JPS6178375A - Method for separating and recovering aquatic bacteria - Google Patents
Method for separating and recovering aquatic bacteriaInfo
- Publication number
- JPS6178375A JPS6178375A JP59198520A JP19852084A JPS6178375A JP S6178375 A JPS6178375 A JP S6178375A JP 59198520 A JP59198520 A JP 59198520A JP 19852084 A JP19852084 A JP 19852084A JP S6178375 A JPS6178375 A JP S6178375A
- Authority
- JP
- Japan
- Prior art keywords
- separator
- flow port
- aquatic bacteria
- bacteria
- separating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000894006 Bacteria Species 0.000 title claims description 61
- 238000000034 method Methods 0.000 title claims description 19
- 239000007787 solid Substances 0.000 claims description 31
- 238000000926 separation method Methods 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 15
- 238000011084 recovery Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000000696 magnetic material Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 21
- 239000007788 liquid Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000009760 functional impairment Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/005—Pretreatment specially adapted for magnetic separation
- B03C1/01—Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、磁場に反応を示す水生細菌あるいは微生物の
分離回収装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for separating and recovering aquatic bacteria or microorganisms that react to a magnetic field.
地磁気を感知する生物の中で、走磁性菌と称される水生
細菌は、体内に複数の単結晶マグネタイト(Fe、O,
)を有し、その磁性物質の働きにより特定磁極方向に走
行するとされている。この水生細菌は淡水及び海水の土
壌中に生息し、この土壌を増殖の拠り所としている。し
たがって、この水生細菌をυ1収するには、土壌等の沈
殿物から分離する必要がある。この分離方法として、水
生細菌と沈殿物を含む溶液を非磁性容器に入れて静置さ
せ、その−LKl液部の任意位置の容器外周に磁場をか
け、磁極付近の液を回収する(T、 ToMoench
at al、 、 Arch、 Microbiol、
、 vol、 IIL 1978 )か、あるいはガ
ラス板上に水生細菌及び沈殿物を含む溶液と蒸留水等の
清澄水を接触させ、清澄水の方に水生細菌を泳がせるよ
うに磁場を印加する(R,P、 nlakemoroe
t al、 、サイエンス、1982年2月号、p16
〜25)例がある。しかし、これらの方法は溶液中の回
収対象細菌を十分に回収することが困難で、また、処理
量が少なく、効果的な分離方法とは言えない。Among the organisms that sense the earth's magnetic field, aquatic bacteria called magnetotactic bacteria have multiple single-crystal magnetites (Fe, O,
), and is said to travel in the direction of a specific magnetic pole due to the action of its magnetic substance. These aquatic bacteria live in the soil of freshwater and seawater, and use this soil as a base for their growth. Therefore, in order to obtain υ1 of this aquatic bacterium, it is necessary to separate it from sediments such as soil. In this separation method, a solution containing aquatic bacteria and sediment is placed in a non-magnetic container, left to stand, and a magnetic field is applied to the outer periphery of the container at an arbitrary position in the -LKl liquid part to collect the liquid near the magnetic pole (T, ToMoench
at al, , Arch, Microbiol,
, vol. IIL 1978), or a solution containing aquatic bacteria and precipitate is brought into contact with clear water such as distilled water on a glass plate, and a magnetic field is applied to make the aquatic bacteria swim toward the clear water (R, P, nlakemoroe
tal, Science, February 1982 issue, p16
~25) There are examples. However, these methods cannot be said to be effective separation methods because it is difficult to sufficiently recover the bacteria to be recovered from the solution, and the throughput is small.
本発明の目的は、磁場を感知する水生細菌と沈降性物質
を連続的に分離し、かつ、amに対して走行性を示す水
生細菌の回収率を向上させる分離回収方法を提供するこ
とにある。An object of the present invention is to provide a separation and recovery method that continuously separates aquatic bacteria that sense a magnetic field from sedimentary substances, and improves the recovery rate of aquatic bacteria that are mobile toward am. .
