[go: up one dir, main page]

JPS6170711A - Electrolyte for driving electrolytic condenser - Google Patents

Electrolyte for driving electrolytic condenser

Info

Publication number
JPS6170711A
JPS6170711A JP19160084A JP19160084A JPS6170711A JP S6170711 A JPS6170711 A JP S6170711A JP 19160084 A JP19160084 A JP 19160084A JP 19160084 A JP19160084 A JP 19160084A JP S6170711 A JPS6170711 A JP S6170711A
Authority
JP
Japan
Prior art keywords
paste
triethylamine
phthalic acid
electrolyte
butyrolactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19160084A
Other languages
Japanese (ja)
Inventor
剛 戸井田
鈴木 繁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
Nitsuko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitsuko Corp filed Critical Nitsuko Corp
Priority to JP19160084A priority Critical patent/JPS6170711A/en
Publication of JPS6170711A publication Critical patent/JPS6170711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、電解コンデンサ駆動用電解液(以下ペースト
と称す)の改良に関し、特に電解コンデンサの高温長寿
命化を可能ならしめる電解コンデンサ用ペーストに間す
るものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to the improvement of an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as paste), and in particular to a paste for an electrolytic capacitor that makes it possible to extend the life of an electrolytic capacitor at high temperatures. It is something that takes place in between.

[従来技術の問題点] 一般に電解コンデンサでは、陽・陰極箔間にセパレータ
を介在させて、巻回し、素子を構成し、該セパレータに
液状のペーストが含浸されている。
[Problems with Prior Art] Generally, in an electrolytic capacitor, a separator is interposed between anode and cathode foils, and the separator is wound to form an element, and the separator is impregnated with a liquid paste.

このため、電解コンデンサを長期に使用している塙、前
記ペーストが徐々に蒸発減少し、それによる負性の劣化
がおこり、トライアップして寿命が他のコンデンサに比
べて短い欠点がある。
For this reason, when an electrolytic capacitor is used for a long period of time, the paste gradually evaporates and decreases, resulting in negative deterioration, which has the drawback that the life after trial is shorter than that of other capacitors.

特に近年のように、小型化、高温度化が進行すると共に
、電解コンデンサの使用温度も100°C以上の高温度
領域が要求されることが多くなってくると、ますます、
前記欠点が問題となってくる。従って、100″C以上
の高温度領域において使用可能な)α状ペーストの改良
や封口(オおよび封口構造の開発が勿論行われているが
、前記ペーストの蒸発による特性の劣化対策はいまだに
充分な解決は得られていない。
Especially in recent years, with the progress of miniaturization and higher temperatures, electrolytic capacitors are often required to operate in a high temperature range of 100°C or higher.
The above drawbacks become a problem. Therefore, although efforts are being made to improve α-form paste (which can be used in high temperature ranges of 100"C or higher) and to develop sealing structures, measures against deterioration of properties due to evaporation of the paste are still insufficient. No solution has been obtained.

即ち、従来の1α状ペーストはエチレングリコール、N
、N−ジメチルホルムアミド、メチルセロソルブ、エチ
ルセロソルブ等の有81溶媒とギ酸、マレイン酸等のモ
ノカルボン酸又はその塩、コハク酸やアジピン酸アンモ
ニウム等の電解質を加えたペーストが用いられているが
、これらのペーストは比抵抗値が高< (300Ω・c
m以上)インピーダンス特性を悪化させている。そのた
め一般に純水を加えた混合溶媒として比抵抗値を130
−150Ω・cm程度に低くしたペーストが使用されて
いるが、該ペーストの沸点はX水を加えることによって
約】10°Cと低いため例えば、125°Cの環境下で
の使用においては、該ペーストの蒸発減少が激しく短期
間にドライアップして寿命に至るという欠点がある。従
って、このようなペーストは、高温度領域での使用に適
しない。
That is, the conventional 1α paste contains ethylene glycol, N
, N-dimethylformamide, methyl cellosolve, ethyl cellosolve, and other 81 solvents, monocarboxylic acids such as formic acid and maleic acid, or salts thereof, and electrolytes such as succinic acid and ammonium adipate are used. These pastes have high specific resistance values < (300Ω・c
m or more) impedance characteristics are deteriorated. Therefore, the specific resistance value is generally 130 as a mixed solvent with pure water added.
A paste with a temperature as low as -150 Ω・cm is used, but since the boiling point of this paste is as low as approximately 10°C by adding X water, for example, when used in an environment of 125°C, The drawback is that the paste evaporates rapidly and dries up in a short period of time, reaching the end of its service life. Therefore, such pastes are not suitable for use in high temperature regions.

