JPS6176673A - sputtering method - Google Patents
sputtering methodInfo
- Publication number
- JPS6176673A JPS6176673A JP19880184A JP19880184A JPS6176673A JP S6176673 A JPS6176673 A JP S6176673A JP 19880184 A JP19880184 A JP 19880184A JP 19880184 A JP19880184 A JP 19880184A JP S6176673 A JPS6176673 A JP S6176673A
- Authority
- JP
- Japan
- Prior art keywords
- target
- magnet
- substrate
- magnetic pole
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004544 sputter deposition Methods 0.000 title claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 230000005672 electromagnetic field Effects 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 12
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 description 10
- 239000010408 film Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- -1 argon ions Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 240000002779 Cayratia japonica Species 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000005919 possum grape Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、物理的な手段で金属膜、酸化膜等の薄膜を対
向電極上の基板に付着させるスパッタリング法に関し、
特にマグネットを用いたスパッタリング方法の改良に関
するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a sputtering method for depositing a thin film such as a metal film or oxide film onto a substrate on a counter electrode by physical means.
In particular, it relates to improvements in sputtering methods using magnets.
薄膜の形成手段としては化学的な方法と物理的な方法が
用いられるが、特に物理的な手法(PVD法)は、生成
しようとする薄膜と同一の材料を真空、またはガス中に
おいて蒸発させ、対向電極上の基板に付着させる技術で
、主として単体金属や合金膜の形成法として用いられて
いる。Chemical methods and physical methods are used to form thin films, but the physical method (PVD method) in particular evaporates the same material as the thin film to be produced in vacuum or gas. This is a technique for attaching it to a substrate on a counter electrode, and is mainly used as a method for forming single metal or alloy films.
PVD法には真空蒸着法とスパッタリング法があり、真
空蒸着法は蒸着源物質を加熱することにより蒸発させ、
対向する基板上に付着させる技術であり、一方スパンタ
リング法は蒸発源であるターゲットにアルゴンガス等の
イオンを衝突させ、ターゲットの原子が外部に飛びだし
て、対向電極上の基板に付着させる方法である。The PVD method includes a vacuum evaporation method and a sputtering method, and the vacuum evaporation method evaporates the deposition source material by heating it.
On the other hand, the sputtering method is a method in which ions such as argon gas are bombarded with the target, which is an evaporation source, and the atoms of the target fly out to the outside and are attached to the substrate on the opposing electrode. be.
スパッタリング法でターゲットの表面に平行に磁界を加
え、直交せる電磁界の作用によってプラズマをターゲッ
ト近傍に閉じ込めて、アルゴンイオンの発生を増進させ
るマグネトロン形スパッタ装置が広(用いられてきてい
る。In the sputtering method, magnetron-type sputtering equipment is widely used, which applies a magnetic field parallel to the surface of the target and confines plasma near the target by the action of orthogonal electromagnetic fields, thereby increasing the generation of argon ions.
まず、従来の方法によるスパッタ装置の概略図を第2図
に示す。陰極部5がターゲット7を支持しその裏面には
ターゲット面に平行な磁界を発生するためのマグネット
4が設けられている。ウェハー等の基板6は、ターゲッ
ト7に対向して設けられた支持枠8によって保持されて
陽極部を構成する。全体の構成は真空槽1に収容され、
真空槽には排気口2及びガス導入口3が設けられている
。First, FIG. 2 shows a schematic diagram of a sputtering apparatus using a conventional method. A cathode part 5 supports a target 7, and a magnet 4 is provided on the back surface of the cathode part 5 to generate a magnetic field parallel to the target surface. A substrate 6 such as a wafer is held by a support frame 8 provided opposite to a target 7 to constitute an anode section. The entire configuration is housed in a vacuum chamber 1,
The vacuum chamber is provided with an exhaust port 2 and a gas inlet port 3.