本発明は、磁場内に非磁性体の分離器を設け、磁場に反
応する水生細菌と沈降性物質を含む溶液を分離器の一端
から供給し、沈降性物質のみを分離器下方に重力沈降さ
せ、分離器の一方の出口より磁場に反応する水生細菌を
効率よく回収することを特徴とする。The present invention provides a separator made of non-magnetic material within a magnetic field, supplies a solution containing aquatic bacteria that react to the magnetic field and sedimentary substances from one end of the separator, and allows only the sedimentary substances to settle by gravity at the bottom of the separator. , is characterized by efficiently collecting aquatic bacteria that react to a magnetic field from one outlet of the separator.
磁場に対して反応を示し、特定磁極方向に走行する水生
細菌、すなわち走磁性菌は土壌中に生息する。また、本
発明者らの実験に依れば、この走磁性菌を培養する場合
、土壌等の沈降性固形物がその増殖効率に影響を与える
ものと予想された。Aquatic bacteria that respond to magnetic fields and travel in the direction of specific magnetic poles, that is, magnetotactic bacteria, live in soil. Furthermore, according to experiments conducted by the present inventors, it was predicted that when culturing this magnetotactic bacterium, sedimentary solids such as soil would affect its growth efficiency.
したがって、走磁性菌を抽出するには沈降性固形物質と
分離しなければならない。微生物等の分離抽出には、従
来、遠心分離法やマイクロマニュピレータによる選択抽
出法などが知られている。しかし1本発明者らの経験に
よれば、過度の攪拌は走磁性菌の機能障害を誘起し、菌
数が減少する傾向が見られたことから、遠心分離法は走
磁性菌の分離抽出に適さないものと考えられる。また、
選択抽出法は11を位時間当りの菌抽出数が僅少で、効
果的な分離抽出法と言えない。このことから、菌に悪影
響を与えず、処理量の多い走磁性菌の分離抽出法が必要
である。Therefore, in order to extract magnetotactic bacteria, they must be separated from the sedimentary solid material. Conventionally, methods such as centrifugal separation and selective extraction using a micromanipulator are known for separating and extracting microorganisms and the like. However, according to the experience of the present inventors, excessive agitation induces dysfunction of magnetotactic bacteria and tends to reduce the number of bacteria, so centrifugation is not suitable for separating and extracting magnetotactic bacteria. considered unsuitable. Also,
The selective extraction method extracts only a small number of bacteria per hour, so it cannot be said to be an effective separation and extraction method. Therefore, there is a need for a method for separating and extracting magnetotactic bacteria that does not adversely affect the bacteria and can be processed through a large amount.
本発明は以上の実験的経験により成されたものである。The present invention was achieved based on the above experimental experience.
その一実施例を第1図に示す。第1図において、1は分
離器で3つの流通管を持つ非磁性体、2及び2′は磁石
で対極を成す、3は固形物回収器、4は菌回収器、5は
溶液供給装置、6は補助液供給装置、7は固形物排出装
置、8は密閉栓である。走磁性水生細菌及び沈降性固形
物質を含む液9は溶液供給装置5により導管12を通じ
て流通管IAから分離器1に送入される。分離器1はT
字型を成し、直線流通部IA及びIBを水平に位置させ
ている。この直線流通部の前後に磁石2及び2′を対向
面の磁極が異なるように設置する。磁石2,2′は電磁
石あるいは永久磁石でも良い、また、磁極は回収対象と
する走磁性水生細菌の走行する磁極が分離器1の流通方
向、すなわち磁石2′に位置させる。分離器1に送入さ
れた溶液9中の沈降性固形物質は流通路IA付近で底部
に堆積しながら前方に押し出される。分離器1のT字部
、すなわち分離部で沈降固形物質は鉛直方向に設けられ
た流通管ICに重力沈降する。One embodiment is shown in FIG. In Fig. 1, 1 is a separator with a non-magnetic material having three flow pipes, 2 and 2' are magnets forming opposite poles, 3 is a solids collector, 4 is a bacteria collector, 5 is a solution supply device, 6 is an auxiliary liquid supply device, 7 is a solid matter discharge device, and 8 is a sealing plug. A liquid 9 containing magnetotactic aquatic bacteria and sedimentary solid substances is fed by a solution supply device 5 to the separator 1 through a conduit 12 from a flow tube IA. Separator 1 is T
It forms a letter shape, and the straight flow parts IA and IB are positioned horizontally. Magnets 2 and 2' are installed before and after this straight flow section so that the magnetic poles of their opposing surfaces are different. The magnets 2, 2' may be electromagnets or permanent magnets, and the magnetic poles on which the magnetotactic aquatic bacteria to be collected travel are located in the flow direction of the separator 1, that is, in the magnet 2'. The sedimentary solid substances in the solution 9 fed into the separator 1 are pushed forward while accumulating at the bottom near the flow path IA. In the T-shaped part of the separator 1, that is, the separation part, the solid substances settled by gravity settle in the flow pipe IC provided in the vertical direction.
