JPS6172207A - Thick film waveguide - Google Patents
Thick film waveguideInfo
- Publication number
- JPS6172207A JPS6172207A JP19432884A JP19432884A JPS6172207A JP S6172207 A JPS6172207 A JP S6172207A JP 19432884 A JP19432884 A JP 19432884A JP 19432884 A JP19432884 A JP 19432884A JP S6172207 A JPS6172207 A JP S6172207A
- Authority
- JP
- Japan
- Prior art keywords
- mode
- light
- waveguide
- optical path
- branching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 abstract description 8
- 238000010168 coupling process Methods 0.000 abstract description 8
- 238000005859 coupling reaction Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明は、基板型の導波路に関し、特に、分岐・結合
素子として構成される厚膜導波路に関する。′
(ロ)従来技術
基板型の導波路は、その構造上、正確に大量生産できる
ことから、分岐・結合素子として期待されている。とこ
ろで、光信号の分岐または結合を行なう素子としては、
モード励振の分布依存性による分岐比の不安定性の問題
がある。すなわち、この導波素子への光信号の入射位置
が微妙に異なると、分岐比が大きく変化してしまう。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a substrate type waveguide, and particularly to a thick film waveguide configured as a branching/coupling element. (b) Prior Art Substrate-type waveguides are expected to be used as branching and coupling elements because their structure allows them to be mass-produced accurately. By the way, as an element for branching or combining optical signals,
There is a problem of instability of the branching ratio due to distribution dependence of mode excitation. That is, if the position of incidence of the optical signal on the waveguide element differs slightly, the branching ratio will change significantly.
これを防止するためには、導波素子中にモードスクラン
ブラを含むようにすればよいが、導波素子を長くする訳
にはいかないので、通常のモードスクランブラと異なり
、この導波素子中でモードスクランブラを短い距離で達
成する必要があり、簡単には実現できない。In order to prevent this, it is possible to include a mode scrambler in the waveguide element, but since the waveguide element cannot be made long, unlike a normal mode scrambler, this waveguide element has a mode scrambler. The mode scrambler must be achieved over a short distance, which is not easy to achieve.
(ハ)目的
この発明は、短い距離で実現されたモードスクランブラ
を含むことによって、分岐比を安定化した厚膜導波路を
提供することを目的とする。(C) Objective The object of the present invention is to provide a thick film waveguide with a stabilized branching ratio by including a mode scrambler realized over a short distance.
(ニ)構成
この発明によれば、基板上または基板中に導波路が形成
されてなる厚膜導波路において、この導波路中に、断面
積が減少した部分よりなる高次モード除去部と、光の伝
搬方向に略直角な光路遮断部を介することにより低次モ
ードから高次モ−ドヘ変換するモード変換部とを設けた
ことを特徴とする。(D) Structure According to the present invention, in a thick film waveguide in which a waveguide is formed on or in a substrate, a higher-order mode removal portion consisting of a portion with a reduced cross-sectional area is provided in the waveguide; The present invention is characterized in that it includes a mode conversion section that converts from a low-order mode to a high-order mode by passing through an optical path blocking section that is substantially perpendicular to the propagation direction of light.
(ホ)実施例
この発明の一実施例にがかる厚膜導波路は、第1図およ
び第2図A、B、Cに示すように、基板1と、この↓に
形成された導波路(コア部)2と、さらにこのコア部2
を囲むクラッド部3とからなり、導波路2には、2つの
入射部21.22と、結合部23と1分岐部24と、2
つの出射部25.26とが設けられて、入射した2つの
光信号を一旦結合した後2つに分岐する単方向の2×2
カプラとして構成されている。そして結合部23と分岐
部24との間には断面積が減少した部分27が設けられ
、さらに、分岐部24には光の伝搬方向に略直角な光路
遮断部28が設けられ、この光路遮断部28を介して出
射部25.26が接続されている。出射部25.26と
断面積減少部27とは、光の伝搬方向より見た場合、そ
れらの断面が第2図Cに示すように半分程度型なってい
る。(E) Embodiment A thick film waveguide according to an embodiment of the present invention includes a substrate 1 and a waveguide (core part) 2 and further this core part 2
The waveguide 2 has two input parts 21, 22, a coupling part 23, one branch part 24, and a cladding part 3 surrounding the waveguide 2.
A unidirectional 2×2 light emitting unit 25 and 26 are provided, and the two incident optical signals are once combined and then branched into two.
