[go: up one dir, main page]

JPS6171381A - Waveform discrimination circuit - Google Patents

Waveform discrimination circuit

Info

Publication number
JPS6171381A
JPS6171381A JP19256384A JP19256384A JPS6171381A JP S6171381 A JPS6171381 A JP S6171381A JP 19256384 A JP19256384 A JP 19256384A JP 19256384 A JP19256384 A JP 19256384A JP S6171381 A JPS6171381 A JP S6171381A
Authority
JP
Japan
Prior art keywords
circuit
amplitude limiting
limiting amplifier
neutrons
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19256384A
Other languages
Japanese (ja)
Other versions
JPH0453269B2 (en
Inventor
Hiroshi Tominaga
洋 富永
Yoshihiro Sase
佐瀬 義広
Shoichi Horiuchi
堀内 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP19256384A priority Critical patent/JPS6171381A/en
Publication of JPS6171381A publication Critical patent/JPS6171381A/en
Publication of JPH0453269B2 publication Critical patent/JPH0453269B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、中性子とガンマ線を弁別する波形弁別回路に
係り、特にパルスの幅の相違より中性子とガンマ線を弁
別するゼロクロス法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveform discrimination circuit that discriminates between neutrons and gamma rays, and more particularly to a zero-crossing method that discriminates between neutrons and gamma rays based on the difference in pulse width.

有機シンチレータに中性子あるいはγ線が入射するとシ
ンチレータ10発光が起こるが、その発光の減衰時間は
ガンマ線の場合数十ナノ秒であるのに対し中性子の場合
は数百ナノ秒かかる。
When neutrons or gamma rays are incident on an organic scintillator, the scintillator 10 emits light, but the decay time of the emitted light is several tens of nanoseconds in the case of gamma rays, while it takes several hundred nanoseconds in the case of neutrons.

この減衰時間の違いにより中性子とガンマ線を弁別する
波形弁別回路としてゼロクロス法がある。
The zero-cross method is a waveform discrimination circuit that distinguishes between neutrons and gamma rays based on the difference in decay time.

これは第1図に示すようにシンチレータ10発光は光電
子Jry7倍′u2で電気パルスに変換され、プリアン
プ3で増幅されて波形成形回路4に入る。
As shown in FIG. 1, the light emitted from the scintillator 10 is converted into an electric pulse by photoelectrons 7 times 'u2, amplified by the preamplifier 3, and input to the waveform shaping circuit 4.

この入力パルスは第2図(a)に示すように減衰時間の
違いにより中性子とガンマ線ではパルス幅が異なってい
る。このパルスは波形成形回路4で第2図(b)に示す
ような正負対称なバイポーラパルスに成形され、さらに
振幅制限増幅器5により第2図(C)に示すように中性
子とガンマ線ではゼロレベルをクロスする時間が異なる
正負対称な方形波パルスになる。この時間は中性子、ガ
ンマ線各々バラツギをもっており、その分布は第2図(
d)に示すようにガンマ線は鋭く中性子は比較的広がっ
ている。したがっである時間幅をもったタイムゲート6
.7を中性子とγ線に設定し、ゼロレベルをクロスする
タイミングを検出、することにより各々の計数を得るこ
とができる。この方式の問題点としては振幅制限増幅器
5のゲインがかなシ大きいため出力の直流レベルが回路
素子のドリフトや温度影響などにより変動し、そのため
中性子およびガンマ線の計数変化が生じることである。
As shown in FIG. 2(a), this input pulse has different pulse widths for neutrons and gamma rays due to the difference in attenuation time. This pulse is shaped by the waveform shaping circuit 4 into a bipolar pulse with positive and negative symmetry as shown in FIG. 2(b), and then by the amplitude limiting amplifier 5, as shown in FIG. It becomes a symmetrical square wave pulse with different positive and negative crossing times. This time has variations for neutrons and gamma rays, and their distribution is shown in Figure 2 (
As shown in d), gamma rays are sharp and neutrons are relatively spread out. Therefore, time gate 6 with a time width of
.. By setting 7 to neutrons and γ rays and detecting the timing of crossing the zero level, each count can be obtained. The problem with this method is that since the gain of the amplitude limiting amplifier 5 is very large, the DC level of the output fluctuates due to the drift of circuit elements and the influence of temperature, which causes changes in the counts of neutrons and gamma rays.