一方、溶液中の走磁性水生細菌は磁力が強く、かつ、特
定磁極方向に進むため、T字部で沈降性固形物質と分離
され、流通管IBを通じて磁石2′に向う。この場合磁
場強さが最大となる位置を流通管IAの固・戒壇界面の
上方とすれば、走磁性水生細菌の移動を効果的に行うこ
とができる。流通管IBの出口に達した走磁性水生細菌
は磁場内の分離管1に滞留することなく、溶液供給袋W
5からの連続流に押し出され、導管14を通じて菌回収
器14に捕集される。流通路ICに重力沈降した固形物
質は導管13を通じて固形物回収器3に蓄積される。と
ころで、固形物回収器3から分離器1の分離部までの流
通路IC及び13にガス相が混入していると、沈降の障
害となり、固形物の分離が行われなくなる。このため、
固形物回収器3には密閉栓8を、ガス混入時に補助液供
給装置6より液を供給し、流通路からガスを排除する。On the other hand, since the magnetotactic aquatic bacteria in the solution have a strong magnetic force and move in the direction of a specific magnetic pole, they are separated from the sedimentary solid material at the T-shaped portion and move toward the magnet 2' through the flow pipe IB. In this case, if the position where the magnetic field strength is maximum is located above the hard-field interface of the flow pipe IA, the magnetotactic aquatic bacteria can be effectively moved. The magnetotactic aquatic bacteria that have reached the outlet of the flow tube IB do not stay in the separation tube 1 within the magnetic field and are transferred to the solution supply bag W.
5 and collected in a conduit 14 into a bacteria collector 14 . The solid matter that has settled by gravity in the flow path IC is accumulated in the solid matter collector 3 through the conduit 13. By the way, if the gas phase is mixed in the flow paths IC and 13 from the solids collector 3 to the separation section of the separator 1, it will become an obstacle to sedimentation and the solids will not be separated. For this reason,
A sealing stopper 8 is provided in the solid matter recovery device 3, and when gas is mixed in, liquid is supplied from an auxiliary liquid supply device 6, and the gas is removed from the flow path.
この操作は、溶液9の供給前に1度行えば良いが、溶液
供給袋W5の稼動中にガスが混入した場合は供給袋W5
を停止して行う必要がある。また、供給装置6からの液
は、走磁性水生細菌に影響を与えないものであれば良く
、一般に分離対象溶液9の一1z澄液あるいは対象溶液
9と同じpi(値に調整した蒸留水等を用いる。さらに
、固形物回収器3に蓄積された固形物を排出装置7で間
欠的あるいは連続的に抜き出すことにより、分離対象溶
液9を連続供給して走磁性水生細菌の長時間回収が可能
となる。この場合、固形物排出装置7からの流出流量は
溶液供給装置5の流入流量より少なくする必要がある。This operation only needs to be performed once before supplying the solution 9, but if gas gets mixed in while the solution supply bag W5 is in operation, the supply bag W5
It is necessary to stop and do this. The liquid from the supply device 6 may be any liquid as long as it does not affect magnetotactic aquatic bacteria, and is generally a clear liquid of the target solution 9 or distilled water adjusted to the same pi value as the target solution 9. Furthermore, by intermittently or continuously extracting the solids accumulated in the solids collector 3 with the discharge device 7, it is possible to continuously supply the separation target solution 9 and collect magnetotactic aquatic bacteria over a long period of time. In this case, the flow rate outflow from the solid matter discharge device 7 needs to be smaller than the flow rate inflow into the solution supply device 5.
