JPS6175820A - Manufacturing method of pitch carbon fiber - Google Patents
Manufacturing method of pitch carbon fiberInfo
- Publication number
- JPS6175820A JPS6175820A JP19637384A JP19637384A JPS6175820A JP S6175820 A JPS6175820 A JP S6175820A JP 19637384 A JP19637384 A JP 19637384A JP 19637384 A JP19637384 A JP 19637384A JP S6175820 A JPS6175820 A JP S6175820A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- spinning
- nozzle
- section
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 23
- 239000004917 carbon fiber Substances 0.000 title claims description 23
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000009987 spinning Methods 0.000 claims description 84
- 239000000835 fiber Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 16
- 238000003763 carbonization Methods 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 6
- 238000005087 graphitization Methods 0.000 claims description 2
- 239000011295 pitch Substances 0.000 description 68
- 239000011302 mesophase pitch Substances 0.000 description 14
- 239000002994 raw material Substances 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000011294 coal tar pitch Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- LBUJPTNKIBCYBY-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline Chemical compound C1=CC=C2CCCNC2=C1 LBUJPTNKIBCYBY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 239000010692 aromatic oil Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- 238000006027 Birch reduction reaction Methods 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 244000132059 Carica parviflora Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はピッチ系炭素繊維の製造方法に関するものであ
り、より詳しくは、改善された強度を発現する繊維断面
を有するピッチ系炭素繊維を安定して製造する方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pitch-based carbon fibers, and more particularly, to a method for stably producing pitch-based carbon fibers having a fiber cross section that exhibits improved strength. It is.
炭素繊維は、比強度、比弾性率が高い材料で、高性能複
合材料のフィラー繊維として最も注目されている。なか
でもピッチ系炭素繊維は、原料が潤沢である、炭化工程
の歩留が大きい、繊維の弾性率が高いなど、ポリアクリ
ロニトリル系炭素繊維に比べて様々な利点を持っている
。Carbon fiber is a material with high specific strength and specific modulus, and is attracting the most attention as a filler fiber for high-performance composite materials. Among them, pitch-based carbon fiber has various advantages over polyacrylonitrile-based carbon fiber, such as abundant raw materials, high yield in the carbonization process, and high fiber elastic modulus.
ところで、従来紡糸ピッチとして使用していた等方質ピ
ッチの代りに、炭素質原料を加熱処理して、異方性が発
達し、配向しやすい分子種が形成されたピッチを使用す
ることにより、高特性のピッチ系炭素繊維が得られるこ
とが報告(特公昭+79−g43’1号)されて以来、
配向性の良好な紡糸ピッチの調製について種々検討され
てきた。By the way, instead of the isotropic pitch conventionally used as the spinning pitch, by heat-treating the carbonaceous raw material to develop anisotropy and forming molecular species that are easy to orient. Since it was reported that pitch-based carbon fiber with high properties could be obtained (Tokukosho+79-g43'1),
Various studies have been made regarding the preparation of spinning pitch with good orientation.
周知の様に、重質油、タール、ピッチ等の炭素質原料を
350〜夕00℃に加熱すると、それら物質中に粒径が
数ミクロンから数百ミクロンの、偏光下に光学的異方性
を示す小球体が生成する。そして、さらに加熱すると、
これらの小球体は成長、合体し、ついには全体が光学的
異方性を示す状態となる。この異方性組織は、炭素質原
料の熱重縮合反応により生成した平面状高分子芳香族炭
化水素が層状に積み重なり、配向したもので、黒鉛結晶
構造の前1駆体とみなされている。As is well known, when carbonaceous raw materials such as heavy oil, tar, pitch, etc. are heated to 350 to 00°C, optical anisotropy occurs under polarized light, with particle sizes ranging from several microns to several hundred microns. A small sphere is generated. Then, when heated further,
These spherules grow and coalesce, until the entire structure exhibits optical anisotropy. This anisotropic structure is composed of planar polymeric aromatic hydrocarbons produced by thermal polycondensation reaction of carbonaceous raw materials, stacked and oriented in layers, and is considered to be a precursor of a graphite crystal structure.
この様な異方性組織を含む熱処理物は、一般的にはメソ
フェーズピッチと呼称されている。A heat-treated product containing such an anisotropic structure is generally called mesophase pitch.
カカるメソフェーズピッチを紡糸ピッチとして使用する
方法としては、例えば、石油系ピッチを静置条件下で約
3so−<xro℃で加熱処理して得られる&0−qO
重量係のメソフェーズを含有するピッチを紡糸ピッチと
する方法が提案されている(特開昭弘9−/9727号
)。As a method of using a mesophase pitch that hardens as a spinning pitch, for example, &0-qO obtained by heat-treating petroleum-based pitch at about 3so-<xro℃ under stationary conditions.
A method has been proposed in which a pitch containing a weight-related mesophase is used as a spinning pitch (Japanese Patent Application Laid-Open No. 9-9727).
しかし、かかる方法により等方質の炭素質原料をメン化
するには長時間を要するので、予め炭素質原料を十分量
の溶媒で処理してその不溶分を得、それを23θ〜tt
oo℃の温度で10分以下の短時間加熱処理して、高度
に配向され、光学的異方性部分が75重量係以上で、キ
ノリンネ溶分23重量%以下の、所謂、ネオメソフェー
ズピッチを形成し、これを紡糸ピッチとする方法が提案
されている(特開昭!1ll−/1.O’A、2.7号
)。However, since it takes a long time to mentate an isotropic carbonaceous raw material by such a method, the carbonaceous raw material is treated in advance with a sufficient amount of solvent to obtain its insoluble matter, and the
Heat treatment for a short time of 10 minutes or less at a temperature of 0°C to form so-called neomesophase pitch, which is highly oriented, has an optically anisotropic portion of 75% by weight or more, and has a quinoline solubility of 23% by weight or less. However, a method has been proposed in which this is used as the spinning pitch (Japanese Patent Application Laid-Open No. 11-11-1.O'A, No. 2.7).