[発明が解決しよ′うとする課題] 本発明は上述の点に鑑みてなされたもので、低比抵抗値
を有し且つ100°C以上の高温度領域で浸れた寿命特
性を有する電解コンデンサ駆動用ペーストを提供するこ
とを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above points, and provides an electrolytic capacitor that has a low resistivity value and a long life characteristic in a high temperature range of 100°C or higher. The purpose is to provide a driving paste.

[課題を解決する手段・実施例コ 以下、本発明を実施例に基づき、表および図面を参照し
て説明する。
[Means for Solving the Problems/Examples] Hereinafter, the present invention will be explained based on Examples with reference to tables and drawings.

本発明は、r−ブチロラクトンを溶媒とし、フタル酸お
よびトリエチルアミンを電解質としたことを特徴とする
ペーストを提供するもので、その−実8i!i例を第1
表に示しである。
The present invention provides a paste characterized in that r-butyrolactone is used as a solvent and phthalic acid and triethylamine are used as electrolytes. i example first
It is shown in the table.

γ−ブチロラクトンは、高沸点(204°C)で従って
高温度下での蒸発がおこり難く、また粘度も従来ペース
トに使用されているエチレングリコールなとの溶媒に比
し低く、電解質を溶解したときのペーストの比抵抗1l
IIをより低くすることができる利点がある。γ−ブチ
ロラクトンに対して、100’c以上の高温度領域で安
定で且つ溶解し易く、しかも比抵抗値が低くなる電解質
を検討した結果フタル酸とトリエチアミンとを反応させ
て得られる。フタル酸トリエチルアミンが好結果を得る
ことを発見した。
γ-Butyrolactone has a high boiling point (204°C), so it is difficult to evaporate at high temperatures, and its viscosity is lower than that of solvents such as ethylene glycol that are conventionally used in pastes, so it has a low viscosity when dissolved in electrolytes. The specific resistance of the paste 1l
There is an advantage that II can be lowered. For γ-butyrolactone, we investigated an electrolyte that is stable and easily soluble in a high temperature range of 100'c or more and has a low specific resistance value.The result is that it can be obtained by reacting phthalic acid and triethiamine. We have found that triethylamine phthalate gives good results.

フタル酸とトリエチルアミンは、各モル数で等量を反応
させた場合、得られるペーストの比抵抗が最小になり、
その反応は次の反応式で示される。
When phthalic acid and triethylamine are reacted in equal amounts with each mole number, the specific resistance of the resulting paste is minimized,
The reaction is shown by the following reaction formula.

次に、更にγ−ブチロラクトンに対するフタル酸トリエ
チルアミンの濃度と比抵抗について検討した結果を第1
図に示す。
Next, we further investigated the concentration and resistivity of triethylamine phthalate with respect to γ-butyrolactone, and the results were presented in the first section.
As shown in the figure.

同図から明らかの如く、フタル酸トリエチルアミン濃度
が約10wt%以上で、比抵抗値は最小となり、はぼ一
定値に飽和する。 従って、フタル酸トリエチルアミン
の濃度は10 w t%以上が好ましい。
As is clear from the figure, when the concentration of triethylamine phthalate is about 10 wt% or more, the resistivity value becomes minimum and saturates to a nearly constant value. Therefore, the concentration of triethylamine phthalate is preferably 10 wt% or more.

しかし、該フタル酸トリエチルアミンの濃度が30wt
%以上になると、一部のフタル酸トリエチルアミンが析
出してくるので、濃度は10〜30wt%が適当である
。第1表の本発明の一実施例は、γ−ブチロラクトンの
溶媒にフタル酸とトリエチルアミンを各々0.105m
olの等量加え、反応生成されるフタル酸トリエチルア
ミンの濃度を29ν12に調製したものである。この場
合、未反応のフタル酸が存在すると、比抵抗に悪影響を
与える(比抵抗値が高くなる)ので、トリエチルアミン
はフタル酸より若干(約1(H程度)余分に加えた方が
よい。反応後の残余のトリエチルアミンは、蒸発消失す
るので問題はない。二のよ、lうにして得られた第1表
に示す本発明のペーストと、′:a3表に示す代表的な
従来ペーストの特性を比較して第2表に示す。
However, the concentration of triethylamine phthalate is 30wt.
% or more, some triethylamine phthalate will precipitate, so the appropriate concentration is 10 to 30 wt%. An example of the present invention shown in Table 1 is to add 0.105 m each of phthalic acid and triethylamine to the solvent of γ-butyrolactone.
The concentration of triethylamine phthalate produced by the reaction was adjusted to 29v12. In this case, the presence of unreacted phthalic acid will have a negative effect on the specific resistance (the specific resistance value will become high), so it is better to add a little more triethylamine than phthalic acid (approximately 1 H). The remaining triethylamine will evaporate and disappear, so there is no problem.Secondly, the characteristics of the paste of the present invention shown in Table 1 obtained in the above manner and the typical conventional paste shown in Table ':a3 A comparison is shown in Table 2.