この実施例に基づいて、本発明者らが走磁性水生細菌の
分離回収実験を行った結果、80%以−ヒの回収効率が
得られた。実験は、直径5mnの管状分離器を用い、4
0%の沈降性固形物質を含む溶液を対象とした。また、
実験に依れば、分離器の液流速は固形物の沈降分離に影
響を与えるが、20 cn / win程度まで明確に
分離することが認められた。この固形物質の分離は、走
磁性水生細菌の流通管IA及びIBと沈降固形物質の流
通管ICの管径を調節することにより良好に行わせるこ
とができる。Based on this example, the present inventors conducted a separation and recovery experiment of magnetotactic aquatic bacteria, and as a result, a recovery efficiency of more than 80% was obtained. The experiment used a tubular separator with a diameter of 5 mm, and
Solutions containing 0% sedimentable solids were targeted. Also,
According to experiments, although the liquid flow rate in the separator affects the sedimentation separation of solids, it has been found that clear separation can be achieved up to about 20 cn/win. This separation of solid substances can be effected well by adjusting the diameters of the flow tubes IA and IB for magnetotactic aquatic bacteria and the flow tube IC for settled solid substances.
第1図では、分離器1の走磁性水生細菌の流通管IA及
びIBを水平に位置させたが、傾きを与えても良い。傾
は方は流通管IA及びIBのどちらを高くしても良いが
、第2図に示すように、流通管IBを高くする方がより
効果的である。これは、流通管IAを高くすると分離器
内での液流速が加速され、さらに、流通管IAあるいは
IBにガス相が形成されて固・液相の境界面が乱される
恐れがあるためである。流通管IBが高ければ、固・液
相は乱れず、走磁性水生細菌の回収効率に悪影響を与え
ない。分離器1の傾斜角は分離器1の流通管IAで供給
溶液9が固・液相面の形成される条件で制約される。走
磁性水生細菌の流通路1人及びIBを傾斜させた場合、
沈降固形物質の流通管ICは、第2図に示す鉛直方向か
ら第3図に示すような流通路に対して90度の範囲に設
置すれば固形物の沈降が良好となる。In FIG. 1, the flow tubes IA and IB for magnetotactic aquatic bacteria of the separator 1 are positioned horizontally, but they may be tilted. Regarding the inclination, either the flow pipe IA or IB may be made higher, but as shown in FIG. 2, it is more effective to make the flow pipe IB higher. This is because if the flow pipe IA is made high, the liquid flow rate in the separator will be accelerated, and there is also a risk that a gas phase will be formed in the flow pipe IA or IB and the interface between the solid and liquid phases will be disturbed. be. If the flow tube IB is high, the solid and liquid phases are not disturbed and the collection efficiency of magnetotactic aquatic bacteria is not adversely affected. The angle of inclination of the separator 1 is limited by the condition that the feed solution 9 forms a solid/liquid phase surface in the flow pipe IA of the separator 1. When the flow path of magnetotactic aquatic bacteria is 1 person and the IB is tilted,
If the flow pipe IC for the settled solid substance is installed within a range of 90 degrees from the vertical direction shown in FIG. 2 to the flow path shown in FIG. 3, the solids will settle well.
