[go: up one dir, main page]

JPS6177645A - Clad material for optical glass fiber - Google Patents

Clad material for optical glass fiber

Info

Publication number
JPS6177645A
JPS6177645A JP60106649A JP10664985A JPS6177645A JP S6177645 A JPS6177645 A JP S6177645A JP 60106649 A JP60106649 A JP 60106649A JP 10664985 A JP10664985 A JP 10664985A JP S6177645 A JPS6177645 A JP S6177645A
Authority
JP
Japan
Prior art keywords
optical fiber
coating
polybutadiene
functional groups
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60106649A
Other languages
Japanese (ja)
Other versions
JPS6359979B2 (en
Inventor
Takao Kimura
隆男 木村
Nobuo Inagaki
稲垣 伸夫
Mitsuo Yoshihara
吉原 三男
Fumihiko Kato
文彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Nitto Denko Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nitto Electric Industrial Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60106649A priority Critical patent/JPS6177645A/en
Publication of JPS6177645A publication Critical patent/JPS6177645A/en
Publication of JPS6359979B2 publication Critical patent/JPS6359979B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To maintain initial strength of optical fiber immediately after it is prepd. by cladding the surface of an optical glass fiber for light transmission with at least two kinds of 1,4-polybutadiene having functional groups as main material. CONSTITUTION:The surface of optical glass fiber is coated with <=two kinds of 1,4-polybutadiene having at least two functional groups such as OH group, COOH group, isocyanate group, epoxy group, etc. in a molecule succeeding to the spinning stage of the optical fiber. The optical fiber has quicker curing characteristic due to mutual reaction of the functional groups with each other, and the fiber is prepd. with superior productivity and the initial strength immediately after spinning is maintained for a long time, and the optical fiber is durable to withstand use for a long period.

Description

【発明の詳細な説明】 この発明は光伝送用の光学ガラスファイノへを被覆する
ための材料に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a material for coating optical glass fins for light transmission.

光伝送用媒体として使用される光学ガラスファイバ(以
下、単に光ファイバと称する)は、通常その直径が20
0μm以下であり、また材質的に脆いため、その製造中
またはケーブル化の工程や保管中に表面に傷が発生しや
すく、この傷が応力集中源になり、外部から応力が加わ
った場合に容易に光ファイバが破断する欠点を有する。
Optical glass fibers (hereinafter simply referred to as optical fibers) used as optical transmission media usually have a diameter of 20 mm.
Since it is less than 0 μm and the material is brittle, scratches are likely to occur on the surface during manufacturing, cable production, and storage, and these scratches become a source of stress concentration, making it easy to damage when external stress is applied. The disadvantage is that the optical fiber may break.

この理由で光ファイバをそのまま光伝送用媒体として使
用することは極めて困難である。したがって、従来より
、光ファイバの表面にプラスチック被覆を行い、これに
より光フアイバ製造直後の初期強度の維持および長期使
用に耐える光ファイバの製造方法が試みられてきた。
For this reason, it is extremely difficult to use optical fiber as it is as an optical transmission medium. Therefore, conventionally, attempts have been made to provide a plastic coating on the surface of an optical fiber, thereby maintaining the initial strength immediately after manufacturing the optical fiber and manufacturing an optical fiber that can withstand long-term use.

このプラスチック被覆は、一般に初期強度を維持するた
めの一次被覆と、ケーブル化などのその後の取り扱いに
対処するためのポリアミド、ポリエチレンの如き熱可塑
性樹脂の押出成形による二次被覆と、二次被覆時の伝送
損失の増加を防ぐために一次被覆と二次被覆との間に緩
衝層を設ける三段階からなり、通常−次被覆と緩衝層の
形成とは、光ファイバの紡糸工程に引き続く工程でなさ
れている。
This plastic coating generally consists of a primary coating to maintain initial strength, a secondary coating made by extrusion of a thermoplastic resin such as polyamide or polyethylene to cope with subsequent handling such as cabling, and It consists of three steps in which a buffer layer is provided between the primary coating and the secondary coating in order to prevent an increase in transmission loss, and the formation of the secondary coating and buffer layer is usually done in a process subsequent to the spinning process of the optical fiber. There is.

