[go: up one dir, main page]

JPS617380A - Electrochromic display element - Google Patents

Electrochromic display element

Info

Publication number
JPS617380A
JPS617380A JP12715484A JP12715484A JPS617380A JP S617380 A JPS617380 A JP S617380A JP 12715484 A JP12715484 A JP 12715484A JP 12715484 A JP12715484 A JP 12715484A JP S617380 A JPS617380 A JP S617380A
Authority
JP
Japan
Prior art keywords
layer
electrochromic
display element
colorable
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12715484A
Other languages
Japanese (ja)
Inventor
Masanori Watanabe
渡辺 正紀
Tetsuzo Yoshimura
徹三 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12715484A priority Critical patent/JPS617380A/en
Publication of JPS617380A publication Critical patent/JPS617380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:The titled element having an electrochromic layer consisting of an anodically colorable specific compound and an electrolytic layer between electrodes and high transmittance, good display quality and wide range of application. CONSTITUTION:An electrochromic display element obtained by providing an anodically colorable electrochromic (abbreviated to EC) layer 3' consisting of at least a compound expressed by the formula and preferably a cathodically colorable EC layer 5 and an electrolytic layer 4 formed from a solid electrolyte thin film between the layers 3' and 5 between a pair of electrodes 1 and 6. The above-mentioned anodically colorable EC layer 3' is preferably formed by applying a higher positive and negative voltages than the ordinary operating voltage alternately to an Ir oxide film prepared by reactive sputtering or reactive ion plating in a solution or element, and reducing the resultant film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエレクトロクロミック表示素子に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrochromic display element.

エレクトロクロミック(E C)素子は、電気化学反応
により引き起される物質の可逆的な色の変化を利用して
表示を行っている0従って、視角依存性がなく、表示が
見易いという利点があるoEC表子のもう一つの大きな
特徴は7、全固体の薄膜ディスプレイを実現できること
である。これは同じ受光型の液晶ディスプレイにはまね
ることができない。そして開回路状態でのメモリー機能
をもち。
Electrochromic (EC) devices display information using the reversible color change of substances caused by electrochemical reactions.Therefore, they have the advantage of being independent of viewing angle and making the display easy to see. Another major feature of the oEC table is that it can realize an all-solid-state thin film display. This cannot be imitated by light-receiving liquid crystal displays. It also has a memory function in an open circuit state.

駆動電圧も低いので、その特徴をいかした応用分野の開
拓をめざして、活発な研究開発が進められている。
Since the driving voltage is low, active research and development is underway to develop application fields that take advantage of this characteristic.

〔従来の技術〕[Conventional technology]

従来、EC表示素子のアノード着色型のEC層として、
Irの陽極酸化膜を適用する方法と、反応性スパッタ又
は反応性イオンプレーティングで作製した酸化Irgを
適用する方法が知られている。陽極酸化膜は経時変化に
よって透過率が低下する為、素子化した場合に表示品質
が低くなってしまう0また、Irを被着した段階で硫酸
水溶液中に浸漬する為、適用できる素子構成が限定され
てしまう。また、大画面の素子を作る場合膜の均質性を
確保することが難しい。反応性スパッタ又は反応性イオ
ンプレーティングで作製した酸化Ir膜は、膜自身の透
過率が低い為、やはり素子化した場合に表示品質が劣る
という問題がある◎〔発明が解決しようとする問題点〕 本発明は上記従来の問題点を解決するもので。
Conventionally, as an anode colored EC layer of an EC display element,
A method of applying an Ir anodic oxide film and a method of applying an oxidized Irg film produced by reactive sputtering or reactive ion plating are known. The transmittance of the anodic oxide film decreases over time, resulting in poor display quality when it is made into a device.Also, since it is immersed in an aqueous sulfuric acid solution after Ir is deposited, the device configurations that can be applied to it are limited. It will be done. Furthermore, when manufacturing a device with a large screen, it is difficult to ensure film homogeneity. The Ir oxide film produced by reactive sputtering or reactive ion plating has a low transmittance of the film itself, so when it is made into a device, there is a problem of poor display quality. [Problem to be solved by the invention] ] The present invention solves the above-mentioned conventional problems.

表示品質が高く、かつ広範囲の応用が可能なEC表示素
子を後板するKある0・7゜ 〔問題を解決するための手段〕 本発明は、アノード着色型のEC1iKIrOx(OH
)y (0,5x6F61.5 x)なる化合物を用い
てEC表示素子を構成したものである。
[Means for Solving the Problem] The present invention provides an anode-colored EC1iKIrOx (OH
)y (0,5x6F61.5x) is used to construct an EC display element.

