[go: up one dir, main page]

JPS6173912A - Optical fiber core having low coefficient of linear expansion - Google Patents

Optical fiber core having low coefficient of linear expansion

Info

Publication number
JPS6173912A
JPS6173912A JP59197477A JP19747784A JPS6173912A JP S6173912 A JPS6173912 A JP S6173912A JP 59197477 A JP59197477 A JP 59197477A JP 19747784 A JP19747784 A JP 19747784A JP S6173912 A JPS6173912 A JP S6173912A
Authority
JP
Japan
Prior art keywords
group
secondary coating
linear expansion
liquid crystalline
crystalline polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59197477A
Other languages
Japanese (ja)
Other versions
JPH034884B2 (en
Inventor
Yoshito Shiyudo
義人 首藤
Fumio Yamamoto
山本 二三男
Shinzo Yamakawa
山川 進三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59197477A priority Critical patent/JPS6173912A/en
Publication of JPS6173912A publication Critical patent/JPS6173912A/en
Publication of JPH034884B2 publication Critical patent/JPH034884B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To obtain excellent bendability without a change in transmission loss owing to a change in service temp. by providing a secondary coating layer consisting of a thermoplastic resin having specific melt liquid crystallinity. CONSTITUTION:The secondary coating is formed by using the liquid crystalline polyester which is a thermoplastic resin having at least 0.3 intrinsic viscosity and which has the groups expressed by the formulas I-V and contains 24-38mol% group I, 38-31mol% group II + group III (where II/III molar ratio is 97.5/2.5-90/10), 38-31mol% group IV + group V (where IV/V molar ratio is 95/5-83/17). Such liquid crystalline polyester is obtd. by modifying the liquid crystalline polyester (PET/POB copolymer) by 4,4'-isopropylidene diphenol and isophthalic acid and has the excellent ultimate elongation and low coefft. of linear expansion. Such resin is used as the secondary coating material, by which the good bendability is obtd. without the transmission loss owing to the change in the service temp. for a long length.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は線膨張率の低い熱可塑性樹脂で被覆された光フ
アイバ心線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a cored optical fiber coated with a thermoplastic resin having a low coefficient of linear expansion.

「従来の技術」 周知のように、光ファイバはその直径が150μ属以下
のぜい弱な材料であるため、その製造中txはケーブル
化工程にお′いて、その表面に傷が発生し易く、これが
応力集中源となり、外部から応力が加わると容易に破断
する欠点がるる。この几め、光フアイバ表面を保護し、
その初期強度を維持することを目的とし、光ファイバの
紡糸直後に、光フアイバ表面にグラスチックを被覆する
ことが行なわれている。
``Prior Art'' As is well known, optical fiber is a fragile material with a diameter of 150 μm or less, so during its manufacturing process, tx is prone to scratches on its surface during the cable production process. It has the disadvantage that it becomes a stress concentration source and easily breaks when stress is applied from the outside. This method protects the optical fiber surface,
In order to maintain the initial strength of the optical fiber, the surface of the optical fiber is coated with glass immediately after spinning.

このグラスチック被覆は一般に1次被覆層と2次被覆層
からなっている。1次被覆層は低ヤング率材料であり、
光ファイバの初期強度の維持および2次被覆の不均一に
よるファイバのマイクロベンディングロス増を防ぐこと
を目的としている。
This plastic coating generally consists of a primary coating layer and a secondary coating layer. The primary coating layer is a low Young's modulus material,
The purpose is to maintain the initial strength of the optical fiber and to prevent an increase in fiber microbending loss due to non-uniformity of the secondary coating.

一方、2次被覆層はポリアミドのような熱可塑性樹脂か
ら成り、ケーブル化等におけるハンドリングを容易にす
ることを目的としている。
On the other hand, the secondary coating layer is made of a thermoplastic resin such as polyamide, and is intended to facilitate handling in making cables, etc.