陽極と陰極間に直流または高周波電圧10を印加すると
、直交電磁界作用によりエレクトロンはサイクロイド運
動を行い、アルゴンイオンの発生を増進するためターゲ
ット面でのプラズマの密度が高くなり、スバ・ツタ効率
が向上する。このようにマグネトロン形スパッタリング
方式は極めて有効な蒸着方法である。When a direct current or high frequency voltage of 10 is applied between the anode and the cathode, the electrons undergo cycloidal motion due to the action of the orthogonal electromagnetic field, which increases the density of plasma on the target surface to increase the generation of argon ions, increasing the sorrel-vine efficiency. improves. As described above, the magnetron sputtering method is an extremely effective deposition method.
上記のごとく、スパッタリング方式は極めて有効な蒸着
方法であるが、蒸着膜の分布を良くするためターゲット
とウェハーとの間隔を広くとることが必要であり、これ
はスパングレートの低下を招く。またステンプカバレー
ジ(段差部への皮膜の被覆)分布を良くするため、エロ
ージョンエリア(ターゲット面でのスパッタリングによ
る浸食部)をウェハーの外周部寸法以上にとることが必
要で、ターゲット部直径はウェハーの2倍程度の寸法を
必要とする。従って印加電源の容量も大きくなり、発熱
量も大きくなる。またターゲットの消耗も第3図断面図
にみられる通り、不均一となる等の欠点がみられる。As mentioned above, the sputtering method is an extremely effective vapor deposition method, but in order to improve the distribution of the vapor deposited film, it is necessary to widen the distance between the target and the wafer, which causes a reduction in the span rate. In addition, in order to improve the sputter coverage (coating of the film on the step part) distribution, it is necessary to make the erosion area (erosion area due to sputtering on the target surface) larger than the outer circumferential dimension of the wafer, and the diameter of the target part should be larger than the wafer diameter. It requires about twice the size. Therefore, the capacity of the applied power source also increases, and the amount of heat generated also increases. Further, as shown in the cross-sectional view of FIG. 3, there are also drawbacks such as non-uniform consumption of the target.
半導体の生産性の向上をはかるため、ウェハー寸法は益
々太き(なる傾向があり、このような大面積ウェハーに
対するスパッタリング方式は、従来の方法ではその欠点
が特に顕著になることが避けられなかった。In order to improve the productivity of semiconductors, wafer sizes tend to become larger and larger, and the disadvantages of conventional sputtering methods for such large-area wafers are unavoidable. .
この問題を解決するため、マグネットあるいはターゲッ
トを動かすことは、既に特開昭53−47384、特開
昭55−14853等の方法で提案されている。前者は
ターゲットを陰極に対して移動可能としてものであり、
後者はターゲットの中心軸に対して偏心した位置におか
れたマグネットを、中心軸に対して回転させることによ
り改善をはかっている。In order to solve this problem, methods of moving the magnet or target have already been proposed in Japanese Patent Laid-Open Nos. 53-47384 and 1982-14853. The former is even if the target is movable relative to the cathode;
The latter is improved by rotating a magnet placed eccentrically with respect to the central axis of the target.
本発明はこれらの方法よりもさらにスパッタリング特性
5ターゲットの消耗、電源容量の低下をはかったもので
ある。The present invention has further improved sputtering characteristics 5 to reduce target consumption and power supply capacity than these methods.
本発明は、上記問題点を解決するため、ターゲットの裏
面に配置したマグネットの磁極面での形状を長方形とし
、また同時にマグネット位置をターゲット面に対して平
行に、かつマグネットの長さ方向とは異なる方向に移動
させる機構を付加することによりスパッタされるターゲ
ット部分をターゲットの端部から端部に向けて順次移動
させることに特徴がある。In order to solve the above problems, the present invention makes the shape of the magnetic pole surface of the magnet placed on the back surface of the target rectangular, and at the same time, the magnet position is parallel to the target surface and the length direction of the magnet is A feature of this method is that by adding a mechanism for moving in different directions, the target portion to be sputtered is sequentially moved from one end of the target to the other.