〔作用〕[Effect]

本発明によるアノード着色型のEC層は反応性スパッタ
又は反応性イオンプレーティングで作製しても透過率が
高く、表示品質の良好なEC表示素子が得られる。
Even when the anode-colored EC layer according to the present invention is produced by reactive sputtering or reactive ion plating, an EC display element with high transmittance and good display quality can be obtained.

〔実施例〕〔Example〕

以下本発明の実施例を図面に沿って説明する0第1図は
1本発明になるIr0x(OH)yのgc膜の透過率(
反射モード)の可視波長域でのスペクトルを陽極酸化膜
、反応性スパッタ膜と比較して示したものである0図に
おいて、線Aが本発明に係るEC膜の透過率特性を、線
Bが陽極酸化膜、線Cが反応性スパッタ膜の透過率特性
を示しているO 6膜のx:yの比は陽極酸化膜Bがy=1.96x*反
応性スパッタ膜Cがy−0,365xであるのに対し、
本発明のgc膜Aはy=”o、y 26 x L O,
5x<y≦1.5xの範囲に入って(Sる。
Examples of the present invention will be explained below with reference to the drawings. Figure 1 shows the transmittance (
In Figure 0, which shows the spectra in the visible wavelength region of the EC film (reflection mode) in comparison with those of an anodized film and a reactive sputtered film, line A shows the transmittance characteristics of the EC film according to the present invention, and line B shows the transmittance characteristics of the EC film according to the present invention. For the anodic oxide film, line C shows the transmittance characteristics of the reactive sputtered film. 365x, whereas
The gc film A of the present invention has y=”o, y 26 x L O,
Within the range of 5x<y≦1.5x (S).

このEC膜Aは酸化Ir(イリジウム)膜を溶液中で還
元処理して作製できるが、溶液を用〜1なくても、酸化
Ir膜を含む全固体の薄膜EC素子において、動作電圧
より高い正負の電圧を交互にカロえて還元処理すること
により形成できる。従って、酸溶液中への浸漬を必要と
せず、大画面の素子でも膜を均質に形成できる為、広範
囲の応用力を可能である。
This EC film A can be produced by reducing an Ir oxide (iridium) film in a solution, but even without the use of a solution, it is possible to produce a positive and negative voltage higher than the operating voltage in an all-solid thin film EC element containing an Ir oxide film. It can be formed by reducing the voltage by alternating the voltage. Therefore, it is possible to form a homogeneous film even on a large-screen device without requiring immersion in an acid solution, making it possible to have a wide range of applications.

酸化Irは一般にIr0tの状態がもつとも安定である
ことが知られており、Irの反応性スノくツタ又は反応
性イオンプレーティングで得られる酸化Ir膜も、Ir
01が主成分であると考えられる。
It is known that Ir oxide is generally stable in the Ir0t state, and Ir oxide films obtained by reactive Ir ivy or reactive ion plating are also stable in the Ir0t state.
01 is considered to be the main component.