その他、高特性炭素繊維製造用の配向性のよい紡糸ピッ
チとしては、例えば、コールタールピッチをテトラヒド
ロキノリン等の媒体存在下に水添処理し、次いで、約t
tso℃で短時間加熱処理して得られる光学的に等方性
でboo℃以上に加熱することによって異方性に変わる
性質を有するピッチ、所謂、プリメソフェーズピッチ(
特開昭3g−/gtI2/号)、或いは、メソフェーズ
ピッチをBirch還元法等により水素化処理して得ら
れる光学的に等方性で外力を加えるとその方向への配向
性を示すピッチ、所謂、ドーマントメソフェーズ(特開
昭57−100/gl、号)等が提案されている。In addition, as spinning pitch with good orientation for producing high-performance carbon fibers, for example, coal tar pitch is hydrogenated in the presence of a medium such as tetrahydroquinoline, and then approximately t
A pitch that is optically isotropic, obtained by short-time heat treatment at tso°C, and has the property of becoming anisotropic by heating above 0°C, the so-called pre-mesophase pitch (
JP-A-3G-/gtI2/), or a pitch obtained by hydrogenating mesophase pitch by Birch reduction method etc., which is optically isotropic and shows orientation in that direction when an external force is applied. , dormant mesophase (JP-A-57-100/gl, No.), etc. have been proposed.
しかしながら、上記の様な配向性のよい紡糸ピッチを用
いて紡糸した場合、得られるピッチ繊維中の平面状高分
子炭化水素の積層構造が繊維断面内でラジアル配向とな
りやすく、その結果、その後の不融化、炭化の際に炭化
収縮に起因する引張応力が繊維断面の周方向に作用する
ため、得られる炭素繊維の断面には繊維軸方向に伸びる
くさび状のクラックが発生し、炭素繊維の商品価値を損
なう事になる。However, when spinning using a spinning pitch with good orientation as described above, the layered structure of planar polymeric hydrocarbons in the resulting pitch fiber tends to be radially oriented within the fiber cross section, resulting in subsequent failure. During melting and carbonization, tensile stress caused by carbonization shrinkage acts in the circumferential direction of the fiber cross section, so wedge-shaped cracks extending in the fiber axis direction occur in the cross section of the resulting carbon fiber, which reduces the commercial value of the carbon fiber. It will damage the.
本発明者等はかかる点に留意し、鋭意検討した結果、紡
糸ノズルのノズル孔を特定形状とし、かつその形状を特
定構成方法で実現する事により、上記欠点が確実かつ安
定的に克服されることを見出し本発明を完成するに到っ
た。すなわち、本発明の目的は、繊維断面構造が実質的
にラジアル配向ではないピッチ系炭素繊維を安定して工
業的有利に製造することにあり、この目的は、紡糸ピッ
チを、ノズル孔が流入部、後流部及び該流入部と該後流
部のいずれよりも径が拡大された中間部を有する紡糸ノ
ズルであって、かつ該中間部において分断された紡糸口
金部分を一体に構成して成る紡糸ノズルから紡糸してピ
ッチ繊維を得、これに不融化及び炭化処理を行ない、更
に必要に応じて黒鉛化処理を行なうことによって達成さ
れる。The inventors of the present invention have kept these points in mind and as a result of intensive study, the above drawbacks can be reliably and stably overcome by making the nozzle hole of the spinning nozzle into a specific shape and realizing that shape using a specific construction method. This discovery led to the completion of the present invention. That is, an object of the present invention is to stably and industrially advantageously produce pitch-based carbon fibers whose fiber cross-sectional structure is not substantially radially oriented. , a spinning nozzle having a wake section and an intermediate section whose diameter is larger than both the inflow section and the wake section, and in which a spinneret section separated at the intermediate section is integrally constituted. This is achieved by spinning a pitch fiber from a spinning nozzle, subjecting it to infusibility and carbonization treatment, and further subjecting it to graphitization treatment if necessary.
以下、本発明をさらに詳しく説明するに、本発明で用い
る紡糸ピッチとしては、配向しやすい分子種が形成され
ており、光学的に異方性の炭素繊維を与えるようなもの
であれば特に制限はなく、前述の様な従−来の種々のも
のが使用できる。紡糸ピッチを得るための炭素質原料と
しては、例えば、石炭系のコールタール、コールタール
ピッチ、石炭液化物、石油系の重質油、タール、ピッチ
等が挙げられる。こnらの炭素質原料には、通常フリー
カーボン、未溶解石炭、灰分などの不純物が含まれてい
るが、これらの不純物は濾過、遠心分離、あるいは溶剤
を使用する静置沈降分離などの周知の方法で予め除去し
ておく事が望ましい。To explain the present invention in more detail below, the spinning pitch used in the present invention is particularly limited as long as it forms molecular species that are easily oriented and provides optically anisotropic carbon fibers. Instead, various conventional ones such as those mentioned above can be used. Examples of the carbonaceous raw material for obtaining spinning pitch include coal-based coal tar, coal tar pitch, coal liquefied products, petroleum-based heavy oil, tar, pitch, and the like. These carbonaceous raw materials usually contain impurities such as free carbon, undissolved coal, and ash, but these impurities can be removed by well-known methods such as filtration, centrifugation, or static sedimentation using solvents. It is preferable to remove it in advance using the following method.
また、前記炭素質原料を、例えば、加熱処理した後特定
溶剤で可溶分を抽出するといった方法、あるいは水素供
与性溶剤、水素ガスの存在下に水添処理するといった方
法で予備処理を行なっておいても良い。Further, the carbonaceous raw material is pre-treated by, for example, heat-treated and then extracted with a specific solvent, or hydrogenated in the presence of a hydrogen-donating solvent or hydrogen gas. You can leave it there.
本発明においては、前記炭素質原料あるいは予備処理を
行なった炭素質原料を、通常350〜500℃、好まし
くは3go〜qり0℃で、−分〜50時間、好ましくは
S分〜5時間、窒素、アルゴン等の不活性ガス雰囲気下
、或いは、吹き込み下に加熱処理することによって得ら
れる90%以上、特に70%以上の光学的異方性組織を
含むメソフェーズピッチが好適に使用できる0
本発明でいうメツフェーズピッチの光学的異方性組織割
合は、常温下偏光顕微鏡でのメソフェーズピッチ試料中
の光学的異方性を示す部分の面積割合として求めた値で
ちる。In the present invention, the carbonaceous raw material or the pretreated carbonaceous raw material is heated at a temperature of usually 350 to 500°C, preferably 30 to 0°C for - minutes to 50 hours, preferably S minutes to 5 hours. Mesophase pitch containing an optically anisotropic structure of 90% or more, especially 70% or more, obtained by heat treatment under an inert gas atmosphere such as nitrogen or argon or while being blown into the atmosphere, can be preferably used. The optically anisotropic structure ratio of mesophase pitch is determined by the area ratio of a portion exhibiting optical anisotropy in a mesophase pitch sample under a polarizing microscope at room temperature.