理想的には振幅制限増幅器5のゲインが無限大であれば
ゼロレベルをクロスする立下り時間はゼロになって直流
レベルの変動の影響は受けないが、現実には数ナノ秒の
立下り時間を持つので直流レベルの変動は設定されたタ
イムゲートに対し中性子とガンマ線の分布がずれること
になり結果として計数変化が生じる。特に温度影響が著
しく波形成形回路4の直流レベルが±o、 s m v
変動しても、振幅制限増幅器5のゲインが1000倍程
度6るのでsoomvの変動となりこの1までは使用で
きない。
Ideally, if the gain of the amplitude limiting amplifier 5 were infinite, the fall time for crossing the zero level would be zero and would not be affected by fluctuations in the DC level, but in reality the fall time is only a few nanoseconds. Therefore, fluctuations in the DC level cause the distribution of neutrons and gamma rays to shift with respect to the set time gate, resulting in a change in the count. In particular, the direct current level of the waveform shaping circuit 4 is significantly affected by temperature, ±o, s m v
Even if it fluctuates, the gain of the amplitude limiting amplifier 5 increases by about 1000 times 6, so the soomv will fluctuate and it cannot be used up to 1.

このため従来は振幅制限増幅器5の出力を波形成形回路
4に直流負帰還をかけて安定化している。
For this reason, conventionally, the output of the amplitude limiting amplifier 5 is stabilized by applying direct current negative feedback to the waveform shaping circuit 4.

第1図に示すようにRC回路で信号パルスすなわち交流
成分を除去して直流成分のみを負帰還させて振幅制限回
路5の出力直流レベルを安定化している。しかしRC回
路で完全に交流成分を除去することは不可能で、ま念除
去できる程度も計数率に依存している。その上直流の比
例的な負帰還では設定値に対する平均的な偏差が必ず残
存する。
As shown in FIG. 1, the output DC level of the amplitude limiting circuit 5 is stabilized by removing the signal pulse, that is, the AC component, and giving negative feedback only to the DC component. However, it is impossible to completely remove the alternating current component with an RC circuit, and the extent to which it can be completely removed also depends on the counting rate. Moreover, in direct current proportional negative feedback, an average deviation from the set value always remains.

結果としては温度影響として振幅制限増幅器5の出力直
流レベルの変動は15mV/Cとなり、中性子およびガ
ンマ線の計数値は約1%/Cの変化が生じる。このため
第1図に示すように直流レベルの調整用可変抵抗器8を
設けて、使用の都度直流レベルをy4整しなければなら
ない。また通常の室温程度の温度変化でも数%の誤差が
出るので、連続測定を行なう場合は回路を恒温槽に入れ
て温度制御をしなければならない。
As a result, the output DC level of the amplitude limiting amplifier 5 fluctuates by 15 mV/C as a result of the temperature effect, and the neutron and gamma ray count values change by about 1%/C. For this reason, as shown in FIG. 1, a variable resistor 8 for adjusting the DC level must be provided to adjust the DC level y4 each time it is used. Furthermore, even temperature changes of the order of normal room temperature can cause an error of several percent, so if continuous measurements are to be made, the circuit must be placed in a thermostatic oven to control the temperature.

本発明の目的は、回路素子の経時変化や周囲温度の影響
を受けることのない波形弁別回路を提供することにある
An object of the present invention is to provide a waveform discrimination circuit that is not affected by changes in circuit elements over time or ambient temperature.