しかるに、従来の一次被覆材料であるウレタン系やエポ
キシ系の熱硬化性樹脂は硬化速度がおそく、硬化乾燥に
長時間を要するため光ファイバの線引速度が制限され、
光ファイバの量産上の問題点のひとつとなっている。ま
た、これらの樹脂では厚塗り被覆できないため、光ファ
イバの強度が弱くなる欠点もある。さらに、従来の緩衝
層形成材料としては、伝送特性の理由から常温硬化型の
シリコーンゴムが用いられているが、このシリコーンゴ
ムは室温に放置するだけで粘度が上昇し、長時間の紡糸
に耐えられないとともに、比較的粘着性が高いためじん
あいなどが付着しやすく、二次被覆時に悪影響をおよぼ
す欠点があった。
However, urethane-based and epoxy-based thermosetting resins, which are conventional primary coating materials, have a slow curing speed and require a long time to cure and dry, which limits the drawing speed of optical fibers.
This is one of the problems in mass production of optical fibers. Furthermore, since these resins cannot be coated thickly, they also have the disadvantage of weakening the strength of the optical fiber. Furthermore, as a conventional buffer layer forming material, silicone rubber that cures at room temperature is used for reasons of transmission properties, but this silicone rubber increases its viscosity just by leaving it at room temperature, making it resistant to long-term spinning. In addition, because of its relatively high tackiness, it has the disadvantage that dust and the like easily adhere to it, which adversely affects the secondary coating.

この発明は、かかる欠点を回避し、光ファイバの量産性
および強度の改善を図ることができる一次被覆材料でか
つ緩衝層をも兼ねさせることができる新規かつ有用な光
フアイバ用被覆材料を提供せんとするものであり、その
要旨とするところは、被覆材料の主材として官能基を有
する1・4−ポリブタジエン類を二種以上使用し、各ポ
リブタジェンの官能基が相互に反応するものであること
を特徴とする光フアイバ用被覆材料にある。
The present invention avoids these drawbacks and provides a new and useful coating material for optical fibers that is a primary coating material that can improve the mass productivity and strength of optical fibers, and that can also serve as a buffer layer. The gist of this is that two or more types of 1,4-polybutadiene having functional groups are used as the main material of the coating material, and the functional groups of each polybutadiene react with each other. An optical fiber coating material characterized by:

すなわち、この発明の被覆材料は、l・4−ポリブタジ
エン類を主材としているため、その被膜が従来の熱硬化
性樹脂を用いたものに較べ、さらには他のポリマーたと
えば1・2−ポリブタジエンなどに較べて非常に柔軟性
にすぐれたものとなる。このため、この−次被覆層上に
さらに緩衝層を設ける必要がなく、しかも上記主材は相
互に反応する官能基を含む二種以上の1・4−ポリブタ
ジエン類の組み合わせからなるため、官能基間の反応に
よって加熱硬化する性質を有し、その硬化速度が従来の
被覆材料に較べて速いため、被覆作業が著しく改善され
たものとなり、光ファイバの量産性を大きく向上できる
That is, since the coating material of the present invention is mainly made of 1,4-polybutadiene, the coating film is made of other polymers such as 1,2-polybutadiene, compared to conventional thermosetting resins. It is extremely flexible compared to . Therefore, there is no need to further provide a buffer layer on this secondary coating layer, and since the main material is a combination of two or more types of 1,4-polybutadiene containing functional groups that react with each other, the functional groups Since it has the property of being heated and cured by a reaction between the coating materials and its curing speed is faster than that of conventional coating materials, the coating work is significantly improved and the mass productivity of optical fibers can be greatly improved.