このような光フアイバ心線に、は、従来、次に示す2つ
のタイプの光フアイバ心線が提案さnている。1つはタ
イト構造型心線であシ、シリコーン樹脂等の熱硬化性も
しくは紫外線硬化性樹脂からなる1次被覆層とポリアミ
ド樹脂等の熱可塑性樹脂から成る2次被覆層がタイトに
V!j漕−している構造でるる。他の1つはルースチュ
ーブ型心線であり、アクリル系樹脂等の熱硬化性もしく
は紫外線硬化性樹脂から成る1人波at層が、ポリエチ
レンテレフタレート、ポリプロピレン等の熱可塑性樹脂
から成る保nグラスナックチューブ(2次被覆層)内で
ルースに保持する構造である。
Conventionally, the following two types of optical fibers have been proposed. One is a tight structured core wire, with a primary coating layer made of a thermosetting or ultraviolet curing resin such as silicone resin and a secondary coating layer consisting of a thermoplastic resin such as polyamide resin, forming a tight V! It has a row structure. The other type is a loose tube type core wire, in which a single-wave AT layer made of a thermosetting or ultraviolet curable resin such as an acrylic resin is used as a core wire, and a thermoplastic resin layer made of a thermoplastic resin such as polyethylene terephthalate or polypropylene is used. It has a structure in which it is held loosely within the tube (secondary coating layer).

「発明が解決しようとする問題点」 上記タイト構造型心線は、1次被覆層によって被覆の不
均一によるファイバのマイク筒ベンディングロス増が防
止されているので、2次被覆工程における高い被覆均一
性t−要しないという利点を有している。しかしながら
、従来の2次被覆材料の線膨張率は10−4℃−1オー
ダであシ、この値はファイバ自体の線膨張率10−7℃
−1オーダに比較してはるかに大きい。このため、温度
変化による2次被覆層の膨張・収縮によシ7アイパに曲
がりが生じ、マイクロベンディングロス増があった。一
方、ルースチューブ型心線は、2次被覆である保護プラ
スチックの膨張・収縮によるマイクロベンディングロス
増ヲ、ルーステs、 −フ内のファイバ余長を適当l(
−とることによって緩和できるといり利点を有している
。しかしながら、2次被覆層とファイバ自体の線膨張率
の差は大きいので、2次被覆層の膨張・収縮によるマイ
クロベンディングロス増は依然として生じている。
"Problems to be Solved by the Invention" The above-mentioned tight structure type core has a high coating uniformity in the secondary coating process because the primary coating layer prevents an increase in fiber microphone tube bending loss due to uneven coating. It has the advantage that it does not require any physical properties. However, the linear expansion coefficient of conventional secondary coating materials is on the order of 10-4°C-1, and this value is lower than the linear expansion coefficient of the fiber itself, which is 10-7°C.
It is much larger than -1 order. Therefore, due to expansion and contraction of the secondary coating layer due to temperature changes, bending occurred in the 7-eyeper, resulting in an increase in microbending loss. On the other hand, in loose tube type core wires, microbending loss increases due to the expansion and contraction of the protective plastic that is the secondary coating.
- It has the advantage that it can be alleviated by taking the following measures. However, since there is a large difference in linear expansion coefficient between the secondary coating layer and the fiber itself, microbending loss still increases due to expansion and contraction of the secondary coating layer.

これに対し、本発明者等は、2次被覆層とファイバの線
膨張率の違いによるマイクロベンディングロス増を防止
する之め、現用押出成型方法で10’Q″″ オーダの
低線膨張率を示す液晶性ポリエステルt−2次被覆材料
とする光フアイバ心線を提案しto しかしながら、こ
の液晶性ポリエステルは、低線膨張率でかつ高弾性率で
ある反面、極限伸びが著しく低く、シたがってこの材料
を被覆した心線は曲けにより容易に折れるという欠点を
有している。
In contrast, in order to prevent the increase in microbending loss due to the difference in linear expansion coefficient between the secondary coating layer and the fiber, the present inventors have developed a low linear expansion coefficient on the order of 10'Q'''' using the current extrusion molding method. However, although this liquid crystalline polyester has a low coefficient of linear expansion and a high modulus of elasticity, its ultimate elongation is extremely low. A core wire coated with this material has the disadvantage that it easily breaks when bent.