本発明は、交流成分を完全に除去して直流成分のみを負
帰還させ、直流レベルを安定化し中性子とガンマ線の計
数の安定化を計り回路素子の経時変化や周囲温度の影響
を受けないよう忙しようというものである。さらに詳述
すると、本発明は、振幅制限増幅器の出力信号パルスが
正負対称になるように波形成形回路4を調整して、この
出力を積分すれば信号パルスは正負打ち消し合って零に
なり直流成分のみが残って積分されることから、積分子
、;を導入することにより直流負帰還を可能にしたもの
である。さらに積分動作による負帰還であるため直流レ
ベルの設定値からの偏りがゼロになるように働く。
The present invention completely removes the alternating current component and negatively feeds only the direct current component, stabilizes the direct current level, stabilizes the count of neutrons and gamma rays, and prevents circuit elements from changing over time and being affected by ambient temperature. This is what we are trying to do. More specifically, in the present invention, if the waveform shaping circuit 4 is adjusted so that the output signal pulse of the amplitude limiting amplifier is symmetrical in positive and negative, and the output is integrated, the signal pulse cancels out the positive and negative signals and becomes zero, and the DC component By introducing the multiplier, ;, DC negative feedback is made possible. Furthermore, since it is a negative feedback based on an integral operation, it works so that deviation from the set value of the DC level becomes zero.

第3図に本発明の実施例を示す。演算増幅器9と積分コ
ンデンサ10で積分動1′・1を行なう。演算増幅器の
一方の入力にはバイアス電流を流し込み、演算増幅器9
の出力を調整することにより振幅制限増幅器I器5の直
流レベルを可変できるようにしである。
FIG. 3 shows an embodiment of the present invention. The operational amplifier 9 and the integrating capacitor 10 perform integral operation 1'.1. A bias current is applied to one input of the operational amplifier, and the operational amplifier 9
By adjusting the output of the amplifier I, the DC level of the amplitude limiting amplifier I unit 5 can be varied.

したがって、本実施例によれば、温度変化θ〜40Cに
対し直流レベルの変動は±Imyになり、中性子および
ガンマ線の計数変化は無視できるほど小さくなり、計数
率依存性はy、x’i:Tkcpsまで現れない。
Therefore, according to this example, the fluctuation in the DC level becomes ±Imy for a temperature change of θ to 40C, the change in the counts of neutrons and gamma rays becomes negligibly small, and the dependence on the count rate is y, x'i: It doesn't show up until Tkcps.

また本実施例によれば使用している回路素子の経時変化
にも有効であり、長期に渡って無調整で連続使用のでき
る波形弁別回路を可能にするものである。
Furthermore, this embodiment is effective against changes over time in the circuit elements used, and enables a waveform discrimination circuit that can be used continuously over a long period of time without adjustment.

以上説明したように、本発明によれば、回路素子の経時
変化や周囲温度の影響を受けることがない。
As explained above, according to the present invention, the circuit elements are not affected by aging or ambient temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の波形弁別回路図、第2図は変換されたパ
ルス波形図、第3図は本発明の実施例を示す回路図であ
る。 4・・・波形成形回路、5・・・振幅制限増幅器、9・
・・演算増幅器。
FIG. 1 is a conventional waveform discrimination circuit diagram, FIG. 2 is a converted pulse waveform diagram, and FIG. 3 is a circuit diagram showing an embodiment of the present invention. 4... Waveform shaping circuit, 5... Amplitude limiting amplifier, 9...
...Operation amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1、入力パルスをバイポーラパルスに成形する波形成形
回路と、前記バイポーラパルスを増幅して正負対称な方
形波にする振幅制限増幅器と、該振幅制限増幅器の出力
を前記波形成形回路へ負帰還させる負帰還ループとを備
える波形弁別回路において、上記振幅制限増幅器と上記
負帰還ループとの間に前記振幅制限増幅器の出力を積分
して直流分を取り出す積分器を挿入接続したことを特徴
とする波形弁別回路。
1. A waveform shaping circuit that shapes an input pulse into a bipolar pulse, an amplitude limiting amplifier that amplifies the bipolar pulse into a square wave with positive and negative symmetry, and a negative feedback circuit that negatively feeds the output of the amplitude limiting amplifier to the waveform shaping circuit. A waveform discrimination circuit comprising a feedback loop, wherein an integrator for integrating the output of the amplitude limiting amplifier and extracting a DC component is inserted and connected between the amplitude limiting amplifier and the negative feedback loop. circuit.
JP19256384A 1984-09-17 1984-09-17 Waveform discrimination circuit Granted JPS6171381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19256384A JPS6171381A (en) 1984-09-17 1984-09-17 Waveform discrimination circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19256384A JPS6171381A (en) 1984-09-17 1984-09-17 Waveform discrimination circuit

