JPS6176650A - Wear resistant sintered alloy - Google Patents
Wear resistant sintered alloyInfo
- Publication number
- JPS6176650A JPS6176650A JP19814584A JP19814584A JPS6176650A JP S6176650 A JPS6176650 A JP S6176650A JP 19814584 A JP19814584 A JP 19814584A JP 19814584 A JP19814584 A JP 19814584A JP S6176650 A JPS6176650 A JP S6176650A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- weight
- alloy
- wear
- rocker arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 20
- 239000000956 alloy Substances 0.000 title claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910001096 P alloy Inorganic materials 0.000 claims abstract description 7
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 230000007797 corrosion Effects 0.000 abstract description 14
- 238000005260 corrosion Methods 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 abstract description 5
- 229910052719 titanium Inorganic materials 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 239000007858 starting material Substances 0.000 abstract 1
- 239000002184 metal Substances 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 208000012866 low blood pressure Diseases 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Valve-Gear Or Valve Arrangements (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、耐摩耗性と耐食性に優れた鉄系耐摩耗性焼
結合金に関し、このような耐摩耗性と耐食性とが要求さ
れる用途、特にディーゼルエンジン用のロッカーアーム
チップ部材として好適な鉄系耐摩耗性焼結合金に関する
ものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a ferrous wear-resistant sintered alloy that has excellent wear resistance and corrosion resistance, and is applicable to applications that require such wear resistance and corrosion resistance. The present invention relates to a ferrous wear-resistant sintered alloy particularly suitable as a rocker arm tip member for a diesel engine.
(従来技術)
エンジンの動弁機構部品であるロッカーアームチップは
、とくにカムとの当り面部において#摩耗性に優れてい
ることが要求されるため、ロッカーアーム本体に耐摩耗
性の優れたロッカーアームチップを設けることも行われ
ている。従来、このようなロッカーアームチップ用の素
材としては、チル鋳物または焼結合金が用いられており
、焼結合金としては特願昭59−111458号に記載
されたものがある。この焼結合金は、オーステナイト系
ステンレス鋼粉末と、Fe−P系合金粉末と、黒鉛粉末
とを混合して、全粉末の組成が、Fe−15〜25重量
%Cr−6〜10重量%N+−0,2〜2.0重量%P
−2〜5重量%Cとなるように配合した混合粉末を圧粉
成形して焼結したものである。(Prior art) The rocker arm tip, which is a component of the engine valve mechanism, is required to have excellent wear resistance, especially at the contact surface with the cam. Providing a chip is also practiced. Conventionally, chilled castings or sintered alloys have been used as materials for such rocker arm tips, and examples of sintered alloys include those described in Japanese Patent Application No. 111458/1982. This sintered alloy is made by mixing austenitic stainless steel powder, Fe-P alloy powder, and graphite powder, and the total powder composition is Fe-15 to 25% by weight Cr-6 to 10% by weight N+ -0.2 to 2.0% by weight P
A mixed powder blended to have a carbon content of -2 to 5% by weight is compacted and sintered.
しかしながら、このような従来のロッカーアームチップ
用の素材にあっては、耐摩耗性に寄与する硬質相として
、Fe、Crの炭化物である(Fe、Cr)7C3、(
Fe、Cr)3C(50gxHvで13QO−1600
の硬度)を析出させていたため、低い血圧での実車耐久
では擾れた耐摩耗性を示すが、高い面圧での実車耐久で
は上記硬質相の硬さが不十分であるため条件によっては
摩耗を生じることがあるという問題点があった。However, in such conventional materials for rocker arm tips, carbides of Fe and Cr (Fe, Cr)7C3, (
Fe, Cr)3C (13QO-1600 at 50gxHv
Because the hardness of the hard phase is precipitated, it shows poor wear resistance in actual vehicle durability at low blood pressure, but in actual vehicle durability at high surface pressure, the hardness of the above hard phase is insufficient, so wear resistance may occur depending on the conditions. There was a problem that this could occur.
(発明の目的)
この発明は、このような従来の問題点に着目してなされ
たもので、耐食性に優れていると共に、特に耐摩耗性に
潰れており、例えば面圧よび腐食性が大きいディーゼル
エンジンのロッカーアームチンプ素材として好適な耐摩
耗性焼結合金を提供することを目的としている。(Purpose of the Invention) This invention was made by focusing on such conventional problems, and it has excellent corrosion resistance and is especially resistant to wear. For example, diesel The purpose of this invention is to provide a wear-resistant sintered alloy suitable as a rocker arm chimp material for engines.