一方、Irの陽極酸化膜は重量分析の結果からIr(O
H)mが主成分であると推測されているO本発明になる
IrOx (OH)7 (0,5xJ−3’61.5x
)なる膜は、基本的にはIrO・OHを主成分とすると
考えられる0これは前述のXPS分析の結果からも裏づ
けられる。従って、本発明になる膜を酸化Irの還元処
理によって形成する場合、膜内部での変化は大体におい
て Ire、+H+e  −+IrO・OHなる化学式で表
わされるOしかし、化学式が厳密に上記の式に合わなく
ともできた膜がIr0x(OH)y(0,5X≦y≦1
.5x’)なる範囲に入っていれば1本発明の効果は十
分に生じ得るO 第2図と第3図により本発明の一実施例を説明する0 第2図は厚さ約200 nmのITO層(透明電極)1
をコートしたガラス基板2上に反応性スパッタ法により
厚さ約100 nrnの酸化Ir膜3を形成した状態を
示す図である。酸化Ir膜3は、3X10 ”Torr
の0.雰囲気中でRF電力50Wで形成した0この膜3
は、XPSCX線光電子分光)分析により、 IrOx
 (OH)+11161131なる化合物であることが
わかった。次に第2図状恕の基板を1規定の硫酸水溶液
中に浸漬し、該基板の電位を−kV(vsSCE)と+
2.0V(vsSCE)の同で交互に5回振ることによ
って還元処理を行った。対極には白金板を用いた0この
EC層3(第3図参照)はXPS分析により、Ir0x
(OH)at2sxなる化合物であることがわかった・
この変化に伴うEC層3 の透過率の増加の様子は既に
第1図の線Aに示したとおりである。次にこの基板上の
EC層3 表面に、 Ta、O,から成る約250nm
厚の固体電解質層4とWOsから成る約250nm厚の
カソード着色型のEC層5をそれぞれ、1xtO−’T
orrの真空中でEB蒸着法により形成した・さらに、
その上に、約150nm厚のITO層6を3〜4 X 
I O−’Torrの01雰囲気中でRF電力toow
のイオンプレーティング法により形成した。
On the other hand, the results of gravimetric analysis show that the Ir anodic oxide film is
H) m is presumed to be the main component O IrOx (OH)7 (0,5xJ-3'61.5x
) is basically considered to have IrO.OH as its main component. This is also supported by the results of the aforementioned XPS analysis. Therefore, when the film of the present invention is formed by reduction treatment of Ir oxide, the changes inside the film are generally expressed by the chemical formula Ire, +H+e −+IrO・OH. However, the chemical formula strictly conforms to the above formula. At least the resulting film is Ir0x(OH)y (0,5X≦y≦1
.. 5x'), the effect of the present invention can be sufficiently produced. An embodiment of the present invention will be explained with reference to FIGS. 2 and 3. FIG. 2 shows an ITO film with a thickness of approximately 200 nm. Layer (transparent electrode) 1
2 is a diagram showing a state in which an Ir oxide film 3 having a thickness of about 100 nrn is formed by reactive sputtering on a glass substrate 2 coated with . The Ir oxide film 3 is 3×10” Torr.
0. This film 3 was formed with 50 W of RF power in an atmosphere.
IrOx was determined by XPSC (X-ray photoelectron spectroscopy) analysis.
The compound was found to be (OH)+11161131. Next, the substrate of the second figure is immersed in a 1N sulfuric acid aqueous solution, and the potential of the substrate is set to -kV (vsSCE) and +
Reduction treatment was performed by alternately shaking 5 times at the same voltage of 2.0 V (vs SCE). The EC layer 3 (see Figure 3) using a platinum plate as the counter electrode was determined by XPS analysis to
It turned out to be a compound called (OH)at2sx.
The manner in which the transmittance of the EC layer 3 increases due to this change is already shown by line A in FIG. Next, on the surface of the EC layer 3 on this substrate, about 250 nm of Ta, O,
A thick solid electrolyte layer 4 and a cathode-colored EC layer 5 of about 250 nm thick made of WOs are each coated with 1xtO-'T.
Formed by EB evaporation method in a vacuum of orr.Furthermore,
On top of that, an ITO layer 6 with a thickness of about 150 nm is placed 3 to 4 times
RF power too in an atmosphere of IO-'Torr
It was formed using the ion plating method.

この第3図状態の薄膜EC素子は1着色応答時間(印加
電圧1.4 V 、素子の着色濃度Δ0D=0.5)2
00ms、消色応答時間(印加電圧I V) 50m5
で、消色状態での透過率は、視感度最大となる500n
m附近で92%(反射モード)であった・第4図に本発
明の他の実施例を示す◎第2図および第3図と同様にま
ずガラス基板2上にITO層1を介し、その上に反応性
スパッタ法により酸化Ir膜3′を形成し、その後上記
第1実施の如き溶液中での処理をせず(直接、該酸化1
.膜3′上に’ra、o、の固体電解質N4.WOsの
EC層5゜ITO71j6の順に形成してしまう口各層
の作製条件は上記第1実施例の場合と同様である◎そし
てこの素子の上下の電極間に±1,8vの電圧を交互に
5回加えることKより、酸化Ir膜3をI rox(Q
H)y (0,5x≦y≦1.5X)に変換することが
できる◎素子中で実際にこの変換が起っていることは、
電極反応の測定かに確認することができる〇第5図は上
記第1実施例における第2図状態におけるIN硫酸水溶
液中でのポルタモグラム(電流密度J−電電−曲線)で
ある。この際゛電位は一〇、25〜1.25V (vs
 8CE)の範囲で338の周期で走査した。対極はP
t電極である@処理前(点線)に対し還元処理後(実線
)は0.6v附近にEC着色反応のピークが生じている
The thin film EC element in the state shown in FIG.
00ms, color erasure response time (applied voltage IV) 50m5
The transmittance in the decolored state is 500n, which is the maximum visibility.
92% (reflection mode) in the vicinity of An Ir oxide film 3' is formed thereon by reactive sputtering, and then the oxide 1
.. On the membrane 3' is a solid electrolyte N4. The manufacturing conditions for each layer are the same as in the first embodiment described above. A voltage of ±1.8 V is alternately applied between the upper and lower electrodes of this device. By adding K times, the Ir oxide film 3 becomes I rox (Q
H) y (0,5x≦y≦1.5X) ◎This conversion actually occurs in the element as follows:
This can be confirmed by measuring the electrode reaction. 〇 FIG. 5 is a portammogram (current density J-electrical curve) in the IN sulfuric acid aqueous solution in the state shown in FIG. 2 in the first embodiment. At this time, the potential is 10.25 to 1.25V (vs
8CE) was scanned at 338 cycles. The opposite pole is P
At the t electrode, the peak of the EC coloring reaction occurs around 0.6 V after the reduction treatment (solid line) compared to before the @ treatment (dotted line).