不発明は、上記ダ情に鑑みてなされ几もので、長尺にわ
たって使用温度の変化による伝送損失の増加がなく、屈
曲性に優れた光フアイバ心線を提供することを目的とす
るものである。
The invention has been made in view of the above circumstances, and aims to provide a cored optical fiber that does not increase transmission loss due to changes in operating temperature over a long length and has excellent flexibility. .

「問題点を解決する几めの手段」および「作用」周知の
ように、ある種の結晶性ポリマは、加熱さnるとき、融
解して液体となる前に、結晶の異方性と液体の流動性を
有する状態を経由することがめる。この状Bt液晶とい
う。このような液晶性ポリマとして液晶性ポリエステル
樹脂が知らnており、本発明者は既にこのよう表液晶性
ポリエステル樹脂を用い、光7アイパ素線への押出被覆
を検討した。その結果、ea昭58−80797号明細
書に記載されているように10  sec ”1以上の
高ぜん断速度下で押出され次樹脂が10−6℃−1オー
ダの低線膨張率を示すことを見出した。
``Elaborate means to solve problems'' and ``effects'' As is well known, when certain crystalline polymers are heated, before they melt and become liquid, the anisotropy of the crystals and the liquid It is possible to go through a state of fluidity. This state is called Bt liquid crystal. Liquid crystalline polyester resins are known as such liquid crystalline polymers, and the present inventors have already studied extrusion coating of Hikari 7 Aipah wires using such surface liquid crystalline polyester resins. As a result, as described in EA No. 58-80797, the resin exhibits a low coefficient of linear expansion on the order of 10-6°C-1 when extruded at a high shear rate of 10 sec or more. I found out.

特に、液晶性ポリエステル1M指が、フェノールとテト
ラクロロエタンの1 :、 l (重量比)の混合液中
0・5?/dtの鱗度で、30℃で測定し次固有柚度が
0.3以上であシ、下記の2価の基からなり、基(I)
及び(IIIを10〜30モルチの範囲内で各々等量ず
つ含み、基(III)を80〜40モル係含むよ9なポ
リエチレンテレフタレート−p−ヒドロキシ安息香酸共
重合体(PET / POB共重合体)である場合には
、102sec”以上のせん断配向により、1X10−
5℃−1以下の低線膨張率と4GPa以上の高弾性率を
示す。
In particular, liquid crystalline polyester 1M fingers were mixed with phenol and tetrachloroethane in a 1:1 (weight ratio) mixture of 0.5? /dt scale, measured at 30°C, has an inherent yuan of 0.3 or more, is composed of the following divalent group, and the group (I)
and a polyethylene terephthalate-p-hydroxybenzoic acid copolymer (PET/POB copolymer) containing equal amounts of each group (III) in the range of 10 to 30 mol and 80 to 40 mol of the group (III) ), 1X10-
It exhibits a low coefficient of linear expansion of 5° C.-1 or less and a high modulus of elasticity of 4 GPa or more.

K  −0−CH2−CH2−0− しかしながら、せん断配向により低a#張率化、高弾性
率化しt上記液晶性ポリエステル樹脂は極限伸びが1憾
程度しかなく、この材料を被覆した光フアイバ心線は曲
げにより容易に2次被覆層が割nるという欠点を有して
い几。
K -0-CH2-CH2-0- However, the above liquid crystalline polyester resin has an ultimate elongation of only about 1, and the optical fiber core coated with this material is Wire has the disadvantage that the secondary coating layer easily cracks when bent.