(発明の構成)
この発明による耐摩耗性焼結合金は、オーステナイト系
ステンレス鋼粉末と、Ti、Zr。(Structure of the Invention) A wear-resistant sintered alloy according to the present invention includes austenitic stainless steel powder, Ti, and Zr.
Hf、V、Nb、Ta、Cr、Mo、Wのうちから選ば
れる炭化物形成金属元素Mのうちの1種類以上を含む粉
末と、Fe−P系合金粉末と、黒鉛粉末とを混合して、
全粉末の組成が、Fe−15〜25重量%Cr−6〜1
0重量%Ni−0,1〜5重量%M−0,2〜2重量%
P−2〜5重量%Cとなるように配合した混合粉末を圧
粉成形して焼結したことを特徴としている。Mixing a powder containing one or more of the carbide-forming metal elements M selected from Hf, V, Nb, Ta, Cr, Mo, and W, an Fe-P alloy powder, and a graphite powder,
The composition of the whole powder is Fe-15 to 25% by weight Cr-6 to 1
0% by weight Ni-0,1-5% by weight M-0,2-2% by weight
P- It is characterized in that a mixed powder blended to have a C content of 2 to 5% by weight is compacted and sintered.
この発明による耐摩耗性焼結合金の原料として用いられ
るオーステナイト系ステンレス鋼粉末は、オーステナイ
ト組織を有するものであって、例えばJIS規格でいえ
ばSUS 200番台。The austenitic stainless steel powder used as a raw material for the wear-resistant sintered alloy according to the present invention has an austenitic structure, and is, for example, SUS 200 according to JIS standards.
300番台のものが使用され、特性改善のために適宜の
合金元素を添加したものもこの発明に適用される。Those in the 300 series are used, and those to which appropriate alloying elements are added to improve properties are also applicable to the present invention.
そして、このようなオーステナイト系ステンレス鋼粉末
と、Tf、Zr、Hf、V、Nb。And such austenitic stainless steel powder, Tf, Zr, Hf, V, Nb.
Ta、Cr、Mo、Wのうちから選ばれる炭化物形成金
属元素Mのうちの1種類以上を含む金属粉末、例えばこ
れらの金属単独の粉末あるいはFeとの合金粉末などの
合金粉末と、Fe−P系合金粉末と、黒鉛粉末とを混合
して、全粉末の組成が、Fe−15〜25重量%Cr−
6〜102i<量%Ni−0,1〜5重量%M−0,2
〜2重量%P−2〜5重量%Cとなるようにする。A metal powder containing one or more of the carbide-forming metal elements M selected from Ta, Cr, Mo, and W, such as a powder of these metals alone or an alloy powder such as an alloy powder with Fe, and Fe-P. By mixing the alloy powder and the graphite powder, the composition of the whole powder becomes Fe-15 to 25% by weight Cr-
6-102i<% by weight Ni-0,1-5% by weight M-0,2
~2% by weight P-2~5% by weight C.
ここで、このような各成分の配合割合となるようにした
理由について以下に説明する。Here, the reason why the blending ratio of each component is set as described above will be explained below.
Cr: Crは焼結時に黒鉛と結合して(Fe。Cr: Cr combines with graphite during sintering (Fe.
Cr)7 C3炭化物を析出させて耐摩耗性を著しく向
上させる。また、Niとともにマトリックスの耐食性を
向上させる。しかし、15重量%未満では耐食性が低下
し、25重量%を超えると圧粉成形性が著しく低下する
ので、15〜25重量%の範囲とした。Cr)7 Precipitates C3 carbide to significantly improve wear resistance. Further, together with Ni, it improves the corrosion resistance of the matrix. However, if it is less than 15% by weight, the corrosion resistance will decrease, and if it exceeds 25% by weight, the compactability will be significantly decreased, so the content was set in the range of 15 to 25% by weight.