Publications (2)

Publication Number Publication Date
JPS6171381A true JPS6171381A (en) 1986-04-12
JPH0453269B2 JPH0453269B2 (en) 1992-08-26

Family

ID=16293360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19256384A Granted JPS6171381A (en) 1984-09-17 1984-09-17 Waveform discrimination circuit

Country Status (1)

Country Link
JP (1) JPS6171381A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175283A1 (en) * 2013-04-25 2014-10-30 日立アロカメディカル株式会社 Radiation measuring instrument
WO2014192321A1 (en) 2013-05-27 2014-12-04 住友重機械工業株式会社 Neutron radiation detection device and neutron capture therapy device
CN104931996A (en) * 2015-06-12 2015-09-23 西北核技术研究所 Signal conditioning system of large-dynamic short pulses in radiation detection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175283A1 (en) * 2013-04-25 2014-10-30 日立アロカメディカル株式会社 Radiation measuring instrument
JP2014215142A (en) * 2013-04-25 2014-11-17 日立アロカメディカル株式会社 Radiation measuring device
US9417334B2 (en) 2013-04-25 2016-08-16 Hitachi Aloka Medical, Ltd. Radiation measuring instrument
WO2014192321A1 (en) 2013-05-27 2014-12-04 住友重機械工業株式会社 Neutron radiation detection device and neutron capture therapy device
CN105190361A (en) * 2013-05-27 2015-12-23 住友重机械工业株式会社 Neutron radiation detection device and neutron capture therapy device
CN104931996A (en) * 2015-06-12 2015-09-23 西北核技术研究所 Signal conditioning system of large-dynamic short pulses in radiation detection
CN104931996B (en) * 2015-06-12 2018-06-19 西北核技术研究所 The signal condition system of Larger Dynamic fast pulse in radiation detection

Also Published As

Publication number Publication date
JPH0453269B2 (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US4482808A (en) Apparatus for measuring neutrons and gamma rays
JPS58131501A (en) Device for measuring lateral size of thread
US5487310A (en) Electromagnetic flowmeter
JPH02257076A (en) Digital squid control method
US4830020A (en) Measurement signal interference elimination
US4370620A (en) Efficient high performance envelope detector with controlled decay envelope detection
JPS6171381A (en) Waveform discrimination circuit
US3309657A (en) Dual channel well logging system
US4445031A (en) Leader tape detecting circuit
JPS6114590A (en) Semiconductor radiation detector
JPS5968629A (en) Method and apparatus for stabilizing the gain of a photosensitive avalanche member
US5204631A (en) System and method for automatic thresholding of signals in the presence of Gaussian noise
RU2445648C2 (en) Method of stabilising and correcting transfer constant of scintillation detector and apparatus for realising said method
US4224519A (en) Method of improving BeO as a thermoluminescent detector
US4001590A (en) Radiation flux measuring device
JPH03218489A (en) Pulse waveform discriminator
JPS60157678A (en) Amplifying circuit of bar code reader
US4498153A (en) Output signal detectors of magnetic bubble memory devices
JPS6021474A (en) Baseline stabilization circuit
SU1264846A3 (en) Device for threshold detection of analogue signal peak in reproduction from recording magnetic medium
SU809021A1 (en) Device for scintillation detector circuit stabilization
JPH0557549B2 (en)
JPH01100712A (en) magnetic recording and reproducing device
JPS62137578A (en) Shaping of waveform
SU396837A1 (en) DEVICE OF AUTOMATIC REGULATION OF AVERAGE NUMBER OF NOISE EMISSIONS