また、上記被膜の柔軟性によって強度的にも好結果が得
られるだけでなく、従来の熱硬化性樹脂にみられたマイ
クロベンディングなどに起因した伝送損失の増加が抑え
られ、高信頼性の光ファイバの製造が可能となる。しか
も、1・4−ポリブタジエン類は、比較的高分子量体ま
で常温で液状でかつ1・2−ポリブタジエン類などに比
し非常に低粘度であるため、無溶剤タイプないし有機溶
剤量の少ない被覆材料として適用でき、その結果、均一
な厚塗り被覆が容易となりこれによっても光ファイバの
強度を改善できる。また、上記無溶剤タイプとすること
によって、省資源、無公害などの観点から有利となるば
かりでなく、脱溶剤による被膜の発泡、ピンホールの発
生などが抑えられる。
In addition, the flexibility of the film not only provides good results in terms of strength, but also suppresses the increase in transmission loss caused by microbending, which is seen in conventional thermosetting resins, and provides highly reliable optical fibers. It becomes possible to manufacture fibers. In addition, 1,4-polybutadiene is a relatively high molecular weight substance that is liquid at room temperature and has a very low viscosity compared to 1,2-polybutadiene, so it can be used as a solvent-free type or as a coating material with a small amount of organic solvent. As a result, it becomes easy to apply a uniform thick coating, which also improves the strength of the optical fiber. Further, by using the above-mentioned solvent-free type, it is not only advantageous from the viewpoints of resource saving and pollution-free, but also suppresses foaming of the coating and generation of pinholes due to solvent removal.

この発明において主材として用いられる官能基を有する
1・4−ポリブタジエン類は、分子内に水酸基、カルボ
キシル基、イソシアネート基、エポキシ基などの官能基
を少なくとも2個有する、とくに好適には分子両末端に
上記官能基を有する1・4−ポリブタジエンであり、市
販品をそのまま使用してもよいし、必要ならたとえば水
酸基含有の1・4−ポリブタジエンにジカルボン縁やジ
イソシアネート化合物を反応させるなどの方法で合成し
てもよい。
The 1,4-polybutadienes having a functional group used as the main material in this invention have at least two functional groups such as a hydroxyl group, a carboxyl group, an isocyanate group, or an epoxy group in the molecule, particularly preferably at both ends of the molecule. It is a 1,4-polybutadiene having the above-mentioned functional groups, and a commercially available product may be used as it is, or if necessary, it can be synthesized by a method such as reacting a dicarboxylic linkage or a diisocyanate compound with 1,4-polybutadiene containing a hydroxyl group. You may.

この官能基を有する1・4−ポリブタジエン類は、これ
を2種以上使用し官能基相互間の反応で硬化する被覆材
料とされる。そして、その官能基相互の反応性が非常に
高いものでは必要に応じて二液型とされる。
Two or more 1,4-polybutadienes having such functional groups are used as a coating material that is cured by a reaction between the functional groups. If the functional groups have very high reactivity with each other, they may be made into a two-component type, if necessary.

この発明の被覆材料には、必要に応じて変性用樹脂や各
種添加剤を含有していてもよく、また所望ならば溶剤に
より希釈して用いてもよい。変性用樹脂は、主材と同量
以下、好ましくは1/4量以下の範囲で用いられる。そ
の具体例としては、エポキシ樹脂、ポリアミド、ポリウ
レタン、ポリエーテル、ポリアミドイミド、シリコーン
樹脂、フェノール樹脂などが挙げられる。また、上記添
加剤としては、ナフテン酸コバルト、ナフテン酸亜鉛、
ジメチルアニリン、ジブチルスズジラウレートの如き硬
化促進剤、有機ケイ素化合物、界面活性剤などが挙げら
れる。
The coating material of the present invention may contain a modifying resin and various additives as required, and may be diluted with a solvent if desired. The modifying resin is used in an amount equal to or less than the amount of the main material, preferably 1/4 or less. Specific examples thereof include epoxy resin, polyamide, polyurethane, polyether, polyamideimide, silicone resin, and phenol resin. In addition, the above additives include cobalt naphthenate, zinc naphthenate,
Examples include curing accelerators such as dimethylaniline and dibutyltin dilaurate, organosilicon compounds, and surfactants.