以上の実施例において、管状の分離器を対象としたが、
本発明はこれに限定するものではない。In the above embodiments, the target was a tubular separator, but
The present invention is not limited to this.
第4図にその一例を示す。第4図の分離器1は分離部を
角型とするものである。このような構造にすることによ
り、分離対象溶液9を多量に供給でき、走磁性水生細菌
の回収量を増大させることができる。また、各々の流通
光を三角柱型とし、その頂部を管状導管と接続させるこ
とにより、ポンプ等の使用、あるいは分離回収装置の小
型化が可能となる。An example is shown in FIG. The separator 1 shown in FIG. 4 has a rectangular separating section. With such a structure, a large amount of the solution 9 to be separated can be supplied, and the amount of magnetotactic aquatic bacteria recovered can be increased. Moreover, by forming each circulating light into a triangular prism shape and connecting the top to a tubular conduit, it becomes possible to use a pump or the like or to downsize the separation and recovery device.
また1本実施例での磁場方向は、流通管IA及びIBに
沿った方式としているが、これに限定するものではない
。例えば第5図及び第6図の方式でも良い。第5図は、
走磁性水生細菌が走行を示す磁極2′を流通管IBの上
方に、対極2を流通管IAの下方に設置する。このよう
な磁石位置とすることにより、斜め上方に走行する走磁
性水生細菌の流通管ICへの混入を防止することができ
る。第6図は、走磁性水生細菌が走行を示す磁極2′を
流通管IA及びIBの上方に、対極2を流通管IA及び
IBの下方に設置するものである。Furthermore, although the direction of the magnetic field in this embodiment is along the flow pipes IA and IB, it is not limited thereto. For example, the methods shown in FIGS. 5 and 6 may be used. Figure 5 shows
A magnetic pole 2', which shows the movement of magnetotactic aquatic bacteria, is placed above the flow tube IB, and a counter electrode 2 is placed below the flow tube IA. With such a magnet position, it is possible to prevent magnetotactic aquatic bacteria traveling diagonally upward from entering the flow pipe IC. In FIG. 6, a magnetic pole 2' indicating the movement of magnetotactic aquatic bacteria is installed above the flow tubes IA and IB, and a counter electrode 2 is installed below the flow tubes IA and IB.
この方式により、走磁性水生細菌は常時上方へ移動しよ
うとするため、流通管ICへの混入を防止できる。With this method, since magnetotactic aquatic bacteria always try to move upward, it is possible to prevent them from entering the flow pipe IC.
以上の実施例ではT字型の分離器としたが、本発明はこ
れに限定するものではない。第7図及び第9図に変形例
を示す。第7図は、磁場を上下方向にかけ、分離対象溶
液9を横方向、あるいは斜め下方から供給し、流通管I
Bを上方に、流通管ICを下方に設置し、分離部での沈
降性固形物質の沈降方向と走磁性水生細菌の走行方向を
明確に相違させる方式である。第8図は、中央部の管径
が大きく、その上方向に流通管IBを、底部に流通管I
Cを設けた分離器1に、流通管IAを下方から挿入し、
流通管IA及びIB力方向対して磁石2及び2′を設置
する。流通管IAにより分離器1の中央部に送入された
分離対象溶液9中の沈降性固形物質は分離器1に導入さ
れた直後から沈降し始め、傾斜した底部に沿って流通管
ICから回収される。一方、走磁性水生細菌は上下方向
に印加された磁場に沿って上昇し、流通管IBより回収
される。この方式によれば、流通管IAでの固・液相の
形成、及び走磁性水生細菌の液相への移動を予め行うこ
とが出来ないが、これを行わせるには全体を横向きとす
れば良い。In the above embodiments, a T-shaped separator was used, but the present invention is not limited to this. Modifications are shown in FIGS. 7 and 9. In FIG. 7, a magnetic field is applied in the vertical direction, the solution to be separated 9 is supplied from the side or diagonally downward, and the flow pipe I
In this system, B is placed at the top and the flow pipe IC is placed at the bottom, so that the direction of sedimentation of the sedimentary solid substance in the separation section is clearly different from the direction of travel of the magnetotactic aquatic bacteria. Figure 8 shows a pipe with a large diameter in the center, a flow pipe IB above it, and a flow pipe I at the bottom.