こtLに対し、不発明者らは上記液晶性ポリエステル!
ii脂(PET/POB共重合体)の極限伸びを向上す
るtめ、鋭意検討を行なった結果、この液晶性ポリエス
テル’t’4.4’ −イソプロピリデンジフェノール
とイソ7り/L/fRで変性することにより、変性物の
極限伸びが向上することを見出し、不発明に至った。不
発#iに用いらnる溶融液晶性を示す熱可塑性樹脂は少
なくとも0.3の固有積度tもち、下記の(A)〜(E
)式で嵌わさnる各基:を包含し、基(lを24〜38
モル%、基(B)十基(C)を38〜31モル%(ただ
し、基(B)/基(C)−t−、x比は97.5/2.
5〜90/10である)、基(D)十基1)を38〜3
1モル%(ただし、基(D〕/基(E)モル比は951
5〜83/17である)含むff品性ポリエステルであ
る0 ここで、P−ヒドロキシ安息香酸成分1;(A13は2
4〜38モル%でなければならない。これは。
In contrast to this, the non-inventors have developed the above-mentioned liquid crystalline polyester!
As a result of intensive studies to improve the ultimate elongation of resin (PET/POB copolymer), we found that this liquid crystalline polyester 't'4.4'-isopropylidenediphenol and iso7ri/L/fR It was discovered that the ultimate elongation of the modified product was improved by modifying it with , which led to the invention. The thermoplastic resin exhibiting molten liquid crystallinity used for misfire #i has an intrinsic volume t of at least 0.3, and has the following properties (A) to (E).
), and each group (l is 24 to 38
mol %, group (B) 10 groups (C) 38 to 31 mol % (group (B)/group (C) -t-, x ratio is 97.5/2.
5 to 90/10), 38 to 3 of the group (D) 1)
1 mol% (However, the group (D)/group (E) molar ratio is 951
5 to 83/17) containing ff quality polyester 0, where P-hydroxybenzoic acid component 1;
It must be between 4 and 38 mol%. this is.

24モル多以下ては異方性溶融物が形成されず、38モ
モル係上では異方性が強く、剛直成分が多すぎるため、
可塑効果が乏しい上、相溶性が悪く均一な樹脂は得られ
ない几めである。テレフタル酸/イソフタル酸〔基(B
)/基(C) ) モル比は97.572.5〜90.
/1G(好ましくは96/4〜92/8)、エチレング
リコール/ 4 、4 / −イソプロピレンジフェノ
ールc基(D)/基(Eii )モル比は9515〜8
3/17(好ましくは92/8〜87/131でなけれ
はならない。テレフタル酸/インフタル酸モル比が97
.5 / 2.5よシ大きい場合あるいはエチレングリ
コ−に/4.4’−イソプロピリデンジフェノールモル
比が957Sより大きい場合には、可塑効果は乏しく柔
軟性は付与さfLない。一方、テレフタル酸/イソフタ
ル酸モル比が90/10より小さい場合めるいはエチレ
ングリコール/414’ −イソプロピリデンジフェノ
ールモル比が83/17よ9小さい場合yrは5J塑効
果が大きすぎ、異方性溶融物形成能が失なわれてしまう
。その結果、線膨張率は1.5X10−5℃−1より大
きな値を示す。イソフタル酸と4.4′−イソプロピリ
デンジフェノ−/I/+7)添加割合は1対4〜l対l
の範囲が好ましい。まt1イソフタル酸あるいは4.4
′−イソプロピリデンジフェノールの一方のみを用い’
;1t−s合、町!効果は十分でないし、又相溶性も悪
い。
Below 24 moles, no anisotropic melt is formed, and above 38 moles, the anisotropy is strong and there are too many rigid and rigid components.
In addition to poor plasticizing effect, the compatibility is poor and a uniform resin cannot be obtained. Terephthalic acid/isophthalic acid [group (B
)/group (C) ) molar ratio is 97.572.5 to 90.
/1G (preferably 96/4 to 92/8), ethylene glycol /4,4/-isopropylene diphenol c group (D)/group (Eii) molar ratio is 9515 to 8
3/17 (preferably should be between 92/8 and 87/131; terephthalic acid/inphthalic acid molar ratio is 97
.. When the ratio is larger than 5/2.5 or when the molar ratio of ethylene glyco/4.4'-isopropylidene diphenol is larger than 957S, the plasticizing effect is poor and no flexibility is imparted. On the other hand, when the terephthalic acid/isophthalic acid molar ratio is smaller than 90/10, or when the ethylene glycol/414'-isopropylidene diphenol molar ratio is smaller than 83/17, yr has a too large 5J plastic effect and is anisotropic. The ability to form a molten substance is lost. As a result, the linear expansion coefficient shows a value larger than 1.5×10 −5° C.−1. The addition ratio of isophthalic acid and 4,4'-isopropylidene dipheno-/I/+7) is 1:4 to 1:1.
A range of is preferred. Mat1 isophthalic acid or 4.4
Using only one of '-isopropylidene diphenols'
;1t-s match, town! The effect is not sufficient and the compatibility is also poor.