本発明でターゲットの裏面に配置したマグネットの磁極
面形状を長方形とし、また同時にマグネット位置をター
ゲット面に対して平行に移動可能な機構を付加したこと
により、ターゲットと基板との間隔が充分小さくても均
一な膜厚を容易に得ることが出来、かつ従来よりも大面
積の基板に対して蒸着膜の形成速度が落ちることがない
。In the present invention, the shape of the magnetic pole surface of the magnet placed on the back surface of the target is rectangular, and at the same time, by adding a mechanism that allows the magnet position to be moved parallel to the target surface, the distance between the target and the substrate is sufficiently small. It is also possible to easily obtain a uniform film thickness, and the formation rate of the deposited film does not decrease on a substrate with a larger area than before.
またターゲットのマグネットの長さ方向での寸法は、ス
テップカバレージ改善のためウェハーの直径の2倍程度
必要とするが、磁極の幅は小さくなっているので、エロ
ージョンエリアが小となり、電源に対する負荷インピー
ダンスを大きくとることが可能で、電源容量は小さくて
すむ利点がある。In addition, the lengthwise dimension of the target magnet needs to be approximately twice the diameter of the wafer in order to improve step coverage, but since the width of the magnetic poles is small, the erosion area is small and the load impedance to the power supply is reduced. It has the advantage that it can be made large and the power supply capacity can be small.
以下、第1図(a)に本発明にかかわる一実施例を示す
。陰極部5がターゲット7を支持し、その裏面にはター
ゲット面に平行な磁界を発生するためのマグネット4が
設けられている。ウェハー等の基板6は、ターゲット7
に対向して設けられた支持枠8によって保持されて陽極
部を構成する。ターゲットの形状はウェハー寸法より充
分大きければ長方形、あるいは円形等任意の形状で構わ
ない。An embodiment of the present invention is shown in FIG. 1(a) below. A cathode section 5 supports a target 7, and a magnet 4 is provided on the back surface of the cathode section 5 to generate a magnetic field parallel to the target surface. A substrate 6 such as a wafer is a target 7
The anode portion is held by a support frame 8 provided opposite to the anode portion. The shape of the target may be any shape, such as a rectangle or a circle, as long as it is sufficiently larger than the wafer size.
全体の構成は真空槽1に収容され、真空槽には排気口2
及びガス導入口3が設けられている。陽極と陰極間に直
流または高周波電圧10を印加する。The entire configuration is housed in a vacuum chamber 1, and the vacuum chamber has an exhaust port 2.
and a gas inlet 3 are provided. A direct current or high frequency voltage 10 is applied between the anode and the cathode.
マグネット4の磁極面の形状は長方形で本図では紙面に
垂直な方向に長軸をもっていて、装置外の駆動部12を
回転することによりマグネット支持部11は矢印の方向
にスライドする。ターゲット面に対するマグネットの移
動の状況を平面図第1図(b)に示す。マグネットの円
滑なるスライドを助けるための支持台13を設けである
。この図では駆動部は最も簡単な構造で示したが、制御
機構をもった自動化も容易に考えられる。The shape of the magnetic pole surface of the magnet 4 is rectangular, and in this figure, the long axis is perpendicular to the plane of the drawing, and by rotating the drive section 12 outside the device, the magnet support section 11 slides in the direction of the arrow. The state of movement of the magnet relative to the target surface is shown in a plan view in FIG. 1(b). A support stand 13 is provided to help the magnet slide smoothly. Although the drive unit is shown in the simplest structure in this figure, automation with a control mechanism is easily possible.
