a liquefied gas cylinder as a pressure source.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59200505A JPS6179443A (en) | 1984-09-27 | 1984-09-27 | Automatic blood pressure measuring method and apparatus |
US06/726,764 US4660567A (en) | 1984-09-27 | 1985-04-24 | Method of automatically measuring blood pressure, and apparatus therefor |
GB08515341A GB2165052B (en) | 1984-09-27 | 1985-06-18 | Method of automatically measuring blood pressure, and apparatus therefor |
DE19853527279 DE3527279A1 (en) | 1984-09-27 | 1985-07-30 | METHOD FOR AUTOMATICALLY MEASURING THE BLOOD PRESSURE AND DEVICE FOR CARRYING OUT THE METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59200505A JPS6179443A (en) | 1984-09-27 | 1984-09-27 | Automatic blood pressure measuring method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6179443A true JPS6179443A (en) | 1986-04-23 |
JPH0332368B2 JPH0332368B2 (en) | 1991-05-13 |
Family
ID=16425426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59200505A Granted JPS6179443A (en) | 1984-09-27 | 1984-09-27 | Automatic blood pressure measuring method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6179443A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03123535A (en) * | 1989-10-09 | 1991-05-27 | Terumo Corp | Electronic sphygmomanometer |
US5447162A (en) * | 1989-10-05 | 1995-09-05 | Terumo Kabushiki Kaisha | Electronic sphygmomanometer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575540A (en) * | 1980-06-10 | 1982-01-12 | Yamaha Motor Co Ltd | Suction air heating unit for internal combustion engine |
JPS596654A (en) * | 1982-07-02 | 1984-01-13 | Nec Corp | Method for tracing malicious call |
JPS59111737A (en) * | 1982-12-15 | 1984-06-28 | 三洋電機株式会社 | Hemomanometer |
-
1984
- 1984-09-27 JP JP59200505A patent/JPS6179443A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575540A (en) * | 1980-06-10 | 1982-01-12 | Yamaha Motor Co Ltd | Suction air heating unit for internal combustion engine |
JPS596654A (en) * | 1982-07-02 | 1984-01-13 | Nec Corp | Method for tracing malicious call |
JPS59111737A (en) * | 1982-12-15 | 1984-06-28 | 三洋電機株式会社 | Hemomanometer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447162A (en) * | 1989-10-05 | 1995-09-05 | Terumo Kabushiki Kaisha | Electronic sphygmomanometer |
JPH03123535A (en) * | 1989-10-09 | 1991-05-27 | Terumo Corp | Electronic sphygmomanometer |
Also Published As
Publication number | Publication date |
---|---|
JPH0332368B2 (en) | 1991-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4660567A (en) | Method of automatically measuring blood pressure, and apparatus therefor | |
JP5026201B2 (en) | NIBP signal processing method using SpO2 plethysmograph signal and non-invasive blood pressure monitor device | |
US4312359A (en) | Noninvasive blood pressure measuring system | |
JPS596654B2 (en) | electronic blood pressure monitor | |
JP2004113593A (en) | Apparatus for evaluating arteriosclerotic degree | |
JPH04276234A (en) | Oscillometric type automatic hemadynamometer | |
JPS62155829A (en) | Apparatus for automatically measuring blood pressure | |
US4729383A (en) | Method and apparatus for automatically determining blood pressure measurements | |
JPH05288869A (en) | Multifunction watch | |
JPH04279147A (en) | Automatic sphygmomanometer | |
US6520919B1 (en) | Inferior-and-superior-limb blood-pressure-index measuring apparatus | |
EP0353316B1 (en) | Method for measuring blood pressure and apparatus for automated blood pressure measuring | |
JPH04261640A (en) | Blood pressure monitoring apparatus | |
JPS6179443A (en) | Automatic blood pressure measuring method and apparatus | |
EP1410757A1 (en) | Vital-information obtaining apparatus | |
JPH10137204A (en) | Blood noninvasive sphygmomanometer | |
JPS6179442A (en) | Automatic blood pressure measuring method and apparatus | |
JPS633835A (en) | Blood pressure measuring apparatus | |
JP3717990B2 (en) | Electronic blood pressure monitor | |
JP3057933B2 (en) | Electronic sphygmomanometer | |
JPS6179441A (en) | Cuff optimum pressure control apparatus | |
JP2551668B2 (en) | Electronic blood pressure monitor | |
JPS6214832A (en) | Electronic hemomanometer | |
JPH0226531A (en) | Method for stable measurement in non-blood-observing hemadynamometer | |
JPH03123535A (en) | Electronic sphygmomanometer |