なお、本発明の液晶性ポリエステルには、本発明の主旨
に影響しない程度少ii(具体的には1モル%未#lの
フェニレンビスオキテソリン、2官能工ポキシ化合物等
の鎖唸長剤が反応されていても良い。
The liquid crystalline polyester of the present invention may contain a small amount of chain lengthening agents such as phenylenebisoxitesoline and bifunctional engineered poxy compounds in a small amount that does not affect the gist of the present invention. It's ok to have a reaction.

次に本発明を実施例によりさらに詳しく説明する。なお
、不発8Aは下記実施例に限定さnるものではない。
Next, the present invention will be explained in more detail with reference to Examples. Incidentally, the misfire 8A is not limited to the following example.

「実施例1」 テレフタル酸32.0モル係、イソフタル酸成分1.3
モル優、エチレングリコール成分30.7モル1%4#
4’ −イソプロピリデンジフェノール2.7モル係、
P−ヒドロキシ安息香酸成分33,3モル係から成る変
性PET 1POB  共重合体C固有粘度0.71)
をダイス径1.3sua、ニップル径0.9 M、ダイ
ス出口のランド長10朋の押出部を有する押出機を用い
、押出温度(ダイス出口温度)260”Q、lX103
sec−’(Dせん断連f下で、外径400μm(ファ
イバ外径125μm )の光フアイバ素線上に押し出し
て外径1.QIlM(引落比1.0)の心線を作製した
。こうして作製した心線の2人波優層(変性PET/ 
POB共及合体層)のヤング率、純膨張率、極限伸びは
各々12.0Gpa。
"Example 1" Terephthalic acid 32.0 moles, isophthalic acid component 1.3
Excellent mole, ethylene glycol component 30.7 mole 1% 4#
2.7 mol of 4'-isopropylidenediphenol,
Modified PET consisting of 33.3 moles of P-hydroxybenzoic acid component 1POB copolymer C intrinsic viscosity 0.71)
Using an extruder having an extrusion section with a die diameter of 1.3 sua, a nipple diameter of 0.9 M, and a land length of 10 mm at the die exit, the extrusion temperature (dice exit temperature) was 260"Q, lX103
A core wire with an outer diameter of 1.QIlM (drawdown ratio 1.0) was produced by extruding it onto an optical fiber with an outer diameter of 400 μm (fiber outer diameter of 125 μm) under sec-' (D shear continuous f). Two-person wave layer of core wire (modified PET/
The Young's modulus, net expansion coefficient, and ultimate elongation of the POB co-coalescence layer are each 12.0 Gpa.

lXl0−  ℃””  、4.3係でめり、心線の許
容曲げ半径は1.5JIjIであった。ま九、素線段階
での20℃における伝送損失は波長0.85μmで2、
43 dB/KrIL、不発明による心線の損失は波長
0.85μ簿、20℃において2.43 dB/に乳で
あり、−60℃から60’Qまで損失増加は認められな
かった。
The allowable bending radius of the core wire was 1.5 JIjI. 9. The transmission loss at 20°C in the strand stage is 2 at a wavelength of 0.85 μm.
43 dB/KrIL, the loss of the uninvented core wire was 2.43 dB/ at 20°C at a wavelength of 0.85μ, and no increase in loss was observed from -60°C to 60'Q.