本発明ではターゲットの裏面に配置したマグネットの磁
極面湿炭を長方形とし、また同時にマグネット位置をタ
ーゲ・ノド面に対して、平行に移動可能な機構を付加し
たことによりターゲットと基板との間隔を充分小さくと
ることが可能で、スパッタレイトを大きくとることが出
来る。また瞬間的なエロージョンエリアが小であるため
電源容量が小さくてすむ、従ってターゲット部での発熱
も小となり冷却に対する配慮も少な(てすむ。またター
ゲットの消耗も第4図のごとくターゲット面全般にわた
って均一で、ターゲットの使用効率の改善に寄与する。In the present invention, the wet carbon on the magnetic pole surface of the magnet placed on the back surface of the target is rectangular, and at the same time, a mechanism is added that allows the magnet position to be moved parallel to the target throat surface, thereby reducing the distance between the target and the substrate. It can be made sufficiently small and the sputtering rate can be increased. In addition, because the instantaneous erosion area is small, the power supply capacity is small, so the heat generation at the target is also small, and there is less need to consider cooling.Also, target wear is reduced over the entire target surface as shown in Figure 4. It is uniform and contributes to improving target usage efficiency.
第1図(a)は本発明を実施するのに用いた装置の全体
の構成断面図を示し、第1図(blはマグネットの移動
状況を示す平面図を表す。第2図は従来の方法によるマ
グネトロンスパッタ装置を示し、この場合のターゲット
の消耗を第3凹所面図で示す。
第4図は本発明によるターゲットの消耗の状況を示す断
面図である。
図面において、1は真空槽、2は排気口、3はガス流入
口、4はマグネット、5は陰極、6はウェハー基板、7
はターゲット、8は支持枠、9は絶縁体、10は電源、
11はマグネット支持部。
12は駆動部、13はマグネット駆動支持台子 ブ 図
(0)
茶 ブ 図 (b)
第2目
OFIG. 1(a) shows a cross-sectional view of the entire configuration of the device used to carry out the present invention, and FIG. A magnetron sputtering apparatus according to the present invention is shown, and the wear of the target in this case is shown in the third concave plan view. Fig. 4 is a sectional view showing the state of wear of the target according to the present invention. In the drawing, 1 is a vacuum chamber; 2 is an exhaust port, 3 is a gas inlet, 4 is a magnet, 5 is a cathode, 6 is a wafer substrate, 7
is the target, 8 is the support frame, 9 is the insulator, 10 is the power source,
11 is a magnet support part. 12 is the drive part, 13 is the magnetic drive support block. Figure (0) Brown Figure (b) Second eye O
Claims (1)
スパッタさせる方法において、ターゲットの裏面側に配
置する磁界発生手段として、磁極面が長方形のマグネッ
トを用い、このマグネットをその長さ方向とは異なる方
向に移動させることにより、スパッタされるターゲット
部分をターゲットの端部から端部に向けて順次移動させ
ることを特徴とするスパッタリング方法。In the method of generating sputtering from the target surface by generating an electromagnetic field on the target surface, a magnet with a rectangular magnetic pole face is used as the magnetic field generating means placed on the back side of the target, and this magnet is oriented in a direction different from its length direction. A sputtering method characterized by sequentially moving a target portion to be sputtered from one end of the target to the other end by moving the target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19880184A JPS6176673A (en) | 1984-09-21 | 1984-09-21 | sputtering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19880184A JPS6176673A (en) | 1984-09-21 | 1984-09-21 | sputtering method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6176673A true JPS6176673A (en) | 1986-04-19 |
Family
ID=16397135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19880184A Pending JPS6176673A (en) | 1984-09-21 | 1984-09-21 | sputtering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6176673A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63125675A (en) * | 1986-11-13 | 1988-05-28 | Matsushita Electric Ind Co Ltd | Magnetron sputtering device |
JPH01104770A (en) * | 1987-07-24 | 1989-04-21 | Miba Gleitlager Ag | Arrangement of rod-shaped magnetoelectric pipe or sputter cathode, sputtering method, apparatus for performing said method and tubular target |
JPH03208888A (en) * | 1990-01-11 | 1991-09-12 | Nippon Telegr & Teleph Corp <Ntt> | Sputtering method |
JPH03240953A (en) * | 1990-02-16 | 1991-10-28 | Seiko Electronic Components Ltd | Magnetron sputtering device |
JP2004019006A (en) * | 2002-06-18 | 2004-01-22 | Hannstar Display Corp | Magnetron sputtering system |
JP2007039712A (en) * | 2005-08-01 | 2007-02-15 | Ulvac Japan Ltd | Sputtering system, and film deposition method |
KR100710801B1 (en) * | 2000-05-25 | 2007-04-23 | 삼성전자주식회사 | Sputtering device for uniform film formation |
US11139140B2 (en) | 2009-07-24 | 2021-10-05 | Carl Zeiss Microscopy Gmbh | Particle beam apparatus having an aperture unit and method for setting a beam current in a particle beam apparatus |
-
1984
- 1984-09-21 JP JP19880184A patent/JPS6176673A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63125675A (en) * | 1986-11-13 | 1988-05-28 | Matsushita Electric Ind Co Ltd | Magnetron sputtering device |
JPH01104770A (en) * | 1987-07-24 | 1989-04-21 | Miba Gleitlager Ag | Arrangement of rod-shaped magnetoelectric pipe or sputter cathode, sputtering method, apparatus for performing said method and tubular target |
JPH03208888A (en) * | 1990-01-11 | 1991-09-12 | Nippon Telegr & Teleph Corp <Ntt> | Sputtering method |
JPH03240953A (en) * | 1990-02-16 | 1991-10-28 | Seiko Electronic Components Ltd | Magnetron sputtering device |
KR100710801B1 (en) * | 2000-05-25 | 2007-04-23 | 삼성전자주식회사 | Sputtering device for uniform film formation |
JP2004019006A (en) * | 2002-06-18 | 2004-01-22 | Hannstar Display Corp | Magnetron sputtering system |
JP2007039712A (en) * | 2005-08-01 | 2007-02-15 | Ulvac Japan Ltd | Sputtering system, and film deposition method |
US11139140B2 (en) | 2009-07-24 | 2021-10-05 | Carl Zeiss Microscopy Gmbh | Particle beam apparatus having an aperture unit and method for setting a beam current in a particle beam apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100244385B1 (en) | Sputtering apparatus and method | |
TWI840426B (en) | Tilted magnetron in a pvd sputtering deposition chamber | |
JPH01268869A (en) | Sputtering device | |
JP2970317B2 (en) | Sputtering apparatus and sputtering method | |
JPS6176673A (en) | sputtering method | |
JPS61221363A (en) | Sputtering apparatus | |
KR101127259B1 (en) | Back biased face target sputtering | |
JPH11158625A (en) | Magnetron sputtering film forming device | |
JP3685670B2 (en) | DC sputtering equipment | |
JPH024965A (en) | Sputtering target and magnetron sputtering device using the same | |
US20080121515A1 (en) | Magnetron sputtering utilizing halbach magnet arrays | |
JPS6128029B2 (en) | ||
JPH11106914A (en) | Counter magnetron composite sputtering device | |
JPH0352535B2 (en) | ||
RU2242821C2 (en) | Magnetron spraying system | |
JPS6217175A (en) | Sputtering device | |
KR100963413B1 (en) | Magnetron sputtering device | |
JP2001207258A (en) | Rotating magnet, and inline type sputtering system | |
JPH01240645A (en) | Vacuum deposition apparatus | |
WO2024180949A1 (en) | Sputtering deposition source and deposition device | |
JP3898318B2 (en) | Sputtering equipment | |
JP3778501B2 (en) | Sputtering apparatus and sputtering method | |
JPH10259478A (en) | Sputtering apparatus, sputtering method and its sputtering target | |
JPS63468A (en) | Opposed target type sputtering device | |
JPH06450Y2 (en) | Coil movable ion plating device |