Ni:
NiはCrとともにマトリックスの耐食性を著しく向上
させる。しかし、6重量%未満では耐食性が低下し、1
0重量%を超えて含有しても効果の向上があまり見られ
ず、コストも高くなるので、6〜10重量%の範囲とし
た。Ni: Together with Cr, Ni significantly improves the corrosion resistance of the matrix. However, if it is less than 6% by weight, corrosion resistance decreases and 1
If the content exceeds 0% by weight, the effect will not improve much and the cost will increase, so the content is set in the range of 6 to 10% by weight.
M(Ti、Zr、Hf、V、Nb、Ta、Cr。M(Ti, Zr, Hf, V, Nb, Ta, Cr.
Mo、Wのうちから選ばれる硬質炭化物形成金属元素)
:
L記の金属元素Mは焼結時に黒鉛と結合して50gxH
vで1800以上の非常に硬い微細炭化物を析出させ、
高面圧下での耐摩耗性を著しく向上させるのに有効であ
る。しかし、0.1重量%未満ではこのような効果が十
分得られず、5重量%を超えると圧粉成形性および焼結
性が悪化するので、0.1〜5重量%の範囲とした。hard carbide-forming metal element selected from Mo, W)
: The metal element M in L is combined with graphite during sintering to produce 50gxH.
Precipitate very hard fine carbides of 1800 or more at
It is effective in significantly improving wear resistance under high surface pressure. However, if it is less than 0.1% by weight, such effects cannot be sufficiently obtained, and if it exceeds 5% by weight, the compactability and sinterability deteriorate, so the content is set in the range of 0.1 to 5% by weight.
P :
Pは焼結時に液相を形成させることによりCの拡散を促
進させ、焼結を著しく進行させる。しかじ、0.2重量
%未満では所要の効果が得られず、2重量%を超えると
焼結時の液相量が過剰になり、焼結後の形状変化が大き
くなるので、0.2〜2重量%の範囲とした。P: P promotes the diffusion of C by forming a liquid phase during sintering, and significantly advances sintering. However, if it is less than 0.2% by weight, the desired effect cannot be obtained, and if it exceeds 2% by weight, the amount of liquid phase during sintering becomes excessive and the shape change after sintering becomes large. -2% by weight.
C:
Cは焼結時にCrおよび硬質炭化物形成金属元素Mと結
合して種々の炭化物を析出させ、#摩耗性を著しく向上
させる。しかし、2重量%未満では硬さが低く耐摩耗性
が劣り、5重量%を超えると強度が著しく低下するので
、2〜5重量%の範囲とした。C: C combines with Cr and the hard carbide-forming metal element M during sintering to precipitate various carbides, which significantly improves wear resistance. However, if it is less than 2% by weight, the hardness will be low and the wear resistance will be poor, and if it exceeds 5% by weight, the strength will be significantly reduced, so the content was set in the range of 2 to 5% by weight.
そのほか、使用するオーステナイト系ステンレス鋼中に
、上記以外の元素、例えばCu等が含まれている場合に
は、このような添加元素が上記混合粉末中に含まれるこ
とはいうまでもない。In addition, if the austenitic stainless steel used contains elements other than those mentioned above, such as Cu, it goes without saying that such additional elements are included in the mixed powder.
次いで、このような配合比にした混合粉末を所定の形状
に圧粉成形し、その後成形体を非酸化性雰囲気中等で焼
結する。Next, the mixed powder having such a blending ratio is compacted into a predetermined shape, and then the compact is sintered in a non-oxidizing atmosphere or the like.
(実施例〕く試料陽、1〜8〉
第1表に示すように、オーステナイト系ステンレス鋼(
SUS304)の粉末に、硬質炭化物形成金属元素Mと
、Fe−27重量%P合金粉末と、黒鉛粉末とを配合し
、これに潤滑剤としてステアリン酸亜鉛粉末を0.75
重量%添加した後、V型ブレンダーで約20分聞易合し
た。(Example) Samples 1 to 8> As shown in Table 1, austenitic stainless steel (
Hard carbide-forming metal element M, Fe-27% by weight P alloy powder, and graphite powder were blended into powder of SUS304), and 0.75% zinc stearate powder was added as a lubricant.
After adding the weight percent, the mixture was blended in a V-type blender for about 20 minutes.
次に、このようにして得た各混合粉末を成形圧カフto
nf/cm”で第1図に示すようなロッカーアームチッ
プ1の形状に圧粉成形し、得られた成形体を窒素中so
o’cで1時間加熱して脱ろうした後、第1表に示す非
酸化性雰囲気中で同じく第1表に示す各温度で1時間加
熱焼結してロッカーアームチップ1を製作した。続いて
、このロッカーアームチップ1を第2図に示すようにロ
ッカーアームボディ2にロウ付により接合してロッカー
アーム3を製作した。Next, each of the mixed powders obtained in this way was placed into a molding pressure cuff.
nf/cm" into the shape of a rocker arm chip 1 as shown in FIG.
After dewaxing by heating at o'c for 1 hour, the rocker arm chip 1 was produced by heating and sintering for 1 hour at each temperature shown in Table 1 in a non-oxidizing atmosphere shown in Table 1. Next, as shown in FIG. 2, this rocker arm chip 1 was joined to a rocker arm body 2 by brazing to produce a rocker arm 3.
(比較例)く試料陽、9.10>
この比較例における試料崩、9は、ti述した従来のオ
ーステナイト系ステンレス鋼粉末を用いた焼結合金より
なるロッカーアームチップ1をロウ付によってロッカー
アームボディ2に接合することによりロッカーアーム3
を製作した場合を示すものであり、硬質炭化物形成金属
元素Mの添加はないものである。(Comparative Example) Sample Sample 9.10> Sample 9 in this Comparative Example is a rocker arm made by brazing the rocker arm tip 1 made of a sintered alloy using the conventional austenitic stainless steel powder described above. Rocker arm 3 by joining to body 2
This figure shows the case in which a hard carbide-forming metal element M was not added.
また、試料No、10は、ロッカーアームチップ1とし
て低合金チル鋳物を用いた場合を示すものであり、同様
にしてロッカーアーム3を製作した。Moreover, sample No. 10 shows the case where a low-alloy chill casting was used as the rocker arm tip 1, and a rocker arm 3 was manufactured in the same manner.
次に、各試料崩、1〜10の機械的特性値と耐食性を調
べたところ、第2表に示す結果であった。なお、耐食性
は、lN−H2SO,溶液中に浸漬し、1時間浸漬後の
重量減を調べた。Next, the mechanical property values 1 to 10 and corrosion resistance of each sample were examined, and the results were shown in Table 2. The corrosion resistance was determined by immersing the sample in a 1N-H2SO solution and examining the weight loss after 1 hour of immersion.
第2表に示すように、実施例間、1〜8では50gxH
vで約1600c7)(Fe、Cr)7C3の硬質分散
相のほかに、これよりも硬さの大きい50gMHvで1
800以上のM金属炭化物の硬質相が分散しているのに
対して、比較例間。As shown in Table 2, between Examples 1 to 8, 50gxH
In addition to the hard dispersed phase of (Fe, Cr)7C3, there is a
While the hard phase of M metal carbide of 800 or more is dispersed, between the comparative examples.
9.10では硬質分散相が50gxHvで約1600の
(Fe、Cr)7c3炭化物だけであり、実施例No、
1〜8のように50gxHvで約1800以上のより高
硬度の炭化物を含んでいない、また、実施例間、1〜8
および比較例間、9では耐食性に優れているのに対して
、比較例間。In 9.10, the hard dispersed phase is only about 1600 (Fe, Cr)7c3 carbide at 50gxHv, and Example No.
Examples 1 to 8 do not contain carbides with a higher hardness of about 1800 or more at 50 g x Hv, and between Examples 1 to 8
and Comparative Examples, 9 has excellent corrosion resistance, while Comparative Examples.
10においては耐食性が著しく低い。In No. 10, the corrosion resistance is extremely low.
次に、各試料向、1〜10により製作したロッカーアー
ム3を水冷直列6気筒2800ccデイーゼルエンジン
に組み込み、アイドル回転させて実車耐久試験を行った
。なお、カムシャフトは現行の低合金鋳鉄のチル鋳物を
用いた。Next, the rocker arms 3 manufactured in accordance with 1 to 10 for each sample direction were assembled into a water-cooled in-line 6-cylinder 2800 cc diesel engine, and an actual vehicle durability test was conducted by rotating the engine at idle. The camshaft was made from a current low-alloy cast iron chill casting.
この耐久試験においては第3表に示す条件で行った。This durability test was conducted under the conditions shown in Table 3.
第 3 表
そして、上記した条件による耐久試験後のカムピース表
面およびロッカーアームチップ表面の最大摩耗深さを測
定した。この結果を第3図に示す。Table 3 The maximum wear depth of the cam piece surface and rocker arm chip surface was measured after the durability test under the conditions described above. The results are shown in FIG.
第3図に示す結果から明らかなように、比較例間、9で
は硬質相の硬さ不足のためにチップおよびカムともに比
較的大きく摩耗し、比較例間。As is clear from the results shown in FIG. 3, both the tip and cam of Comparative Example 9 suffered from relatively large wear due to insufficient hardness of the hard phase;
10ではさらに耐食性が劣るために著しく摩耗している
。これに対して実施例崩、1〜8においてはチップおよ
びカムの摩耗が著しく低減しており、スプリング荷重の
大きいバルブスプリングを用いたカムシャフトの耐摩耗
性向上に非常に有効であることが確かめられた。In No. 10, the corrosion resistance was even worse, resulting in significant wear. On the other hand, in Examples 1 to 8, the wear of the tips and cams was significantly reduced, and it was confirmed that this is very effective in improving the wear resistance of camshafts using valve springs with large spring loads. It was done.
そして、硬質炭化物形成金属元素を複合添加し°た実施
例No、6.7.8においては、それらを単独添加した
実施例崩、1〜5に比べてより一層耐摩耗性を向上でき
ることが確かめられた。In Example No. 6, 7.8, in which hard carbide-forming metal elements were added in combination, it was confirmed that the wear resistance could be further improved compared to Examples 1 to 5, in which they were added alone. It was done.
(発明の効果)
以上説明してきたように、この発明による耐摩耗性焼結
合金は、オーステナイト系ステンレス鋼粉末と、Ti
、Zr 、Hf 、V、Nb 、Ta。(Effects of the Invention) As explained above, the wear-resistant sintered alloy according to the present invention includes austenitic stainless steel powder and Ti
, Zr, Hf, V, Nb, Ta.
Cr、Mo、Wのうちから選ばれる炭化物形成金属元素
Mのうちの1種類以上を含む金属粉末と、Fe−P系合
金粉末と、黒鉛粉末とを混合して。A metal powder containing one or more of the carbide-forming metal elements M selected from Cr, Mo, and W, an Fe-P alloy powder, and a graphite powder are mixed.
全粉末の組成が、Fe−15〜25重量%Cr−6〜1
0重量%Ni−0,1〜5重量%M−0,2〜2重量%
P−2〜5重量%Cとなるように配合した混合粉末を圧
粉成形して焼結したものであるから、耐食性および耐摩
耗性に優れており、特に50gxHvで1800以上の
硬質炭化物が焼結時に析出しているため高面圧下での耐
摩耗性を著しく向上させることが可能であり、例えば腐
食性および面圧の大きいディーゼルエンジンのロッカー
アームチップ素材として好適であるという非常に優れた
効果をもたらすものである。The composition of the whole powder is Fe-15 to 25% by weight Cr-6 to 1
0% by weight Ni-0,1-5% by weight M-0,2-2% by weight
P-Since it is made by compacting and sintering a mixed powder blended to have a carbon content of 2 to 5% by weight, it has excellent corrosion resistance and wear resistance, and in particular, hard carbide of 1800 or more is sintered at 50g x Hv. Because it precipitates during solidification, it can significantly improve wear resistance under high surface pressure, making it suitable as a rocker arm tip material for diesel engines that are corrosive and have high surface pressure, for example. It brings about.
第1図はこの発明の実施例および比較例において製作し
たロッカーアームチップの外観を示す斜視図、第2図は
組立て後のロッカーアームの外観を示す側面図、第3図
は実車耐久結果を示すグラフである。Fig. 1 is a perspective view showing the external appearance of rocker arm chips manufactured in Examples and Comparative Examples of the present invention, Fig. 2 is a side view showing the external appearance of the rocker arm after assembly, and Fig. 3 shows the actual vehicle durability results. It is a graph.
Claims (1)
r、Hf、V、Nb、Ta、Cr、Mo、Wのうちから
選ばれる炭化物形成金属元素Mのうちの1種類以上を含
む粉末と、Fe−P系合金粉末と、黒鉛粉末とを混合し
て、全粉末の組成が、Fe−15〜25重量%Cr−6
〜10重量%Ni−0.1〜5重量%M−0.2〜2重
量%P−2〜5重量%Cとなるように配合した混合粉末
を圧粉成形して焼結したことを特徴とする耐摩耗性焼結
合金。(1) Austenitic stainless steel powder, Ti, and Z
A powder containing one or more of carbide-forming metal elements M selected from r, Hf, V, Nb, Ta, Cr, Mo, and W, an Fe-P alloy powder, and a graphite powder are mixed. The composition of the whole powder is Fe-15 to 25% by weight Cr-6.
-10% by weight Ni - 0.1 - 5% by weight M - 0.2 - 2% by weight P - 2 - 5% by weight C was compacted and sintered. wear-resistant sintered alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19814584A JPS6176650A (en) | 1984-09-21 | 1984-09-21 | Wear resistant sintered alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19814584A JPS6176650A (en) | 1984-09-21 | 1984-09-21 | Wear resistant sintered alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6176650A true JPS6176650A (en) | 1986-04-19 |
Family
ID=16386206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19814584A Pending JPS6176650A (en) | 1984-09-21 | 1984-09-21 | Wear resistant sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6176650A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449602U (en) * | 1987-09-22 | 1989-03-28 | ||
WO1998024941A1 (en) * | 1996-11-30 | 1998-06-11 | Federal-Mogul Sintered Products Limited | Iron-based powder |
JP2008121058A (en) * | 2006-11-10 | 2008-05-29 | Hitachi Powdered Metals Co Ltd | Sintered machine part and method for producing the same |
-
1984
- 1984-09-21 JP JP19814584A patent/JPS6176650A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449602U (en) * | 1987-09-22 | 1989-03-28 | ||
WO1998024941A1 (en) * | 1996-11-30 | 1998-06-11 | Federal-Mogul Sintered Products Limited | Iron-based powder |
US6123748A (en) * | 1996-11-30 | 2000-09-26 | Federal Mogul Sintered Products Limited | Iron-based powder |
KR100613942B1 (en) * | 1996-11-30 | 2006-08-18 | 페더럴-모굴 신터드 프러덕츠 리미티드 | Iron powder |
JP2008121058A (en) * | 2006-11-10 | 2008-05-29 | Hitachi Powdered Metals Co Ltd | Sintered machine part and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5462573A (en) | Valve seat inserts of sintered ferrous materials | |
US5031878A (en) | Valve seat made of sintered iron base alloy having high wear resistance | |
JP2506333B2 (en) | Abrasion resistant iron-based sintered alloy | |
JP3469435B2 (en) | Valve seat for internal combustion engine | |
JPH0360897B2 (en) | ||
EP0980443B1 (en) | Method of forming a component by sintering an iron-based powder mixture | |
JPS6342357A (en) | Wear-resistant ferrous sintered alloy | |
JPS6176650A (en) | Wear resistant sintered alloy | |
JPS5985847A (en) | Fe-based sintered material for sliding parts of internal combustion engines | |
JPS63290249A (en) | Ferrous sintered alloy combining heat resistance with wear resistance | |
JPS60255958A (en) | Wear resistant sintered alloy | |
JP2001234305A (en) | Sintered member | |
JP2683444B2 (en) | Sintered alloy for valve mechanism of internal combustion engine | |
JPH0313546A (en) | Iron-based sintered alloy for valve seats | |
JPS58224154A (en) | Fe-based sintered alloy for internal combustion engine valve seats | |
JPS6196060A (en) | Wear and corrosion resistant sintered alloy | |
JP3440008B2 (en) | Sintered member | |
JP3187975B2 (en) | Sintered alloy for sliding members with excellent scuffing and wear resistance | |
JPS59118859A (en) | Sliding member | |
JPS6063350A (en) | Moving valve member for internal-combustion engine | |
JPS61183447A (en) | Iron-based sintered alloy for valve seats | |
JPS599151A (en) | Wear-resistant sintered alloy | |
JPS59222555A (en) | Wear-resistant sintered alloy | |
JP3230139B2 (en) | Internal-combustion engine tappet member having high joining strength with chip material | |
JPS61266559A (en) | Corrosion and wear resistant sintered alloy |