It is configured as a coupler. A portion 27 with a reduced cross-sectional area is provided between the coupling portion 23 and the branching portion 24, and the branching portion 24 is further provided with an optical path blocking portion 28 substantially perpendicular to the propagation direction of the light. Emitting parts 25 and 26 are connected via part 28. When viewed from the light propagation direction, the emitting portions 25, 26 and the reduced cross-sectional area portion 27 have approximately half-shaped cross sections as shown in FIG. 2C.
このような構造において、2つの入射部21.22に入
射した光は結合部23において交わり、つぎに断面積減
少部27を通ることにより高次モードが除去される。こ
の高次モードが除去された光は次いで光路遮断部28で
遮断され、この遮断部28の両側に接続された2つの出
射部25.26に入る。この過程で低次モードの光は高
次モードの光に変換され、出射部25.26に均等に分
配される。したがって短い距離でモードスクランブラが
実現されたことになる。In such a structure, the light incident on the two incident sections 21 and 22 intersects at the coupling section 23, and then passes through the cross-sectional area reduction section 27, whereby higher-order modes are removed. The light from which the higher-order modes have been removed is then blocked by the optical path blocking section 28 and enters the two output sections 25 and 26 connected to both sides of this blocking section 28 . In this process, the low-order mode light is converted into high-order mode light, which is evenly distributed to the output sections 25 and 26. Therefore, a mode scrambler is realized in a short distance.
第1図、第2図A−Cは入出射が1方向にしかできない
単方向の2×2のカプラであるが、入出射が双方向から
行なえる双方向2×2カプラの場合は導波路2のパター
ンを第3図のようにし、また、単方向の1×4のカプラ
の場合は第4図のようなパターンとする。Figures 1 and 2 A-C are unidirectional 2 x 2 couplers in which input and output can only occur in one direction, but in the case of a bidirectional 2 x 2 coupler in which input and output can occur in both directions, a waveguide is used. In the case of a unidirectional 1×4 coupler, a pattern as shown in FIG. 4 is used.
これらの厚膜導波路は、たとえば次のようにして製造で
きる。まず、石英またはシリコンの基板1の上にS i
Oz膜をCVD法(化学気相堆積法)により形成する。These thick film waveguides can be manufactured, for example, as follows. First, Si
An Oz film is formed by CVD (chemical vapor deposition).
このSin、膜は後に形成されるS i Oを膜ととも
にクラッド部3をなす。This Sin film forms the cladding part 3 together with the SiO film that will be formed later.
次に、同じ<CVD法によりG e 02を12重量%
含む比屈折率差1%程度のSiO□−〇em。Next, 12% by weight of G e 02 was added using the same <CVD method.
SiO□-〇em with a relative refractive index difference of about 1%.
ガラス層を積層する。このS to2−GeO□ガラス
層は導波路のコア部2をなすもので、接続される光ファ
イバのコア径に適合するよう50膜mまたは80膜m程
度の厚さに形成させられる0次に導波路パターンに合わ
せてフォトリングラフィ技術を用いて第1図等に示した
ようなパターンのコア部2を形成する。その後、CVD
法によりSin、膜を積層する。このSin、膜は最初
に形成したS ioz膜とともにクラッド部3をなす。Laminate glass layers. This S to2-GeO□ glass layer forms the core part 2 of the waveguide, and is made to have a thickness of about 50 or 80 m to match the core diameter of the optical fiber to be connected. A core portion 2 having a pattern as shown in FIG. 1 etc. is formed using photolithography technology in accordance with the waveguide pattern. After that, CVD
A film of Sin is laminated by a method. This Sin film forms the cladding portion 3 together with the Sioz film formed first.
そして最後に、基板lの入出射側両端に入出力用光ファ
イバの接続部(図示しない)を形成する。Finally, connecting portions (not shown) for input/output optical fibers are formed at both ends of the input/output side of the substrate l.
次に、単方向2×2カプラを第7図A、Bに示すような
寸法でCVD法により作ってみた。具体的には、基板l
として直径2インチのSin、ウェハを用い、この5i
n2上に屈折率1.474のS i O2−G e O
z IIQを厚さ50膜mに積層し、次いで、フォトリ
ングラフィ技術により第7図Aのような寸法のパターン
が残るように反応性イオン・エツチングによりSin、
−Ge02膜を除去し、その後、S i O2のクラッ
ド部3を設け、導波路2を構成した。そして、この単方
向2X2カブラにおいて、一方の入射部から光を入射し
、その位置を変えて2つの出射光の強度を測定して、第
6図のようなデータを得た。Next, a unidirectional 2×2 coupler with dimensions as shown in FIG. 7A and B was fabricated by CVD. Specifically, the substrate l
Using a 2-inch diameter Sin wafer, this 5i
S i O2-G e O with refractive index 1.474 on n2
z IIQ was laminated to a thickness of 50 m, and then, by reactive ion etching, a film of Sin,
The -Ge02 film was removed, and then a cladding portion 3 of SiO2 was provided to form a waveguide 2. Then, in this unidirectional 2×2 doubler, light was inputted from one input part, and the intensity of the two output lights was measured by changing its position, and data as shown in FIG. 6 was obtained.