Insert the flow pipe IA from below into the separator 1 provided with the
Magnets 2 and 2' are installed in the force direction of flow pipes IA and IB. The settling solid substances in the solution to be separated 9 fed into the center of the separator 1 by the flow pipe IA begin to settle immediately after being introduced into the separator 1, and are collected from the flow pipe IC along the sloping bottom. be done. On the other hand, magnetotactic aquatic bacteria rise along the vertically applied magnetic field and are collected from the flow tube IB. According to this method, it is not possible to form a solid/liquid phase in the flow tube IA and to move magnetotactic aquatic bacteria to the liquid phase in advance, but in order to do this, it is necessary to turn the entire body horizontally. good.
ところで、以上の実施例は1個の分離器を用いる一段分
離回収法を主体に説明したが、本発明は複数分離器の使
用を妨げるものでない。第1図に示す分離回収装置を用
いれば、固形物排出装置7からの排出液を次工程の分離
器入口に供給する。Incidentally, although the above embodiments have mainly been described as a one-stage separation and recovery method using one separator, the present invention does not preclude the use of a plurality of separators. If the separation and recovery device shown in FIG. 1 is used, the liquid discharged from the solid matter discharge device 7 will be supplied to the inlet of the separator in the next step.
さらに、本発明は対極を成す2個の磁石を用いたが、1
個の磁石でも走磁性水生細菌の回収が可能である。また
、上記実施例では、分離器1の固形物流通管ICを1本
としているが、複数本設けてもよい。この方式により、
沈降性固形物質を十分に分離することができる。なお、
本発明は分離器の構造や設置法、磁場のかけ方に対して
、前述の実施例を組合せて用いても良い。Furthermore, although the present invention uses two magnets forming opposite poles, one
It is possible to collect magnetotactic aquatic bacteria even with a single magnet. Further, in the above embodiment, the separator 1 has one solids flow pipe IC, but a plurality of pipes may be provided. With this method,
Sedimentable solid substances can be separated satisfactorily. In addition,
The present invention may be used in combination with the above-described embodiments with respect to the structure and installation method of the separator and the method of applying the magnetic field.
以上説明したように、本発明によれば走磁性水生細菌の
特徴を生かし、簡易な分離回収装置で、処理量が大きく
、高い回収効率が期待できる。また、攪拌を伴わない、
はぼ静置状態の分離であるため、機能障害を起こさない
で走磁性水生細菌の回収が可能である。As explained above, according to the present invention, by taking advantage of the characteristics of magnetotactic aquatic bacteria, a large throughput and high recovery efficiency can be expected with a simple separation and recovery device. Also, it does not involve stirring.
Since the separation is carried out in a stationary state, it is possible to recover magnetotactic aquatic bacteria without causing functional impairment.
さらに、T字型の分離器にすることにより、分離部での
走磁性水生細菌の沈降を防止でき、回収効率の向上に寄
与する。これは、第9図に示すように、分離器lの分離
部(T字部)で、固形物10は溶液流入側に近いほうの
導管壁に沿って沈降するが、反対壁側では上昇流が発生
するためである。この効果は、固形物の沈降導管が走磁
性水生細菌流通部に対して斜め前方範囲では同様に期待
できるが、逆方向の設置では期待できない。Furthermore, by using a T-shaped separator, it is possible to prevent sedimentation of magnetotactic aquatic bacteria in the separation section, contributing to improvement in recovery efficiency. As shown in Fig. 9, in the separating section (T-shaped section) of separator L, the solids 10 settle along the wall of the conduit near the solution inflow side, but on the opposite wall there is an upward flow. This is because This effect can be similarly expected if the solid matter sedimentation conduit is installed diagonally in front of the magnetotactic aquatic bacteria distribution section, but cannot be expected if it is installed in the opposite direction.
第1図は本発明の一実施例を示す構成図、第2図及び第
3図は分離器の設置法の説明図、第4図は分離器の構造
図、第5図及び第6図は磁場のかけ方を示す図、第7図
及び第8図は上下方向に磁場をかけた場合の分離器構造
図、第9図は本発明の効果を示す図である。
1・・・分離器、2,2′・・・磁石、3・・・固形物
回収器、4・・・菌回収器、5・・・溶液供給装置、6
・・・補助液供給装置、7・・・固形物排出装置。Fig. 1 is a configuration diagram showing an embodiment of the present invention, Figs. 2 and 3 are explanatory diagrams of the separator installation method, Fig. 4 is a structural diagram of the separator, and Figs. 5 and 6 are FIGS. 7 and 8 are diagrams showing how to apply a magnetic field, FIGS. 7 and 8 are diagrams showing the separator structure when a magnetic field is applied in the vertical direction, and FIG. 9 is a diagram showing the effects of the present invention. DESCRIPTION OF SYMBOLS 1... Separator, 2, 2'... Magnet, 3... Solid matter collector, 4... Bacteria collector, 5... Solution supply device, 6
... Auxiliary liquid supply device, 7... Solid matter discharge device.
Claims (1)
磁場内に互いに連通する3個の流通口を持つ分離器を位
置させ、該分離器の第1流通口から磁力線に沿つて走行
する機能を持つ水生細菌と該水生細菌以外の沈降性固形
物質を含む溶液を供給し、前記第1流通口より下方向に
導通する第2流通口に前記沈降性固形物質を電力沈降さ
せ、前記水生細菌を含む溶液を第3流通口より取り出す
ことを特徴とする水生細菌の分離回収方法。 2、前記分離器の材質を非磁性体とすることを特徴とす
る特許請求の範囲第1項記載の水生細菌の分離回収方法
。 3、前記第1流通口と第3流通口を直管とする分離器で
あつて、該分離器の第1流通口と第3流通口の両端に磁
極を位置させることを特徴とする特許請求の範囲第1項
記載の水生細菌の分離回収方法。 4、前記分離器において、一方の磁極を第1流通口の下
方に、他の磁極を第3流通口の上方に位置させることを
特徴とする特許請求の範囲第1項記載の水生細菌の分離
回収方法。 5、前記分離器において、第1流通口と第3通流口を水
平あるいは第1流通口に対して第3流通口を高くするこ
とを特徴とする特許請求の範囲第1項記載の水生細菌の
分離回収方法。 6、前記第2流通口を溶液で満たした密閉容器と連通す
ることを特徴とする特許請求の範囲第1項記載の水生細
菌の分離回収方法。[Claims] 1. A magnetic field is formed by an electromagnet or a permanent magnet, a separator having three communication ports communicating with each other is located within the magnetic field, and a separator is placed along the lines of magnetic force from the first communication port of the separator. A solution containing aquatic bacteria having the ability to travel along the water and a settleable solid substance other than the aquatic bacteria is supplied, and the settleable solid substance is caused to settle by electric power into a second flow port that is connected downward from the first flow port. . A method for separating and recovering aquatic bacteria, characterized in that the solution containing the aquatic bacteria is taken out from a third flow port. 2. The method for separating and recovering aquatic bacteria according to claim 1, wherein the separator is made of a non-magnetic material. 3. A separator in which the first flow port and the third flow port are straight pipes, characterized in that magnetic poles are located at both ends of the first flow port and the third flow port of the separator. A method for separating and recovering aquatic bacteria according to item 1. 4. Separation of aquatic bacteria according to claim 1, wherein in the separator, one magnetic pole is located below the first flow port and the other magnetic pole is located above the third flow port. Collection method. 5. The aquatic bacteria according to claim 1, wherein in the separator, the first flow port and the third flow port are horizontal or the third flow port is raised higher than the first flow port. Separation and recovery method. 6. The method for separating and recovering aquatic bacteria according to claim 1, wherein the second flow port is communicated with a closed container filled with a solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59198520A JPS6178375A (en) | 1984-09-25 | 1984-09-25 | Method for separating and recovering aquatic bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59198520A JPS6178375A (en) | 1984-09-25 | 1984-09-25 | Method for separating and recovering aquatic bacteria |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6178375A true JPS6178375A (en) | 1986-04-21 |
Family
ID=16392501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59198520A Pending JPS6178375A (en) | 1984-09-25 | 1984-09-25 | Method for separating and recovering aquatic bacteria |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6178375A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012115100A1 (en) * | 2011-02-23 | 2012-08-30 | 宇部興産株式会社 | Method and apparatus for separation of mixture |
WO2012133537A1 (en) * | 2011-03-31 | 2012-10-04 | 宇部興産株式会社 | Mixture separation method and separation device |
-
1984
- 1984-09-25 JP JP59198520A patent/JPS6178375A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012115100A1 (en) * | 2011-02-23 | 2012-08-30 | 宇部興産株式会社 | Method and apparatus for separation of mixture |
US9308536B2 (en) | 2011-02-23 | 2016-04-12 | Osaka University | Method and apparatus for separation of mixture |
WO2012133537A1 (en) * | 2011-03-31 | 2012-10-04 | 宇部興産株式会社 | Mixture separation method and separation device |
US9174221B2 (en) | 2011-03-31 | 2015-11-03 | Osaka University | Method and apparatus for separation of mixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101795753B (en) | Radial counterflow inductive desalination | |
US20070278153A1 (en) | Forward osmosis utilizing a controllable osmotic agent | |
CN102327810B (en) | A non-polluting tube bundle isolation permanent magnetic separation device suitable for ultrafine magnetic particle separation | |
AU2009299101B2 (en) | Electro-magnetic flux clarifier, thickener or separator | |
CN103848534A (en) | Oily sewage ultrasonic magneto-electric flocculation suspension filtering purifying process | |
CN104071877B (en) | Integration two-stage magnetic purification high-concentration waste wetting system | |
CN106241974A (en) | Equipment for treating water from mine and method for treating water | |
JPS6178375A (en) | Method for separating and recovering aquatic bacteria | |
ES2228907T3 (en) | PROCEDURE AND DEVICE OF WATER TREATMENT WITH LASTRE INJECTED IN A QUIET AREA. | |
CN201442879U (en) | Dual-magnetic waste water separating and filtering device | |
Sartory et al. | Recovery of Cryptosporidium oocysts from small and large volume water samples using a compressed foam filter system | |
CN113264617A (en) | Dielectrophoresis-assisted radioactive marine sewage microalgae cleaning device and method | |
JP3500925B2 (en) | Agglomeration treatment method and apparatus | |
JPS6181778A (en) | Method for separating and recovering aquatic bacteria | |
US20170001128A1 (en) | Magnetically enhanced phase separation for solvent extraction | |
CN86101730B (en) | Electrostatic quasi-liquid film separation method and device | |
JPS6181779A (en) | Method for separating and recovering aquatic bacteria | |
CN216737955U (en) | Magnetic disc separating device for hot rolled steel wastewater | |
CN2394716Y (en) | High gradient magnetic field solid/liquid separator | |
CN201596517U (en) | Ultra-filtration centrifugal pipe | |
JP2000506433A (en) | Extraction method and apparatus | |
JPS6225973A (en) | Separation and concentration of aquatic bacteria and apparatus therefor | |
CN108290084A (en) | High flow capacity electrostatic separator for subsea use | |
CN209815889U (en) | A circulation treatment device for gelatin sewage | |
CN207192887U (en) | A kind of effluent purifying device of vertical externally-applied magnetic field |