この発明において、光ファイバの被覆方法は、常法によ
り光ファイバの紡糸工程、つまり、光フアイバ用の棒状
素材やブロック状素材を加熱延伸して所望径の光ファイ
バに紡糸する工程の直後で、上記光ファイバの表面にこ
の発明の被覆材料を塗布したのち、通常熱を加えて硬化
させればよい。。
In this invention, the method for coating an optical fiber is performed immediately after the spinning process of the optical fiber, that is, the process of heating and stretching a rod-shaped material or block-shaped material for an optical fiber to spin it into an optical fiber of a desired diameter. After the coating material of the present invention is applied to the surface of the optical fiber, it is usually cured by applying heat. .

この硬化によって柔軟な一次被覆を行えるから、その後
は緩衝層を設けることなく直接二次被覆の工程に供され
る。
This curing provides a flexible primary coating, which is then directly subjected to the secondary coating process without providing a buffer layer.

なお、上記光フアイバ用の棒状素材とは、一般に石英系
ファイバの母材と呼ばれるものであり、ブロック状素材
とは、多成分系ファイバの二重るつぼ法により紡糸され
るものである。また、光ファイバの所望径とは、通常2
00μm以下である。
The rod-shaped material for the optical fiber is generally called a base material of quartz fiber, and the block-shaped material is a material spun by a double crucible method for multi-component fiber. In addition, the desired diameter of the optical fiber is usually 2
00 μm or less.

以上説明したように、この発明の光フアイバ用被覆材料
は、相互に反応する官能基を持った二種以上の1・4−
ポリブタジエンを主材として使用したものであるから、
従来の材料に較べて硬化速度が速く、光ファイバの生産
性にすぐれるのみならず、柔軟な被膜を形成してまた厚
肉の被膜形成によって、光ファイバの強度と信頼性を改
善する。
As explained above, the optical fiber coating material of the present invention comprises two or more types of 1,4-
Because it uses polybutadiene as the main material,
Compared to conventional materials, the curing speed is faster, which not only improves the productivity of optical fibers, but also improves the strength and reliability of optical fibers by forming flexible coatings and thick coatings.

以下に、実施例を挙げてこの発明を説明するが、この発
明はこれら実施例になんら制限されるものではない。な
お、以下、部とあるのは重量部を意味する。
The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, hereinafter, parts mean parts by weight.

実施例1 分子内にイソシアネートiを有する1・4−ポリブタジ
エン(1・4−ポリブタジエン・トリレンジイソシアネ
ート付加物;イソシアネート基含量9重量%)100部
、分子末端に水酸基を有する1・4−ポリブタジエン(
水酸基含量0.83ミリ当it/g)257部、シフ゛
チルスズジラウレート0.05部を混合して、この発明
の光フアイバ用被覆材料とした。
Example 1 100 parts of 1,4-polybutadiene having isocyanate i in the molecule (1,4-polybutadiene/tolylene diisocyanate adduct; isocyanate group content: 9% by weight), 1,4-polybutadiene having a hydroxyl group at the end of the molecule (
A coating material for an optical fiber of the present invention was prepared by mixing 257 parts of hydroxyl group content (0.83 milliliter/g) and 0.05 part of siftylstin dilaurate.

比較例1 エポキシ樹脂Epon−828(シェル石油社製)10
0部に、2−エチル−4−メチルイミダゾール5部を溶
解して、光フアイバ用被覆材料とした。
Comparative Example 1 Epoxy resin Epon-828 (manufactured by Shell Oil Company) 10
0 parts, 5 parts of 2-ethyl-4-methylimidazole was dissolved to prepare a coating material for optical fiber.

比較例2 分子内にイソシアネート基を有する1・2−ポリブタジ
エン(l・2−ポリブタジエン・トリレンジイソシアネ
ート付加物;イソシアネート基含量8重量%)100部
、分子末端に水酸基を有する1・2−ポリブタジエン(
水酸基含量0.95ミリ当it/g)200部、シフ゛
チルスズジラウレート0.05部を混合して、光フアイ
バ用被覆材料とした。
Comparative Example 2 100 parts of 1,2-polybutadiene having an isocyanate group in the molecule (1,2-polybutadiene/tolylene diisocyanate adduct; isocyanate group content: 8% by weight), 1,2-polybutadiene having a hydroxyl group at the end of the molecule (
A coating material for optical fiber was prepared by mixing 200 parts of hydroxyl group content (0.95 milliliter/g) and 0.05 part of siftylstin dilaurate.

上記実施例1および比較例1.2の各材料の特性を調べ
たところ、次の第1表に示されるとおりであった。
When the characteristics of each material of Example 1 and Comparative Example 1.2 were investigated, they were as shown in Table 1 below.

上記第1表において、ショア硬度Aは次のようにして測
定した。すなわち、各材料を150℃。
In Table 1 above, Shore hardness A was measured as follows. That is, each material was heated to 150°C.

15分間の条件で加熱硬化させて、厚み2顛の板状体を
作成し、これを用いて測定した。
It was heat-cured for 15 minutes to create a plate-like material with a thickness of 2, and this was used for measurement.

つぎに、上記実施例1および比較例1.2の被覆材料を
用いて、以下の試験例1および比較試験例1,2に示さ
れるとおり、実際に光ファイバを被覆し、その性能をテ
ストした。
Next, using the coating materials of Example 1 and Comparative Examples 1.2 above, optical fibers were actually coated and their performance was tested as shown in Test Example 1 and Comparative Test Examples 1 and 2 below. .

試験例エ 70m7分の速度で紡糸した直径125μmの光ファイ
バの表面に、紡糸工程に引続く工程において、実施例1
に示した被覆材料を塗布したのち、電気炉により340
°Cで加熱硬化させた。この被覆後の光フアイバ外径は
約225μmであり、また破断強度は6.2 kgで、
−40℃まで伝送損失の増加は認められなかった。
Test Example D In a step subsequent to the spinning process, Example 1
After applying the coating material shown in 340
It was heat cured at °C. The outer diameter of the optical fiber after coating was approximately 225 μm, and the breaking strength was 6.2 kg.
No increase in transmission loss was observed up to -40°C.

比較試験例1 20m/分の速度で紡糸した直径125μmの光ファイ
バの表面に、紡糸工程に引続(工程において、比較例1
に示した被覆材料を塗布したのち、650℃の電気炉を
用いて硬化させた。被覆後の光ファイバの外径は150
〜310μmの範囲にばらついていた。また、得られた
光ファイバは=20°C以下で伝送損失の急激な増加が
認められた。
Comparative Test Example 1 Following the spinning process (in the process), Comparative Example 1
After applying the coating material shown in , it was cured using an electric furnace at 650°C. The outer diameter of the optical fiber after coating is 150
It varied in the range of ~310 μm. Furthermore, in the obtained optical fiber, a rapid increase in transmission loss was observed at temperatures below 20°C.

比較試験例2 実施例1の被覆材料の代わりに、比較例2の被覆材料を
用いた以外は、試験例1と同様に被覆した。被覆後の光
フアイバ外径は約169〜335μmとばらついていた
。また、破断強度は4.7 ktrであり、−40℃以
下で伝送損失の急激な増加が認められた。
Comparative Test Example 2 Coating was carried out in the same manner as in Test Example 1, except that the coating material of Comparative Example 2 was used instead of the coating material of Example 1. The outer diameter of the optical fiber after coating varied from about 169 to 335 μm. Furthermore, the breaking strength was 4.7 ktr, and a rapid increase in transmission loss was observed below -40°C.

以上に説明したように、この発明の光フアイバ用被覆材
料は、低粘度であってかつ硬化速度が速いため、光ファ
イバの紡糸工程において速かにかつ密着良好に被覆でき
、また硬化後の柔軟性に冨むものであるため、伝送特性
にすぐれる光ファイ。
As explained above, the optical fiber coating material of the present invention has a low viscosity and a fast curing speed, so it can be coated quickly and with good adhesion during the optical fiber spinning process, and it is flexible after curing. Optical fiber has excellent transmission characteristics because it is highly versatile.

バ被覆体を得ることができる利点がある。There is an advantage that a bar coated body can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)主材として官能基を有する1・4−ポリブタジエ
ン類が2種以上用いられ、各ポリブタジエン類の官能基
が相互に反応するものであることを特徴とする光学ガラ
スファイバ用被覆材料。
(1) A coating material for optical glass fiber, characterized in that two or more types of 1,4-polybutadienes having functional groups are used as the main material, and the functional groups of each polybutadiene type react with each other.
JP60106649A 1985-05-18 1985-05-18 Clad material for optical glass fiber Granted JPS6177645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60106649A JPS6177645A (en) 1985-05-18 1985-05-18 Clad material for optical glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106649A JPS6177645A (en) 1985-05-18 1985-05-18 Clad material for optical glass fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56104770A Division JPS6049146B2 (en) 1981-07-04 1981-07-04 Coating materials for optical glass fibers

Publications (2)

Publication Number Publication Date
JPS6177645A true JPS6177645A (en) 1986-04-21
JPS6359979B2 JPS6359979B2 (en) 1988-11-22

Family

ID=14438963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106649A Granted JPS6177645A (en) 1985-05-18 1985-05-18 Clad material for optical glass fiber

Country Status (1)

Country Link
JP (1) JPS6177645A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432334A (en) * 1977-08-18 1979-03-09 Nippon Telegr & Teleph Corp <Ntt> Covering material for optical glass fibers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432334A (en) * 1977-08-18 1979-03-09 Nippon Telegr & Teleph Corp <Ntt> Covering material for optical glass fibers

Also Published As

Publication number Publication date
JPS6359979B2 (en) 1988-11-22

Similar Documents

Publication Publication Date Title
US5962067A (en) Method for coating an article with a ladder siloxane polymer and coated article
US5130198A (en) Polymeric-containing compositions with improved oxidative stability
US4056651A (en) Moisture and heat resistant coating for glass fibers
CN110294600B (en) Glass fiber impregnating compound and preparation method and application thereof
US5247004A (en) Polymeric-containing compositions with improved oxidative stability
US4639080A (en) Optical fibers coated with modified 1,4-polybutadienes
CN117586471B (en) A self-repairing super-hydrophobic polyurethane with fluorescent properties and preparation method thereof
CN106397714A (en) Preparation method of mildew-resistant polyurethane prepolymer
JPS6177645A (en) Clad material for optical glass fiber
JP3661358B2 (en) Liquid epoxy resin composition and method for repairing and reinforcing concrete structures
JPS5921542A (en) Coating material for optical glass fiber
DE2835517B2 (en) Process for the continuous production of plastic-coated optical glass fibers
JPS6177646A (en) Cladding material for optical glass fiber
CN110746854A (en) Room temperature fast curing coating with high infrared radiation coating as cured product and preparation method thereof
CN117625010B (en) Super-hydrophobic powder coating, preparation method thereof and coating
TWI771980B (en) Adhesive composition and rubber reinforcing material
JPS636505B2 (en)
CN115057989B (en) Grafted polyether toughened epoxy resin composite material and preparation method and application thereof
JPS59155422A (en) Epoxy resin composition for use in filament winding
JPS6227710A (en) Optical glass fiber having synthetic resin coating and hardening elastomer forming material
JPS6045138B2 (en) Optical fiber manufacturing method
CN117285805A (en) Stability-increasing low-temperature curing saturated polyester resin and preparation method thereof
JPS58187902A (en) Coated optical fiber
CN117264462A (en) Coating containing modified fluorosilane composite sol and preparation method thereof
JP3227823B2 (en) Manufacturing method of electrical equipment