具体的には、−例えばメソフェーズピッチ試料を数m角
に粉砕したものを常法に従って約ユロ直径の樹脂の表面
のほぼ全面に試料片を埋込み、表面を研磨後、表面全体
をくまなく偏光顕微鏡(100倍率)下で観察し、試料
の全表面積に占める光学的異方性部分の面積の割合を測
定する事によって求める。Specifically, - For example, a mesophase pitch sample is crushed into pieces of several meters square, and the sample piece is embedded into almost the entire surface of a resin with a diameter of approximately 100 mm using a conventional method. After polishing the surface, the entire surface is thoroughly inspected using a polarizing microscope. It is determined by observing the sample under a magnification of 100 and measuring the ratio of the area of the optically anisotropic portion to the total surface area of the sample.
本発明においては上記のような紡糸ピッチを、ノズル孔
が拡大された中間部を有する形状の紡糸ノズルであって
、かつ、その中間部において分断された少くとも二つの
紡糸口金部分から構成され、その二つの部分を分断面で
接合することによりノズル孔が上記形状となる如く構成
された紡糸ノズルを用いて紡糸する。ここでノズル孔と
は溶融ピッチが紡糸される直前に流通し、糸条を形成す
る細径孔を意味するが、通常の紡糸ノズルのノズル孔は
その長さの全長にわたって径が一定であるか、又は出口
に向ってその径が順次縮少する構造を有しているが本発
明ではまずこのノズル孔が中間部で拡大されていること
が重要である。In the present invention, the spinning pitch as described above is obtained by using a spinning nozzle having a shape having a middle part with an enlarged nozzle hole, and comprising at least two spinneret parts separated at the middle part, Spinning is performed using a spinning nozzle configured such that the nozzle hole has the above-described shape by joining the two parts at the cut plane. Here, the nozzle hole means a small diameter hole through which molten pitch flows just before spinning to form yarn, but the nozzle hole of a normal spinning nozzle has a constant diameter over its entire length. , or has a structure in which the diameter gradually decreases toward the outlet, but in the present invention, it is important that the nozzle hole is first enlarged in the middle part.
本発明で用いる紡糸ノズルについてさらに詳しく説明す
れば、紡糸ノズルのノズル孔は紡糸ピッチ流入部、中間
部及び後流部から成っており、ノズル孔の径が拡大され
た中間部とは、中間部の径が紡糸ピッチ流入部及び後流
部よシ犬きいことを意味するものである。例えば第1図
は本発明で用いる紡糸ノズルの典型的な7例を又、第2
図はそのノズル孔部分を拡大して示す縦断面の模式図で
あるが、両図において、/は紡糸ピッチの導入孔、λは
流入部、3は拡大された中間部、qは後流部、夕は紡糸
口金部分A、んは紡糸口金部分B、7は該紡糸口金部分
Bの紡出側端面、gは中間部における分断面をそれぞれ
示すものである。To explain in more detail about the spinning nozzle used in the present invention, the nozzle hole of the spinning nozzle consists of a spinning pitch inlet section, an intermediate section, and a trailing section. This means that the diameter of the spinning pitch is larger than that of the inlet and downstream parts of the spinning pitch. For example, FIG. 1 shows seven typical examples of spinning nozzles used in the present invention.
The figure is a schematic vertical cross-sectional view showing an enlarged view of the nozzle hole. In both figures, / is the introduction hole of the spinning pitch, λ is the inflow part, 3 is the enlarged intermediate part, and q is the downstream part. , y is the spinneret portion A, n is the spinneret portion B, 7 is the end surface on the spinning side of the spinneret portion B, and g is the sectioned surface at the intermediate portion, respectively.
即ちノズル孔は、円形断面の直管であって、かつ径が同
一の紡糸ピッチ流入部ユ及び後流部ケと、その中間にあ
り、かつこれらよりも大きな径の円形断面の直管からな
る中間部3とから構成された形状を有するものである。That is, the nozzle hole is a straight pipe with a circular cross section, and consists of a spinning pitch inlet part and a trailing part having the same diameter, and a straight pipe with a circular cross section located in the middle and having a larger diameter than these. It has a shape composed of an intermediate portion 3.
か\るノズルを使用した場合、紡糸ピッチは先ず紡糸ピ
ッチ流入部で一次糸条を形成し、次いで拡大された中間
部で紡糸ピッチの紡糸軸方向の流れに対して半径方向に
拡大する流れ成分が加わることにより、メソフェーズ分
子がその方向に配向し、最後に再び縮小された径を有す
る後流部で可紡性を確保して吐出されるものと考えられ
る。When such a nozzle is used, the spinning pitch first forms a primary yarn at the spinning pitch inlet, and then forms a flow component that expands in the radial direction with respect to the flow of the spinning pitch in the spinning axis direction at the expanded intermediate section. It is thought that by adding this, the mesophase molecules are oriented in that direction, and finally, they are discharged while ensuring spinnability at the trailing part where the diameter is reduced again.
ここで中間部は第2図に示すように通常は円筒形である
が、紡糸ピッチ流入部で形成された一次糸条の流れに半
径方向に拡大する成分を4得ることが重要で、かつ好ま
しくは紡糸ピッチの滞留する部分が少ないような形状で
あればよく、球状、回転楕円状やこれらを変形させた形
状、さらにはひようたん状に拡大部が複数個連絡した形
状など種々の形状のもの、あるいは通常の直管状のノズ
ルの上端及び下端にオリフィスを設置したもの等を用い
ることができる。なお紡糸ピッチ流入部と中間部、およ
び中間部と後流部との接続部は滑らかに形成してもよい
。Here, the intermediate part is usually cylindrical as shown in FIG. 2, but it is important and preferable to obtain a component that expands in the radial direction in the flow of the primary yarn formed at the spinning pitch inlet part. It is sufficient to have a shape that has a small area where the spinning pitch remains, and various shapes such as a spherical shape, a spheroidal shape, a modified shape of these shapes, and a gourd-like shape in which multiple enlarged parts are connected are suitable. It is possible to use a straight nozzle, or a normal straight nozzle with orifices installed at the upper and lower ends. Note that the connecting portions between the spinning pitch inflow portion and the intermediate portion, and between the intermediate portion and the trailing portion may be formed smoothly.