「実施例2」 テレフタル酸成分30.7モル係、インクタル酸成分2
.7そルチ、エチレンクリコール成分29.0モル%、
4@4’ −イソグロビロビリデンジフェノール4.3
モルL P−ヒドロキシ安息香酸成分33.3モル係か
ら成る変性PET/POB共1合体(固有粘度0.68
1をダイス径1.3 rtatl ニップル径0.9 
IIjL、ダイス出口のランド長10朋の押出部を有す
る押出機を用い、押出部f(ダイス出口温度1280℃
、lXl0  sea   のせん断速度下で、外径4
00μmp−(ファイバ外径125μm)の光フアイバ
素線上に押し出して、外径1.Oaw+ヤング率、1m
膨張率、極限伸びは各々6.3Qpa。
"Example 2" Terephthalic acid component 30.7 moles, inctaric acid component 2
.. 7 Soruchi, ethylene glycol component 29.0 mol%,
4@4'-isoglobilobylidene diphenol 4.3
Mole L Modified PET/POB comonomer consisting of 33.3 moles of P-hydroxybenzoic acid component (intrinsic viscosity 0.68
1 to die diameter 1.3 rtatl nipple diameter 0.9
IIjL, using an extruder having an extrusion section with a land length of 10 mm at the die exit,
, under a shear rate of lXl0 sea , an outer diameter of 4
00 μmp- (fiber outer diameter 125 μm) onto an optical fiber strand with an outer diameter of 1.0 μm. Oaw+Young's modulus, 1m
The expansion rate and ultimate elongation are each 6.3Qpa.

8×10  ℃−,7,2係であシ、心線の許容   
 ゛曲げ半径は1.5Bでろつtc、まtS素線段階で
の20’GKおける伝送損失は波長0.85μ島で2、
43 dB/Kfi 、本発明による心線の損失は波長
0.85μ鶏、20’Oにおいて2.44[3/に%で
あり、−60°Cから60℃まで損失増加は認めら几な
かった。
8×10℃-, 7, 2nd gear, permissible core wire
゛The bending radius is 1.5B, and the transmission loss at 20'GK at the S wire stage is 2 at a wavelength of 0.85μ.
43 dB/Kfi, the loss of the core wire according to the present invention was 2.44 [3/%] at a wavelength of 0.85μ and 20'O, and no increase in loss was observed from -60°C to 60°C. .

「比較例1」 テレフタル酸成分33.3モル係、エチレングリコール
成分33.4モル係、P−ヒドロキシ安、lfF酸成分
33.3モル憾から成るPET/POB共重合体(固有
粘度0.65)を実施例1と同一押出条件で押し出して
、外径1.0JLlKの心線を作製し几。こうして作製
した心線の2次被覆層(PET/POB共重合体層)の
ヤング率、線膨張率、極限伸びは各々10.2GPa 
 5lxlO−’℃−1.1.71であり、心線の許容
曲げ半径は451+1で6つ比。
"Comparative Example 1" A PET/POB copolymer (intrinsic viscosity 0.65 ) was extruded under the same extrusion conditions as in Example 1 to produce a core wire with an outer diameter of 1.0 JLlK. The Young's modulus, coefficient of linear expansion, and ultimate elongation of the secondary coating layer (PET/POB copolymer layer) of the core wire produced in this way are each 10.2 GPa.
5lxlO-'℃-1.1.71, and the allowable bending radius of the core wire is 451+1, a ratio of 6.

「発明の効果」 以上説明したように不発明の光7アイパ心線は、大きな
極限伸びと低線膨張率を示す溶融液晶性熱可塑性樹脂を
光7アイパ2次被覆材料として用いるので、長尺にわ友
って使用温度の変化による伝送損失の増加がなく、屈曲
性に富みすぐれ九ものでるる。
"Effects of the Invention" As explained above, the uninvented Hikari 7 EyePa core wire uses a molten liquid crystalline thermoplastic resin that exhibits large ultimate elongation and low coefficient of linear expansion as the secondary coating material. Niwatomo does not increase transmission loss due to changes in operating temperature, and has excellent flexibility.