[作用及び効果] 本発明のペーストは、上記した如く、溶媒としてγ−ブ
チロラクトンを採用したため、ペーストの沸点が、従来
ペーストに比へ、第2表に示す如く大巾に高くなるため
、及び溶媒として、純水を含まない非水ペーストである
ため、高温度下での使用に於てLb発が抑制されると共
に、純水の存在が無くても、比抵抗1直が上昇すること
がない。従って従来のペーストに比へ高温寿命が期待出
来る。又粘度が従来ペースト(30〜40CP)に比し
、約115(7〜BCP)に低下するために、コンデン
サ素子への含浸性及び低温特性にも優れ、巾広い温度範
囲に使用出来る。
[Operations and Effects] As mentioned above, the paste of the present invention employs γ-butyrolactone as a solvent, so the boiling point of the paste is significantly higher than that of conventional pastes as shown in Table 2, and Since it is a non-aqueous paste that does not contain pure water, Lb generation is suppressed when used at high temperatures, and the resistivity does not increase even in the absence of pure water. . Therefore, it can be expected to have a longer high-temperature life than conventional pastes. Furthermore, since the viscosity is lowered to about 115 (7 to BCP) compared to conventional pastes (30 to 40 CP), it has excellent impregnating properties into capacitor elements and low-temperature properties, and can be used in a wide temperature range.

第2図は第3表に示す従来の一実施例のペースト及び第
1表に示す本発明の一実施例のペーストを用い、アルミ
電解コンデンサ10v−220μFを各々10111製
作し、125’C(7)雰囲気中でI 000 Q間の
高温負荷試験を行い、静電容量の変化を調査した結果を
示したものである。同図から明らかな如く、本発明のペ
ースト品は1000時間後の静電容量変化率が非常に小
さく、外観もまったく異常が認められなかったか、一方
、従来ペースト品は負荷時間と共に急激に静電容量が減
少し、500時間前後で内部素子が完全にトライアップ
していた。また外観は全て防爆弁が作動し、ケースの破
壊が認められた。
Figure 2 shows that 10111 aluminum electrolytic capacitors of 10V-220μF were manufactured using the paste of the conventional embodiment shown in Table 3 and the paste of the present invention shown in Table 1. ) A high-temperature load test between I 000 Q was conducted in an atmosphere, and the results of investigating changes in capacitance are shown. As is clear from the figure, the rate of change in capacitance of the paste product of the present invention after 1000 hours was very small, and no abnormality was observed in its appearance. The capacity decreased and the internal elements were completely tried up after about 500 hours. It was also confirmed that all explosion-proof valves were activated and the cases were destroyed.

従煉ペースト品は全数不良となっているが、その原Uf
J−,74よ前記したように、比抵抗値を低くするため
に純水を加えていること及び該ペーストの沸点が約11
0’Cと低いため、!25’C雰囲気中では該ペースト
の蒸発減小が激しく、短時間に防爆弁が作動し全数がト
ライアップしたものである。
All conventional paste products are defective, but the original Uf
As mentioned above in J-, 74, pure water is added to lower the resistivity value and the boiling point of the paste is about 11.
Because it is as low as 0'C! In a 25'C atmosphere, the evaporation of the paste was severe, and the explosion-proof valve was operated in a short period of time, and all samples were tested.

一方、本発明ペースト品は、純水を含まない非水ペース
トであるが、低比抵抗値を有し、且つ、該ペーストの沸
点が180°Cと高いため、高温度下での蒸発がおこり
難いため、前記試験を満足していることがわかる。
On the other hand, the paste product of the present invention is a non-aqueous paste that does not contain pure water, but has a low resistivity value and has a high boiling point of 180°C, so evaporation occurs at high temperatures. Therefore, it can be seen that the above test is satisfied.

以上説明したように、本発明によるペーストは、高温寿
命特性に優れているばかりでなく、ペーストの粘度が低
いため、素子への含浸性や低温特性にも優れ、従って低
温から高温までの広い温度範囲にわたって使用が可能と
なる効果も奏し、特性の安定した信頼性の高い電解コン
デンサのペーストが提供でき、実用的に大きな効果を有
する。
As explained above, the paste according to the present invention not only has excellent high-temperature life characteristics, but also has low viscosity, so it has excellent impregnating properties into elements and low-temperature characteristics, and therefore can be used at a wide temperature range from low to high temperatures. It also has the effect that it can be used over a wide range, and provides a highly reliable electrolytic capacitor paste with stable characteristics, which has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のペーストの比抵抗11iFを示す特
性図。第2図は負荷試験時間と特性の変化の関係を示す
特性図。
FIG. 1 is a characteristic diagram showing the specific resistance 11 iF of the paste of the present invention. FIG. 2 is a characteristic diagram showing the relationship between load test time and changes in characteristics.

Claims (2)

【特許請求の範囲】[Claims] (1)γ−ブチロラクトンを溶媒とし、電解質としてフ
タル酸とトリエチルアミンを加えてなることを特徴とし
た電解コンデンサ駆動用電解液。
(1) An electrolytic solution for driving an electrolytic capacitor, characterized in that it contains γ-butyrolactone as a solvent and phthalic acid and triethylamine as electrolytes.
(2)γ−ブチロラクトンの溶媒に、フタル酸とトリエ
チルアミンを各々等しいモル数加え、かつ該フタル酸と
トリエチルアミンの反応により生成されるフタル酸トリ
エチルアミンの濃度が10wt%〜30wt%であるこ
とを特徴とする特許請求の範囲第(1)項記載の電解コ
ンデンサ駆動用電解液。
(2) Equal moles of phthalic acid and triethylamine are added to the solvent of γ-butyrolactone, and the concentration of triethylamine phthalate produced by the reaction of the phthalic acid and triethylamine is 10 wt% to 30 wt%. An electrolytic solution for driving an electrolytic capacitor according to claim (1).
JP19160084A 1984-09-14 1984-09-14 Electrolyte for driving electrolytic condenser Pending JPS6170711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19160084A JPS6170711A (en) 1984-09-14 1984-09-14 Electrolyte for driving electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19160084A JPS6170711A (en) 1984-09-14 1984-09-14 Electrolyte for driving electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS6170711A true JPS6170711A (en) 1986-04-11

Family

ID=16277332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19160084A Pending JPS6170711A (en) 1984-09-14 1984-09-14 Electrolyte for driving electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS6170711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248217A (en) * 1986-04-21 1987-10-29 三菱油化株式会社 Electrolyte for electrolytic capacitor
WO1995015572A1 (en) * 1993-12-03 1995-06-08 Sanyo Chemical Industries, Ltd. Electrolytic solution and electrochemical element prepared therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248217A (en) * 1986-04-21 1987-10-29 三菱油化株式会社 Electrolyte for electrolytic capacitor
WO1995015572A1 (en) * 1993-12-03 1995-06-08 Sanyo Chemical Industries, Ltd. Electrolytic solution and electrochemical element prepared therefrom
CN1039264C (en) * 1993-12-03 1998-07-22 三洋化成工业株式会社 Electrolytic solution and electrochemical element prepared therefrom

Similar Documents

Publication Publication Date Title
JPS6132509A (en) Electrolyte for driving electrolytic condenser
JPS6170711A (en) Electrolyte for driving electrolytic condenser
JPH11340097A (en) Electrolytic solution for driving electrolytic capacitor
JP4226123B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JPS61113222A (en) Electrolytic liquid for driving electrolytic capacitor
JPS63268225A (en) Aluminum electrolytic capacitor
JP2819475B2 (en) Electrolyte for driving electrolytic capacitors
JP3732067B2 (en) Electrolytic capacitor element shape fixing adhesive and electrolytic capacitor manufactured using the same
JP3347154B2 (en) Electrolyte for driving electrolytic capacitors
JPH09115782A (en) Electrolyte for driving electrolytic capacitor
JP2692880B2 (en) Electrolyte for electrolytic capacitors
JPS63124509A (en) Aluminum electrolytic capacitor driving electrolyte
JP3212322B2 (en) Electrolyte for driving electrolytic capacitors
JP3625235B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS629617A (en) Electrolytic liquid for driving electrolytic capacitor
JPS62213239A (en) Driving electrolyte for electrolytic capacitor
JPS6366915A (en) Electrolyte for driving aluminum electrolytic capacitor
JPS6265406A (en) Electrolyte for driving aluminum electrolytic condenser
JPS60132313A (en) Electrolyte for electrolytic condenser
JPH0770442B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS63240011A (en) Driving electrolyte of electrolytic capacitor
JPS6236372B2 (en)
JPS62213238A (en) Driving electrolyte for electrolytic capacitor
JPH01114025A (en) Electrolyte for driving electrolytic capacitor
JPS6366916A (en) Electrolyte for driving aluminum electrolytic capacitor