一方第6図は第2実施例の第3図素子のポルタモグラム
である。±1.8vの電圧を交互に5回加えて処理した
後(実線)には、処理前(点m)に比べ反応量が増加し
、やはり0,6v附近に11ilCのピークが生じてい
る。処理後は第5図と@6図のポルタモグラムがほぼ一
致し、同じような電極反応が起っている。これは、素子
内部でI rOr (OH)o、5g5z −+ I 
r Ox (OH) 0.7265x)なる変換が実際
に起っていることを示している。
On the other hand, FIG. 6 is a portamogram of the device shown in FIG. 3 of the second embodiment. After treatment by applying a voltage of ±1.8V alternately five times (solid line), the amount of reaction increased compared to before treatment (point m), and a peak of 11ilC also occurred around 0.6V. After the treatment, the portamograms in Figures 5 and 6 almost match, indicating that similar electrode reactions are occurring. This means that I rOr (OH)o, 5g5z −+ I
r Ox (OH) 0.7265x) is actually occurring.

上記の処理によって第4図の素子の特性は、着色濃度が
Δ0D=0.3(印加電圧1.4V、200m5)から
0.5に増加し、消色状態での透過率は84チから92
−に増加した。着色濃度の増加は上に述べたようにバリ
ヤーの消失によるものとみられる〇処理後の素子の消色
応答時間は50m5(印加電圧−1,OV)であった。
As a result of the above treatment, the characteristics of the element shown in Fig. 4 are that the colored density increases from Δ0D=0.3 (applied voltage 1.4 V, 200 m5) to 0.5, and the transmittance in the decolorized state increases from 84 cm to 92 cm.
-increased to -. The increase in color density appears to be due to the disappearance of the barrier as described above. The decoloring response time of the element after treatment was 50 m5 (applied voltage -1, OV).

〔発明の効果〕〔Effect of the invention〕

以上の本発明によれば表示品質の高い大画面のEC素子
が簡易な手段で得ることができ、その実用上の効果は著
しいものである。
According to the present invention, a large-screen EC element with high display quality can be obtained by simple means, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るEC層の透過率特性を示す図、第
2図と第3図は本発明に係る第1実施例のEC表示素子
を示す断面図、第4図は本発明に係る第2実施例のFi
C表示素子を示す断面図、第5図と第6図は上記第1と
第2実施例のポルタモグラムを示す図である@ 図において、1と6は透明電極であるI’l’O12は
基板、3と3′はアノード着色型のEC層、4は電解質
層、5はカソード着色型のEC層である口市薄り 第2図 第3図 第4図 ! oj 旨 (、utり/V扉) f
FIG. 1 is a diagram showing the transmittance characteristics of the EC layer according to the present invention, FIGS. 2 and 3 are cross-sectional views showing the EC display element of the first embodiment according to the present invention, and FIG. 4 is a diagram showing the transmittance characteristics of the EC layer according to the present invention. Fi of the second embodiment
C is a cross-sectional view showing the display element, and FIGS. 5 and 6 are views showing portamograms of the first and second embodiments. In the figure, 1 and 6 are transparent electrodes, and I'l'O12 is the substrate. , 3 and 3' are anode-colored EC layers, 4 is an electrolyte layer, and 5 is a cathode-colored EC layer.Figure 2, Figure 3, Figure 4! oj (, utri/V door) f

Claims (5)

【特許請求の範囲】[Claims] (1)一対の電極間に少くともアノード着色型のエレク
トロクロミック層と電解質層とを有し、且つ前記エレク
トロクロミック層がIrOx(OH)y(0.5x≦y
≦1.5x)なる化合物で形成されていることを特徴と
するエレクトロクロミック表示素子。
(1) It has at least an anode-colored electrochromic layer and an electrolyte layer between a pair of electrodes, and the electrochromic layer has IrOx(OH)y (0.5x≦y
1.5x).
(2)前記エレクトロクロミック層を、反応性スパッタ
又は反応性イオンプレーティングで作製した酸化Ir膜
を溶液中で還元処理することによって形成したことを特
徴とする特許請求の範囲第1項記載のエレクトロクロミ
ック表示素子。
(2) The electrochromic layer according to claim 1, wherein the electrochromic layer is formed by reducing an Ir oxide film produced by reactive sputtering or reactive ion plating in a solution. Chromic display element.
(3)前記電解質層を固体電解質薄膜で形成し、前記電
極間に該固体電解質薄膜と前記エレクトロクロミック層
およびカソード着色型のエレクトロクロミック層を少な
くとも設けたことを特徴とする特許請求の範囲第1項記
載のエレクトロクロミック表示素子。
(3) The electrolyte layer is formed of a solid electrolyte thin film, and at least the solid electrolyte thin film, the electrochromic layer, and a cathode-colored electrochromic layer are provided between the electrodes. The electrochromic display element described in .
(4)アノード着色型の前記エレクトロクロミック層を
、反応性スパッタ又は反応性イオンプレーティングで作
製した酸化Ir膜を素子中で還元処理することによって
形成したことを特徴とする特許請求の範囲第3項記載の
エレクトロクロミック表示素子。
(4) The anode-colored electrochromic layer is formed by reducing an Ir oxide film produced by reactive sputtering or reactive ion plating in a device. The electrochromic display element described in .
(5)前記還元処理を、前記素子に通常の動作電圧より
高い正負の電圧を交互に加えて行なうことを特徴とする
特許請求の範囲第4項記載のエレクトロクロミック表示
素子。
(5) The electrochromic display element according to claim 4, wherein the reduction treatment is performed by alternately applying positive and negative voltages higher than a normal operating voltage to the element.
JP12715484A 1984-06-20 1984-06-20 Electrochromic display element Pending JPS617380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12715484A JPS617380A (en) 1984-06-20 1984-06-20 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12715484A JPS617380A (en) 1984-06-20 1984-06-20 Electrochromic display element

Publications (1)

Publication Number Publication Date
JPS617380A true JPS617380A (en) 1986-01-14

Family

ID=14952963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12715484A Pending JPS617380A (en) 1984-06-20 1984-06-20 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS617380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339884U (en) * 1986-09-01 1988-03-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339884U (en) * 1986-09-01 1988-03-15
JPH0347269Y2 (en) * 1986-09-01 1991-10-08

Similar Documents

Publication Publication Date Title
Bange et al. Electrochromic materials for optical switching devices
US5215821A (en) Solid-state electrochromic device with proton-conducting polymer electrolyte and Prussian blue counterelectrode
JPS5827484B2 (en) display cell
JPS617380A (en) Electrochromic display element
JPS6033255B2 (en) electrochromic display device
JPS6186733A (en) Electrochromic element
JPH0372328A (en) Electrochromic element
JPS6175325A (en) Display cell
JPS60181732A (en) Electrochromic display device
JPS61103982A (en) Electrochromic element
JPH0339724A (en) Electrochromic element
JPS6114496B2 (en)
JP2501553B2 (en) Electrochromic element
JPH0371112A (en) Electrochromic element
JPS61239224A (en) Electrochromic element
JPS61261782A (en) Driving of electrochromic element
JPH0343716A (en) Electrochromic element
JPH02926A (en) Manufacture of electrochromic element
JPS59131915A (en) Electrochromic display element
JPS60242429A (en) Control system for electrochromic element
JPS6010609B2 (en) image display body
JP2000122101A (en) Electrochromic element
JPH0263233B2 (en)
JPS62178931A (en) Manufacture of electrochromic element
JPS60242428A (en) Control system for electrochromic element