Claims (1)

【特許請求の範囲】 各々下記各式、 (A)▲数式、化学式、表等があります▼ (B)▲数式、化学式、表等があります▼ (C)▲数式、化学式、表等があります▼ (D)−O−CH_2−CH_2−O− (E)▲数式、化学式、表等があります▼ で示される基(A)を24〜38モル%、基(B)と基
(C)とをモル比〔基(B)/基(C)〕で97.5/
2.5〜90/10、かつ合計で38〜31モル%、基
(D)と基(E)とをモル比〔基(D)/基(E)〕で
95/5〜83/17、かつ合計で38〜31モル%ず
つ含み、少なくとも0.3の固有粘度をもつ溶融液晶性
を示す熱可塑性樹脂から形成された2次被覆層を有して
なる低線膨張率光ファイバ心線。
[Claims] Each of the following formulas: (A) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (B) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (C) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (D) -O-CH_2-CH_2-O- (E) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ 24 to 38 mol% of the group (A) shown in Molar ratio [group (B)/group (C)] is 97.5/
2.5 to 90/10, and a total of 38 to 31 mol%, the molar ratio of group (D) and group (E) [group (D)/group (E)] to 95/5 to 83/17, A low linear expansion coefficient optical fiber core wire comprising a secondary coating layer formed from a thermoplastic resin exhibiting molten liquid crystallinity and having an intrinsic viscosity of at least 0.3 and containing 38 to 31 mol% in total.
JP59197477A 1984-09-20 1984-09-20 Optical fiber core having low coefficient of linear expansion Granted JPS6173912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197477A JPS6173912A (en) 1984-09-20 1984-09-20 Optical fiber core having low coefficient of linear expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197477A JPS6173912A (en) 1984-09-20 1984-09-20 Optical fiber core having low coefficient of linear expansion

Publications (2)

Publication Number Publication Date
JPS6173912A true JPS6173912A (en) 1986-04-16
JPH034884B2 JPH034884B2 (en) 1991-01-24

Family

ID=16375129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197477A Granted JPS6173912A (en) 1984-09-20 1984-09-20 Optical fiber core having low coefficient of linear expansion

Country Status (1)

Country Link
JP (1) JPS6173912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0249226A2 (en) * 1986-06-13 1987-12-16 Sumitomo Electric Industries Limited Resin composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0249226A2 (en) * 1986-06-13 1987-12-16 Sumitomo Electric Industries Limited Resin composite

Also Published As

Publication number Publication date
JPH034884B2 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
US4718748A (en) Optical glass fibre having a synthetic resin cladding and method of manufacturing same
US4801186A (en) Coated optical fiber, fabrication process thereof and fabrication apparatus thereof
EP3740800A1 (en) A method for producing a flexible optical fiber ribbon and said ribbon
US4572840A (en) Method of manufacturing an optical fiber with chiralic structure and a device for putting this method into practice
CN1430083A (en) Optical cable with low contractibility rate cable sheath and its production method
US4936651A (en) Extrudable composition and products made therewith
US4909597A (en) Flexible optical waveguide containing a thermoplastic aliphatic segmented polyurethane core
JPS6173912A (en) Optical fiber core having low coefficient of linear expansion
TW542930B (en) Split type optical fiber ribbon core
JPS59228204A (en) Tapelike optical fiber and its manufacture
JPH034882B2 (en)
JPS6093407A (en) Optical fiber core
JPH0664219B2 (en) Optical communication cable
JPS59206803A (en) Optical fiber core
JPS59107943A (en) Manufacture of optical fiber core
JPH0549613B2 (en)
JPS6173911A (en) Optical fiber core
JP5082173B2 (en) Split type optical fiber ribbon
JPH1164692A (en) Light conductor and ribbon structure light conductor
JPS6158842A (en) Manufacture of high tensile strength light wave guide
JPS61238821A (en) High-speed production of cladded optical fiber core of low linear expansion coefficient
JPS63236004A (en) Core-clad type optical fiber
US20240184069A1 (en) Optical fiber rollable ribbon having low young's modulus bonding matrix material
JPH0627888B2 (en) Low linear expansion coefficient coated optical fiber
JPS63213808A (en) Optical fiber tape