参考例として、従来構造の単方向2×2カプラを第7図
A、Bの寸法で作製し、同様に測定したところ第8図の
ようなデータが得られた。As a reference example, a unidirectional 2×2 coupler with a conventional structure was fabricated with the dimensions shown in FIGS. 7A and 7B and measured in the same manner, and data as shown in FIG. 8 was obtained.
これらのデータを比較すると、分岐損失の付加損失は、
波長1.3pmで、第5図のものが1゜1dB、第7図
のものが0.3dBとなり、第5図の方が少し大きいが
、第6図と第8図との比較により、入射位置に対する各
出力間の出射光強度の変化が非常に少なくなっているこ
とが実際に検証された。Comparing these data, the additional loss of branch loss is
At a wavelength of 1.3 pm, the value in Fig. 5 is 1°1 dB, and the value in Fig. 7 is 0.3 dB. Although Fig. 5 is slightly larger, comparing Fig. 6 and Fig. 8 shows that the incident It was actually verified that the change in output light intensity between each output with respect to position was extremely small.
(へ)効果
この発明によれば、モードスクランブラを短い距離で実
現でき、このモードスクランブラを含んで分岐・結合素
子を構成できるので、光の入射位置に対して分岐比を安
定化できる。(f) Effects According to the present invention, a mode scrambler can be realized in a short distance, and a branching/coupling element can be configured including this mode scrambler, so that the branching ratio can be stabilized with respect to the incident position of light.
第1図はこの発明の一実施例の概略平面図、第2図A、
B、Cはそれぞれ第1図のAA線、BB線、CC線で切
断した断面図、第3図および第4図は他の実施例の概略
平面図、第5図A、Bは実験例の寸法を示すためのもの
で第5図Aは平面図、第5図Bは第5図Aの左側の側面
図、第6図は第5図A、Bにより得られたデータを示す
グラフ、第7図A、Bは従来の参考例の寸法を示すため
のもので第7図Aは平面図、第7図Bは第7図Aの左側
の側面図、第8図は第7図A、Hにより得られたデータ
を示すグラフである。
1・・・基板 2・・・導波路(コア部)
3・・・クラッド部 21.22・・・入射部2
3・・・結合部 24・・・分岐部25.26
・・・出射部 27・・・断面積減少部28・・・光
路遮断部FIG. 1 is a schematic plan view of an embodiment of the present invention, FIG. 2A,
B and C are cross-sectional views taken along lines AA, BB, and CC in FIG. 1, respectively; FIGS. 3 and 4 are schematic plan views of other embodiments; and FIGS. 5A and B are cross-sectional views of experimental examples. Figure 5A is a plan view, Figure 5B is a side view on the left side of Figure 5A, and Figure 6 is a graph showing the data obtained from Figures 5A and B. Figures 7A and 7B are for showing the dimensions of the conventional reference example; Figure 7A is a plan view, Figure 7B is a side view on the left side of Figure 7A, Figure 8 is Figure 7A, It is a graph showing data obtained by H. 1...Substrate 2...Waveguide (core part)
3...Clad part 21.22...Incidence part 2
3...Joining part 24...Branch part 25.26
...Emission part 27...Cross-sectional area reduction part 28...Optical path blocking part
Claims (1)
膜導波路において、上記導波路中に、断面積が減少した
部分よりなる高次モード除去部と、光の伝搬方向に略直
角な光路遮断部を介することにより低次モードから高次
モードへ変換するモード変換部とを設けたことを特徴と
する厚膜導波路。(1) In a thick film waveguide in which a waveguide is formed on or in a substrate, the waveguide includes a higher-order mode removal portion consisting of a portion with a reduced cross-sectional area, and a portion substantially perpendicular to the propagation direction of light. What is claimed is: 1. A thick film waveguide comprising: a mode conversion section that converts from a low-order mode to a high-order mode by passing through an optical path blocking section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59194328A JPH079490B2 (en) | 1984-09-17 | 1984-09-17 | Thick film waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59194328A JPH079490B2 (en) | 1984-09-17 | 1984-09-17 | Thick film waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6172207A true JPS6172207A (en) | 1986-04-14 |
JPH079490B2 JPH079490B2 (en) | 1995-02-01 |
Family
ID=16322758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59194328A Expired - Fee Related JPH079490B2 (en) | 1984-09-17 | 1984-09-17 | Thick film waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH079490B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62288802A (en) * | 1986-06-09 | 1987-12-15 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of quartz optical waveguide |