中間部の径(D2)は通常0./〜夕馴、好ましくは0
.7S〜3順であり、その長さくL2)は通常0.02
〜/ Omm、好ましくは0.7!i〜!rtMRであ
る。またその長さと径との比(L2/D2)は通常0.
2〜S1好ましくは0.5〜3である。なお、中間部が
第2図の如き円筒形でない場合には、中間部の径(D2
)とは中間部の最広部の径を指すものとする。The diameter (D2) of the middle part is usually 0. / ~ evening familiarity, preferably 0
.. 7S ~ 3 order, and its length L2) is usually 0.02
~/Omm, preferably 0.7! i~! rtMR. Also, the ratio of length to diameter (L2/D2) is usually 0.
2-S1 preferably 0.5-3. In addition, if the intermediate part is not cylindrical as shown in Fig. 2, the diameter of the intermediate part (D2
) refers to the diameter of the widest part of the middle part.
次に紡糸ピッチ流入部および後流部について説明する。Next, the spinning pitch inflow section and the downstream section will be explained.
これらの断面形状は第2図に示すように通常は円形であ
るが、所望ならば楕円形等の円形以外の形状とすること
もでさる。紡糸ピッチ流入部及び後流部の径は通常0.
0 /〜2瓢である。好ましくは紡糸ピッチ流入部の径
(Dl)は0.05〜/酎であり、後流部の径(D3)
は0.0−〜/訓である。These cross-sectional shapes are usually circular as shown in FIG. 2, but if desired, they can be shaped other than circularly, such as an ellipse. The diameter of the spinning pitch inlet and trailing portion is usually 0.
0/~2 gourds. Preferably, the diameter (Dl) of the spinning pitch inflow section is 0.05 to 1/2, and the diameter (D3) of the downstream section
is 0.0-~/kun.
なお、紡糸ピッチ流入部および後流部が一様な太さでな
い場合には、紡糸ピッチ流入部の径とは紡糸ピッチ流入
部の最狭部の径であり、一方、後流部の径とは吐出部の
径を意味する。紡糸ピッチ流入部の長さくLl)は通常
2問以下、後流部の長さくり、)は通常3団以下である
。また、後流部の長さと径との比(”3 /D3 )は
通常io以下であり、3以下が好ましい。紡糸ピッチ流
入部および後流部の長さがそれぞれ上記範囲より長くな
ると、ラジアル配向が再生もしくは残存しやすくなると
推定される。Note that if the spinning pitch inlet and trailing portions are not uniform in thickness, the diameter of the spinning pitch inlet is the diameter of the narrowest part of the spinning pitch inlet, and the diameter of the trailing portion is the diameter of the spinning pitch inlet. means the diameter of the discharge part. The length of the spinning pitch inlet (Ll) is usually 2 or less, and the length of the trailing portion (Ll) is usually 3 or less. In addition, the ratio of the length and diameter of the trailing section (3/D3) is usually io or less, preferably 3 or less.If the lengths of the spinning pitch inflow section and trailing section are longer than the above ranges, the radial It is estimated that the orientation is more likely to be reproduced or remain.
本発明で用いる紡糸ノズルにおいて、中間部は紡糸ピッ
チ流入部で形成された一次糸条の流れに半径方向に拡大
する成分を与えるものでちるから、両者の径比(D2/
D、)はlより大きくなければならない。通常(D2/
D、)は7.5〜10の範囲にある。また後流部は中間
部で半径方向に拡大された流れを再びしぼって糸条径を
規制するとともに可紡性を確保して吐出するものである
から、両者の径比(D、 /D2)ば/より小さくなけ
ればならない。In the spinning nozzle used in the present invention, the intermediate section gives a component that expands in the radial direction to the flow of the primary yarn formed at the spinning pitch inflow section, so the diameter ratio (D2/
D, ) must be greater than l. Normal (D2/
D,) is in the range of 7.5-10. In addition, the trailing part is to restrict the flow expanded in the radial direction in the intermediate part again to regulate the yarn diameter and discharge it while ensuring spinnability, so the diameter ratio of both (D, /D2) Must be smaller than /.
更に、紡糸ピッチ流入部の径(Dl)と後流部の径(D
、)との比(D3/D、)がハS以下であることが望ま
しい。この比を適正な値に選択することにより、紡糸性
を向上させることができ、良好な物性の炭素繊維を得る
ことができる。上記の範囲のなかでも、一般にCD、/
D、 )≦lの場合ては後流部の径が比較的小さくなり
紡糸性が更に向上する傾向がある。また( D、/D、
)≧/の場合には後流部の径が比較的大きくなり、よ
り向上した物性の炭素繊維を与える傾向がある。Furthermore, the diameter of the spinning pitch inlet section (Dl) and the diameter of the downstream section (D
, ) (D3/D,) is desirably equal to or less than HaS. By selecting this ratio to an appropriate value, spinnability can be improved and carbon fibers with good physical properties can be obtained. Within the above range, CDs, /
When D, )≦l, the diameter of the trailing portion becomes relatively small, and the spinnability tends to further improve. Also (D, /D,
)≧/, the diameter of the trailing portion becomes relatively large, which tends to provide carbon fibers with improved physical properties.
本発明で用いる紡糸ノズルにおけるノズル孔形状の他の
態様として第3図〜第7図をノズル孔の形状のみを示す
為の縦断面模式概念図として挙げるが、第3図、第9図
に示すように(Dl)、(D3)は相互に異なっていて
もよく、また第S図のように紡糸ピッチ流入部が実質的
に直管状部分を有していないものでもよい。Other aspects of the nozzle hole shape in the spinning nozzle used in the present invention are shown in FIGS. 3 to 7 as schematic vertical cross-sectional views showing only the shape of the nozzle hole. (Dl) and (D3) may be different from each other, or the spinning pitch inlet may have no substantially straight tubular portion as shown in FIG.
まだ第6図はノズル孔の拡大された中間部の形状のみを
概念的に例示したものである。が、紡糸ピッチ流入部と
後流部の径D1とD3は、図示の如く等しくても良く、
又第3図もしくは第9図の如くいずれかがより大きくて
も良い。Still, FIG. 6 conceptually illustrates only the shape of the enlarged middle portion of the nozzle hole. However, the diameters D1 and D3 of the spinning pitch inflow section and the downstream section may be equal as shown in the figure,
Also, either one may be larger as shown in FIG. 3 or FIG. 9.
更には第7図は流入部と後流部の変形を概念的に例示し
たものであるが、同図に示したように、第6図の如き種
々の拡大された中間部の形状を有するノズル孔において
不発面の要旨をこえない限り紡糸ピッチ流入部あるいは
後流部が実質的に直管状部分を有していないものでもよ
い0
以上詳述したノズル孔形状と共に本発明において重要な
他の要件は第一図に示す如く、ノズル孔が少くとも二つ
の紡糸口金部分AとBとから構成されることである。そ
れら両口全部分は中間部3において紡糸口金部分Bの紡
出側端面7と平行な平面である分断面gで分断された口
金の部分である。そして、これら両口全部分は分断面g
において、取外し可能な機構により一体に接合せしめら
れて、ノズル孔及び紡糸ノズルを形成し、紡糸操作に供
される。紡糸ノズルをか\る少くとも二つの口金部分か
ら構成することにより、ノズル孔の流入部、中間部、後
流部の上述した如き形状を設計通り極めて精密にかつ容
易に製作することが可能となり、よってノズル形状に基
づくランダムないしはオニオンライク構造の炭素lR維
を与える傾向の生起を一層確実にすることができるもの
である。Furthermore, although FIG. 7 conceptually illustrates the deformation of the inflow section and the wake section, as shown in FIG. The spinning pitch inflow section or trailing section may not have a substantially straight tubular section as long as the gist of the non-explosion surface is not exceeded in the hole. In addition to the nozzle hole shape detailed above, other important requirements for the present invention As shown in FIG. 1, the nozzle hole is composed of at least two spinneret parts A and B. All of these two mouth portions are parts of the spinneret that are separated in the intermediate portion 3 by a cutting plane g, which is a plane parallel to the spinning end surface 7 of the spinneret portion B. And all these parts of both mouths are the section plane g
, they are joined together by a removable mechanism to form a nozzle hole and a spinning nozzle, and are used for a spinning operation. By configuring the spinning nozzle from at least two spindle parts, it becomes possible to manufacture the above-mentioned shapes of the inlet, intermediate, and downstream parts of the nozzle hole with great precision and ease as designed. Therefore, it is possible to further ensure the occurrence of a tendency to provide carbon IR fibers with a random or onion-like structure based on the nozzle shape.
なお、口金部分は三以上に分割されていても良く、例え
ば第S図は第2図に例示したと同一形状のノズル孔の縦
断面模式図であるが、同図に示す如く、第2図における
口金部分A(5)が更に口金部分A’(!1と口金部分
A’(うに、流入部コの流入側端部における分断面7に
おいて、分断されており、紡糸操作時には口金部分A′
とBが分断面gにおいて、又口金部分A′とA′が分断
面9においてそれぞれ一体に接合されてノズル孔及び紡
糸ノズルを構成することとなる。Note that the mouthpiece portion may be divided into three or more parts; for example, FIG. The nozzle part A(5) is further separated from the nozzle part A'(!1) at the cutting surface 7 at the inflow side end of the inlet part, and during the spinning operation, nozzle part A'
and B are joined together at the cutting surface g, and the nozzle parts A' and A' are joined together at the cutting surface 9, thereby forming a nozzle hole and a spinning nozzle.
この様にノズル孔形状及びそれと紡糸ピッチの導入孔と
の関係により各口金部分がその内部中間に最狭孔を持た
ない様に必要に応じて、口金部分の分断構成数を決定す
ることが望ましい。In this way, it is desirable to determine the number of divisions of the nozzle part as necessary so that each nozzle part does not have the narrowest hole in its internal middle depending on the nozzle hole shape and the relationship between it and the introduction hole of the spinning pitch. .
従ってこの条件を満す限υ、本発明に於ては更に多くの
変形が可能であり、その例を第9〜//図に示した。即
ち、本発明の要旨における゛膣中間部において分断され
た″との表現は中間部の端縁部で分断される場合を含む
ものであって、第7図は、中間部3の両端縁部3′及び
3″で分断された少くとも三つの口金部分で構成された
ものを、第1O図は中間部3の流入部側端縁部3′にお
いて基本口金/乙に円環状部材である口金部分/Sをは
め込む方式を、更には、第1/図は中間部3の後流部側
端縁部3において基本口金26に下面が開放し、上面中
心部が穿孔された円筒状部材である口金部分Ω5をはめ
込む方式をそれぞれ例示するものである。この様に本発
明においては分断された各口金部分を積層する方式、一
方の基本口金に一以上の口金部分をはめ込む方式、ある
いは両者の複合方式等、具体的ノズル孔の形状と製作、
使用の便宜により種々の方式を選択することができる。Therefore, as long as this condition is satisfied, the present invention can be modified in many ways, examples of which are shown in FIGS. That is, in the gist of the present invention, the expression "divided at the middle part of the vagina" includes the case where it is divided at the edge of the middle part, and FIG. Fig. 1O shows a basic cap at the inlet side end edge 3' of the intermediate portion 3, and a cap which is an annular member. Further, the method of fitting the part/S is shown in FIG. 1, which is a cylindrical member whose lower surface is open to the basic cap 26 at the downstream end edge 3 of the intermediate section 3, and whose upper surface center is perforated. The method of fitting the base portion Ω5 is illustrated respectively. In this way, in the present invention, the shape and manufacture of the specific nozzle hole, the method of stacking each divided nozzle part, the method of fitting one or more nozzle parts into one basic nozzle, the combination of both methods, etc.
Various methods can be selected depending on convenience of use.
紡糸ピッチは上述の如き紡糸ノズルを用いて紡糸されて
ピッチ系繊維となるが、次いでこのピッチ系繊維を常法
により不融化および炭化し、さらに必要に応じて黒鉛化
すると、ランダム配向ないしはオニオンライク配向など
、従来のラジアル配向の断面構造とは全く異なった断面
構造を有し、繊維軸方向に伸びるくさび状のクランクの
ない高特性のピッチ系炭素繊維を得ることができる。The spun pitch is spun using the above-mentioned spinning nozzle to become a pitch-based fiber, which is then made infusible and carbonized by a conventional method, and further graphitized if necessary, resulting in a randomly oriented or onion-like fiber. It is possible to obtain a high-performance pitch-based carbon fiber that has a cross-sectional structure completely different from the conventional radial-oriented cross-sectional structure in terms of orientation, and has no wedge-shaped crank extending in the fiber axis direction.
ここでオニオンライク配向とは、繊維断面の主たる部分
が同心円状の分子配向性を有するものであり、一部、特
に外周部にクランクを生じない程度のラジアル配向を有
する場合もある。Here, the onion-like orientation means that the main portion of the fiber cross section has a concentric molecular orientation, and a portion, particularly the outer peripheral portion, may have a radial orientation to the extent that no cranking occurs.
なお、これらの繊維断面構造は偏光顕微鏡あるいは走査
型電子顕微鏡で観察したものである。Note that these fiber cross-sectional structures were observed using a polarizing microscope or a scanning electron microscope.
一般に、従来、合成繊維の場合には、複合糸、異形断面
糸等の製造や、その他の目的の為に種々の形状の紡糸ノ
ズルが提案されているが、合成繊維では分子の配向は専
ら延伸によって生じると考えられて2す、ノズル形状で
分子配向が左右される例は知られていない。Generally, in the case of synthetic fibers, spinning nozzles of various shapes have been proposed for the production of composite yarns, irregular cross-section yarns, etc., and for other purposes. Although it is thought that this is caused by the following, there is no known example in which molecular orientation is influenced by the nozzle shape.
本発明者等は、この様な合成繊維とは異なり、ピッチ繊
維の場合、少くとも炭素繊維として構成された際、その
断面構造の配向がノズル形状によって影響される場合が
あるという驚くべき知見を見出し、この知見に基づいて
本発明に到達したものである。この差異が生じる理由は
明らかでないが、基本的に合成高分子とピッチとの紡糸
原料の相違によることは疑いがないであろう。The present inventors have made the surprising finding that, unlike such synthetic fibers, the orientation of the cross-sectional structure of pitch fibers, at least when configured as carbon fibers, can be influenced by the nozzle shape. The present invention was arrived at based on this finding. The reason for this difference is not clear, but there is no doubt that it is basically due to the difference in the spinning raw materials of the synthetic polymer and the pitch.
本発明はか\る知見に基づき、更に上記の如き形状のノ
ズルを特定部分で分断された少くとも二つの口金部分か
ら構成することにより、設計通りのノズル形状を容易に
製作でき、よって繊維のランダムもしくはオニオンライ
ク配向をより確実に生起せしめ得ると共に何らかの原因
でノズル孔の閉塞等が生じた場合、各口金部分を分解す
ることにより、極めて簡便かつ完全に清掃できるので短
時間内に使用状態て回復せしめ得るという多大の工業的
有利性を実現し得るものである。なお、分断された両口
全部分は基本的には分断面の全面で密着接合されるが何
らかの目的で、ノズル孔以外の部分において、一部設計
された空隙を有していても良い。Based on this knowledge, the present invention further constructs a nozzle having the shape described above from at least two mouth parts separated by a specific part, thereby making it possible to easily manufacture a nozzle shape as designed, thereby making it possible to easily produce a nozzle shape as designed. Random or onion-like orientation can be generated more reliably, and if the nozzle hole becomes clogged for some reason, it can be cleaned very easily and completely by disassembling each nozzle part, so it can be put back into use within a short time. It is possible to realize a great industrial advantage in that it can be recovered. In addition, although the entire portions of the divided openings are basically tightly joined over the entire surface of the divided surface, a partially designed gap may be provided in a portion other than the nozzle hole for some purpose.
以下実施例を挙げて本発明を具体的に説明する0 実施例/ 第二図に図示された形状のノズルを次の如く形成した。The present invention will be specifically explained below with reference to Examples. Example/ A nozzle having the shape shown in FIG. 2 was formed as follows.
即ち、同図の流入部3の中央(長さL2の中点)におい
て紡糸口金の紡出側端面7と平行な平面である分断面g
で分断された口金部分Aと口金部分Bとを、夫々別個に
穿孔し、次いで分断面3で両口全部分を接合してネジ締
め(図示せず)により一体に構成されたマルチ紡糸ノズ
ルを作製した。各ノズル孔の寸法はD:0.Jmm、
L、 : 0./s mm、 D2: 2.Omm、
L2: 2./ w、 D3: 0..3 wn、L3
:θ、/馴である。That is, at the center of the inflow section 3 (midpoint of length L2) in the figure, there is a section g that is a plane parallel to the spinning end surface 7 of the spinneret.
The nozzle part A and the nozzle part B, which are separated at Created. The dimensions of each nozzle hole are D:0. Jmm,
L: 0. /s mm, D2: 2. Omm,
L2: 2. / w, D3: 0. .. 3wn, L3
:θ, / familiar.
5tオートクレーブにコールタールピッf2に7と、水
添した芳香族油2 Kqを加え、4’25℃で7時間加
熱処理した。この処理物を減圧蒸留してその残渣ピッチ
を得た。次いで、この残渣ピッチ7009に窒素ガスを
バブリングしながら≠50℃でpo分間加熱処理した。Coal tarp f2 7 and hydrogenated aromatic oil 2Kq were added to a 5t autoclave, and heat treated at 4'25°C for 7 hours. This treated product was distilled under reduced pressure to obtain pitch residue. Next, this residual pitch 7009 was heat-treated at ≠50° C. for po minutes while bubbling nitrogen gas.
得られたメソフェーズピッチの異方性割合は約99%で
あった。The anisotropy ratio of the obtained mesophase pitch was approximately 99%.
このメソフェーズピッチを、上述の紡糸ノズルを用いて
336℃で溶融紡糸したところ得られたピッチ繊維は一
部外周がラジアル配向のオニオンライク配向の断面構造
を有していた。次いで、得られたピッチ繊維を空気中3
70℃で不融化し、さらにアルゴン雰囲気下/q00℃
で炭化して炭素繊維を得た。この炭素繊維もピッチ繊維
と同様の一部外周がラジアル配向のオニオンライク配向
の断面構造をしていた。This mesophase pitch was melt-spun at 336° C. using the above-mentioned spinning nozzle, and the resulting pitch fibers had a cross-sectional structure with an onion-like orientation in which a portion of the outer periphery was radially oriented. Then, the obtained pitch fibers were placed in air for 3
Infusible at 70℃ and further under argon atmosphere/q00℃
Carbonization was performed to obtain carbon fibers. This carbon fiber also had a cross-sectional structure with an onion-like orientation in which part of the outer periphery was radially oriented, similar to the pitch fiber.
比較例/
実施例/で得たメソフェーズピッチを、径が0.3問、
長さが0./簡の細孔の紡糸ノズルを用いて、33A’
Cで溶融紡糸した。The mesophase pitch obtained in Comparative Example/Example/ has a diameter of 0.3,
Length is 0. 33A' using a spinning nozzle with small pores.
It was melt spun at C.
得られたピッチ繊維をその後実施例/と同じ条件で不融
化、炭化して炭素繊維を得たが、この炭素繊維はラジア
ル配向の断面構造をしており、かつ繊維軸方向に伸びる
くさび状のクランクを有しており、不融化及び炭化処理
前後において繊維断面構造には変化がなかった。The obtained pitch fibers were then infusible and carbonized under the same conditions as in Example/1 to obtain carbon fibers, which had a radially oriented cross-sectional structure and a wedge-shaped structure extending in the fiber axis direction. It had a crank, and there was no change in the fiber cross-sectional structure before and after the infusibility and carbonization treatments.
実施例ユ
第3図に示された如き形状のノズル孔を有する紡糸ノズ
ルを第5図に示された如く三つの口金部分をそれぞれ別
個に穿孔することにより構成し、口金部分A′とA′を
、又口金部分A′とBをそれぞれ分断面7及び分断面g
において接合してネジ締め(図示せず)により一体に構
成せしめてマルチ紡糸ノズルを製作した。各ノズル孔の
寸法は、 D、 : 0.3rmnXL、 : 0.6
膿、D:2.0廐、 L2: 2.1.珊、 D3:
0.2眉、L3:0、/訓である。Embodiment A spinning nozzle having a nozzle hole shaped as shown in FIG. 3 was constructed by separately drilling three nozzle parts as shown in FIG. , and the cap parts A' and B are respectively sectioned plane 7 and sectioned plane g.
A multi-spinning nozzle was manufactured by joining them together and integrally constructing them by tightening screws (not shown). The dimensions of each nozzle hole are: D: 0.3rmnXL: 0.6
Pus, D: 2.0, L2: 2.1. Coral, D3:
0.2 eyebrows, L3: 0, /Kun.
2tオートクレーブにコールタールピッチ/に7と、水
添した芳香族油0.左Kqを加え、200Kg/cr4
の水素圧下で触媒を用いて3gO℃、7時間加熱処理し
た。この処理物を減圧蒸留してその残渣ピッチを得た。Coal tar pitch/7 and hydrogenated aromatic oil 0. Add left Kq, 200Kg/cr4
The mixture was heat-treated at 3 gO 0 C for 7 hours using a catalyst under a hydrogen pressure of . This treated product was distilled under reduced pressure to obtain pitch residue.
次いで、この残渣ピッチろ0&に窒素ガスを吹き込みな
からlI20℃で735分間加熱処理して2/!iのメ
ソフェーズピッチを得た。Next, nitrogen gas was blown into the residue pitch filter 0&, and heat treatment was performed at 20°C for 735 minutes to achieve 2/! A mesophase pitch of i was obtained.
得られたメソフェーズピッチの異方性割合は約60%で
あった。The anisotropy ratio of the obtained mesophase pitch was about 60%.
このメソフェーズピッチを上述の紡糸ノズルを用いて3
33℃で溶融紡糸した。This mesophase pitch was spun using the above-mentioned spinning nozzle.
Melt spinning was carried out at 33°C.
次いで得られたピッチ繊維を実施例/と同じ条件で不融
化、炭化して炭素繊維を得たが、この炭素繊維はオニオ
ンライク配向とランダム配向の中間的な配向の断面構造
を有し、不融化及び炭化処理前後において繊維断面構造
には変化がなかった。Next, the obtained pitch fibers were made infusible and carbonized under the same conditions as in Example/1 to obtain carbon fibers, but these carbon fibers had a cross-sectional structure with an intermediate orientation between onion-like orientation and random orientation. There was no change in the fiber cross-sectional structure before and after the melting and carbonization treatments.
第1図は本発明の紡糸口金の一部縦断面模式第2図は第
1図の紡糸ノズルのノズル孔部の拡大図を示す。
第3図、第9図及び第S図はノズル孔の変形の例をノズ
ル孔の形状のみを概念的に示した縦断面模式図である。
第6.7図は本発明の紡糸ノズルのノズル孔部の形状の
他の具体例を概念的に示したモ=りある。
第g、9.10及び77図は同様に本発明の紡糸ノズル
のノズル孔部を示した縦断面模式図/;導入孔 −;
紡糸ピッチ流入部
3;中間部 3′;中間部の流入部側端縁部3′;中
間部の後流部側端縁部 q;後流部5;紡糸ロ金部分
A5’;紡糸ロ金部分A′S″;紡糸口金部分A″ ろ
;紡糸ロ金部分B7;紡糸口金部分Bの紡出側端面
ど;中間部における分断面
デ;流入部端部における分断面
/ロ;基本ロ金部分 15;円環状ロ金部分ユロ;基
本口金部分 2左;円筒状口金部分つ、;紡糸ピッチ
流入部の径 D;中間部の径D3;後流部の径 L
、;紡糸ピッチ流入部の長さL2;中間部の長さ L
31後流部の長さ出 願 人 三菱化成工業株式会社
代 理 人 弁理士長香川 −
(ほか7名)
第 1 図
第 3 図
戸〇ト
第 5図
第 6 図
(cl) ())(C)(d)(e)
(f) リ)
(4ン(t> <7)(4)
17図
(a) (b) (こ)
(d)兇 8図
% 9 図
英10図
第 11 UFIG. 1 is a partially vertical cross-sectional schematic diagram of the spinneret of the present invention, and FIG. 2 is an enlarged view of the nozzle hole of the spinning nozzle shown in FIG. FIG. 3, FIG. 9, and FIG. S are vertical cross-sectional schematic diagrams conceptually showing only the shape of the nozzle hole, showing examples of deformation of the nozzle hole. FIG. 6.7 is a model conceptually showing another specific example of the shape of the nozzle hole of the spinning nozzle of the present invention. Figures g, 9.10 and 77 are schematic vertical cross-sectional views showing the nozzle hole of the spinning nozzle of the present invention.
Spinning pitch inlet part 3; intermediate part 3'; edge part on the inflow part side of the intermediate part 3'; edge part on the downstream side of the intermediate part q; trailing part 5; spinning metal part A5'; spinning metal Part A'S''; Spinneret part A''Ro; Spinning rod part B7; Spinning side end surface of spinneret part B; Cutting surface in the middle part; Cutting surface at the end of the inlet part / B; Basic rod Part 15; Annular metal part Yuro; Basic mouth part 2 left; Cylindrical mouth part 1; Diameter of the spinning pitch inlet D; Diameter of the intermediate part D3; Diameter of the trailing part L
,; Length of spinning pitch inlet part L2; Length of intermediate part L
31 Length of downstream part Applicant: Mitsubishi Chemical Industries, Ltd. Representative: Patent Attorney Nagakagawa - (and 7 others) Figure 1 Figure 3 Figure 5 Figure 6 (cl) ()) (C )(d)(e)
(f)
(4n(t><7) (4) Figure 17 (a) (b) (ko)
(d) Figure 8 % 9 Figure 10 Figure 11 U
Claims (2)
流入部と該後流部のいずれよりも径が拡大された中間部
を有する紡糸ノズルであつて、かつ該中間部において分
断された紡糸口金部分を一体に構成して成る紡糸ノズル
から紡糸してピッチ繊維を得て、該ピッチ繊維に不融化
及び炭化処理を行ない、更に必要に応じて黒鉛化処理を
行なうことを特徴とするピッチ系炭素繊維の製造方法。(1) The spinning pitch is determined by a spinning nozzle in which the nozzle hole has an inflow part, a wake part, and an intermediate part whose diameter is larger than both the inlet part and the wake part, and the spinning pitch is divided at the intermediate part. The method is characterized in that pitch fibers are obtained by spinning from a spinning nozzle integrally formed with the spinneret portion, and the pitch fibers are subjected to infusibility and carbonization treatment, and further graphitization treatment as necessary. A method for producing pitch-based carbon fiber.
ることを特徴とする特許請求の範囲第1項記載のピッチ
系炭素繊維の製造方法。(2) The method for producing a pitch-based carbon fiber according to claim 1, wherein the spinning pitch is a pitch containing mesophase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19637384A JPS6175820A (en) | 1984-09-19 | 1984-09-19 | Manufacturing method of pitch carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19637384A JPS6175820A (en) | 1984-09-19 | 1984-09-19 | Manufacturing method of pitch carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6175820A true JPS6175820A (en) | 1986-04-18 |
JPH0518922B2 JPH0518922B2 (en) | 1993-03-15 |
Family
ID=16356783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19637384A Granted JPS6175820A (en) | 1984-09-19 | 1984-09-19 | Manufacturing method of pitch carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6175820A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5202072A (en) * | 1989-02-16 | 1993-04-13 | E. I. Du Pont De Nemours And Company | Pitch carbon fiber spinning process |
US5437927A (en) * | 1989-02-16 | 1995-08-01 | Conoco Inc. | Pitch carbon fiber spinning process |
-
1984
- 1984-09-19 JP JP19637384A patent/JPS6175820A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5202072A (en) * | 1989-02-16 | 1993-04-13 | E. I. Du Pont De Nemours And Company | Pitch carbon fiber spinning process |
US5437927A (en) * | 1989-02-16 | 1995-08-01 | Conoco Inc. | Pitch carbon fiber spinning process |
US5578330A (en) * | 1989-02-16 | 1996-11-26 | Conoco Inc. | Pitch carbon fiber spinning apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0518922B2 (en) | 1993-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4818612A (en) | Process for the production of pitch-type carbon fibers | |
US4115527A (en) | Production of carbon fibers having high anisotropy | |
JPS6246644B2 (en) | ||
CN103305940B (en) | Prepare spinnerets and the method for intermediate phase pitch-based hollow carbon fiber | |
JPS6175820A (en) | Manufacturing method of pitch carbon fiber | |
JPS59196390A (en) | Preparation of pitch for carbon fiber | |
JPH0545685B2 (en) | ||
JPS6175821A (en) | Manufacturing method of pitch carbon fiber | |
JPS60194120A (en) | Manufacturing method of pituti fiber | |
JPS60239520A (en) | Carbon fiber | |
JPS6065090A (en) | Preparation of pitch for carbon fiber spinning | |
JPS61275426A (en) | Pitch-based carbon fiber and production thereof | |
JPH0781211B2 (en) | Carbon fiber manufacturing method | |
JPS61186520A (en) | Production of pitch carbon yarn | |
JPS60104528A (en) | Preparation of carbon fiber | |
JPS60259631A (en) | Production of pitch carbon fiber | |
JPS61258024A (en) | Production of pitch carbon yarn | |
JPH07116643B2 (en) | Carbon fiber manufacturing method | |
JPS62268820A (en) | Production of pitch based carbon fiber | |
JPH0788604B2 (en) | Method for manufacturing pitch-based carbon fiber | |
JPH0380888B2 (en) | ||
JPH0413450B2 (en) | ||
JPS6163719A (en) | Carbon fiber manufacturing method | |
JPS616316A (en) | Graphite fiber | |
JPS6183319A (en) | Carbon fiber and its production |