EP0450747A2 (en) * | 1990-04-06 | 1991-10-09 | Litton Systems, Inc. | Integrated optics coupler |
JPH07198972A (en) * | 1993-12-28 | 1995-08-01 | Hitachi Cable Ltd | Y branch optical waveguide |
JP2001042146A (en) * | 1999-07-30 | 2001-02-16 | Furukawa Electric Co Ltd:The | Array waveguide diffraction grating |
JP2001235645A (en) * | 2000-02-25 | 2001-08-31 | Furukawa Electric Co Ltd:The | Optical waveguide circuit |
US7280713B2 (en) | 2002-05-15 | 2007-10-09 | Fujitsu Limited | Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus |
US7317853B2 (en) | 2003-08-19 | 2008-01-08 | Ignis Technologies As | Integrated optics spot size converter and manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51124939A (en) * | 1975-04-24 | 1976-10-30 | Nippon Serufuotsuku Kk | Integrated light move leading pass apparatus |
-
1984
- 1984-09-17 JP JP59194328A patent/JPH079490B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51124939A (en) * | 1975-04-24 | 1976-10-30 | Nippon Serufuotsuku Kk | Integrated light move leading pass apparatus |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62288802A (en) * | 1986-06-09 | 1987-12-15 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of quartz optical waveguide |
EP0450747A2 (en) * | 1990-04-06 | 1991-10-09 | Litton Systems, Inc. | Integrated optics coupler |
JPH07198972A (en) * | 1993-12-28 | 1995-08-01 | Hitachi Cable Ltd | Y branch optical waveguide |
JP2001042146A (en) * | 1999-07-30 | 2001-02-16 | Furukawa Electric Co Ltd:The | Array waveguide diffraction grating |
JP2001235645A (en) * | 2000-02-25 | 2001-08-31 | Furukawa Electric Co Ltd:The | Optical waveguide circuit |
US7280713B2 (en) | 2002-05-15 | 2007-10-09 | Fujitsu Limited | Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus |
US7289703B2 (en) | 2002-05-15 | 2007-10-30 | Fujitsu Limited | Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus |
US7315676B2 (en) | 2002-05-15 | 2008-01-01 | Fujitsu Limited | Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus |
US7317853B2 (en) | 2003-08-19 | 2008-01-08 | Ignis Technologies As | Integrated optics spot size converter and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH079490B2 (en) | 1995-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3704996A (en) | Optical coupling arrangement | |
CA1123642A (en) | Multimode optical fiber coupler | |
CA1146389A (en) | Light coupling and branching device using light focusing transmission body | |
US9519115B2 (en) | Optical circuit | |
Baba et al. | Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration | |
JPH03138606A (en) | Light branching device | |
US6360047B1 (en) | Optical waveguide circuit and method of fabricating same | |
JPH08171020A (en) | Optical coupling device | |
JPH05323139A (en) | Optical coupling device | |
US5134672A (en) | Optical waveguide type star coupler | |
JP7400843B2 (en) | Manufacturing method of optical device | |
JPH02195309A (en) | Optical coupling element | |
Kobayashi et al. | Micro-optic devices for fiber-optic communications | |
JP2850996B2 (en) | Optical coupling device | |
JPS6172207A (en) | Thick film waveguide | |
US6661960B2 (en) | Semiconductor waveguide photodetector | |
JPH04152306A (en) | optical transmission module | |
CN115857098A (en) | Optical circulator on silicon substrate | |
JPH06194536A (en) | Optical coupling device | |
JPH0743552A (en) | Optical waveguide element for semiconductor laser diode coupling and waveguide type module using the same | |
JP3084417B2 (en) | Optical coupling device | |
JP2728421B2 (en) | Optical waveguide | |
JPH0359619A (en) | Optical amplifier | |
JPH0430581A (en) | Semiconductor light receiving device | |
Benech | Review on integrated optics technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |