[go: up one dir, main page]

JPS6169104A - Semicircular anisotropic ferrite magnet and manufacture thereof - Google Patents

Semicircular anisotropic ferrite magnet and manufacture thereof

Info

Publication number
JPS6169104A
JPS6169104A JP19105184A JP19105184A JPS6169104A JP S6169104 A JPS6169104 A JP S6169104A JP 19105184 A JP19105184 A JP 19105184A JP 19105184 A JP19105184 A JP 19105184A JP S6169104 A JPS6169104 A JP S6169104A
Authority
JP
Japan
Prior art keywords
molded body
sintering
semicircular
center
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19105184A
Other languages
Japanese (ja)
Other versions
JPH0332893B2 (en
Inventor
Tatsuo Yamamoto
山本 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP19105184A priority Critical patent/JPS6169104A/en
Publication of JPS6169104A publication Critical patent/JPS6169104A/en
Publication of JPH0332893B2 publication Critical patent/JPH0332893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture the semicircular anisotropic ferrite magnet of high residual magnetic flux density with an excellent yield of production by a method wherein the opened leg part side of a molded body is placed on a sintering base plate, and a sintering work is performed while the prescribed load is being applied in the vicinity of the center part of the outer circumferential surface of the molded body. CONSTITUTION:In the sintering of the molded body 1, consisting of molecular formula Mo.nFe2O3 (at least a kind of M; Ba, Sr and Pb, n; 5.5-6.2), of arcuate form having the center angle of theta=155 deg.-175 deg. and having the anisotropy of orientational coefficient of 30% or above radiately in radical direction from the center point, the open leg part side of the molded body 1 is placed on a sintering base plate 3, and a sintering work is performed while the load of 10-200% of the weight of the molded body is being applied. As a result, a semicircular anisotropic ferrite of arcuate form, having the center angle theta=165 deg.-182 deg., consisting of the molded and sintered body of anisotropy of the orientational coefficient of 80 deg. or more radiately in radical direction from the center point and also having the residual magnetic flux density of Br 4,000(G) or above, can be obtained.

Description

【発明の詳細な説明】 産業分野 この発明は、1ylo + n Fe2O2(M : 
Ba 、Sr 、Pbの少なくとも1種、n;  5.
5〜6.2)からなる半円状の異方性フェライト磁石と
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field This invention is applicable to 1ylo + n Fe2O2 (M:
at least one of Ba, Sr, and Pb; 5.
5 to 6.2) and a method for manufacturing the same.

背景技術 一般に、マイクロモーター、ジェネレーターなどに使用
される所謂リング型異方性フェライト磁石には、一体型
の磁石や分割型磁石が使用されている。一体型磁石の場
合、成型体を焼結する際に、磁場方向である径方向と磁
場方向に直角方向の高さ方向では、収縮率が異なり、特
に、焼結体の磁気特性向上のために径方向への印加磁界
を高くすればするほど、焼結時の収縮率の差は大きくな
り、焼結体の内外周部に、割れや亀裂などが発生し、製
品歩留が低下する問題があり、このため成型時の印加磁
界強度を低くすると、焼結体の磁気1!f性の低下を来
たすため、従来、一体型焼結磁石の残留磁束密度は、最
大で、3000〜3200 (G )程度しかj7られ
なかった。
BACKGROUND ART In general, so-called ring-type anisotropic ferrite magnets used in micro motors, generators, etc. include integrated magnets and split magnets. In the case of an integrated magnet, when sintering a molded body, the shrinkage rate is different in the radial direction, which is the direction of the magnetic field, and in the height direction, which is perpendicular to the magnetic field direction. The higher the magnetic field applied in the radial direction, the greater the difference in shrinkage rate during sintering, which causes cracks and cracks to occur on the inner and outer peripheries of the sintered body, resulting in a reduction in product yield. Therefore, if the applied magnetic field strength during molding is lowered, the magnetic field of the sintered body will be reduced to 1! Conventionally, the residual magnetic flux density of an integrated sintered magnet could only be reduced to a maximum of about 3000 to 3200 (G) due to a decrease in f properties.

よ/二、22割型(蝕【iの場合は、弓形フェライト磁
石を〜数州いるが、該弓形成型体を焼結する際に、成型
体の外周面側ど内周面fit!Iとの収縮率の相違によ
り、外周面側には引張応力、内周側には圧縮応力ん1[
1川し、焼結体の外周面に亀裂あるいは割れ不良か発生
し、製品歩留の低下を来たすため、従来の弓形)rライ
ト・磁石で、良好な製品の得られる弓形円弧面の聞き角
度、)なわら中心角度は、最大C145°しか得られな
かった。したがって、弓形焼結体の中心角度を所要角度
となるように加工した3@あるいは4藺の焼結体を組合
わけて、一体化してJ>す、多大の加工ならびに組立工
程を要Jるだ【ノCなく、十分な磁気特性のリング状磁
石を胃ることが困難であった。
In the case of Y/2, 22-split type (eclipse), several bow-shaped ferrite magnets are used, but when sintering the bow-formed body, the inner circumferential surface of the molded body is Due to the difference in the shrinkage rate of
However, cracks or defective cracks may occur on the outer peripheral surface of the sintered body, resulting in a decrease in product yield. ) However, the maximum center angle could only be obtained at C145°. Therefore, it is necessary to combine three or four sintered bodies processed so that the center angle of the bow-shaped sintered body has the required angle, and to integrate them into one, which requires a large amount of processing and assembly steps. [It was difficult to use a ring-shaped magnet with sufficient magnetic properties without C.

発明の目的 p            L (7) f′?−明+
1・”)′:′グ状7”57ト磁石を形成するのに、組
立が容易で、かつ外観良好で磁気特性がすぐれた半円状
の異方性フェライト磁石を目的としており、また、磁気
特性のすぐれた半円状異方性フェライト磁石を、vlれ
や亀岬を・発生させることなく製造できる製造方法を目
的としている。
Purpose of the invention p L (7) f'? -bright+
1. The purpose is to create a semicircular anisotropic ferrite magnet that is easy to assemble, has a good appearance, and has excellent magnetic properties to form a round-shaped magnet. The purpose of the present invention is to provide a manufacturing method that can manufacture semicircular anisotropic ferrite magnets with excellent magnetic properties without causing VL deviation or turtle cape.

発明の描成と効果 この発明は、残留磁束密度が高く、才円状からなる異方
性フェライト磁石を目的に、半円状成型体の焼結反応時
にお4フる収縮特性を制御する方法を種々検討した結果
、特定性状の成型体の焼結時に、上記成型体の開放脚部
側を焼結用台板に載置し、該成型体外周面中央付近に、
所定の荷重を付加しながら焼結することにより、高残留
磁束密度の半円状異方性フェライト磁石を歩留よく製造
できることを知見したものである。
Description and Effects of the Invention The present invention provides a method for controlling the shrinkage characteristics during the sintering reaction of a semicircular molded body, with the aim of producing an anisotropic ferrite magnet with a high residual magnetic flux density and a circular shape. As a result of various studies, when sintering a molded body with specific properties, the open leg side of the molded body is placed on a sintering base plate, and near the center of the outer peripheral surface of the molded body,
It has been discovered that semicircular anisotropic ferrite magnets with high residual magnetic flux density can be manufactured with good yield by sintering while applying a predetermined load.

すなわち、この発明は、 分子式 Mo・n Fe2O2(M : Ba 、Sr
 、Pbの少イ≧くとも1種、n;5.5〜6.2)か
らなり、中心角度θ=155°〜115°を有する弓形
状で、かつ中心点から径方向に放射状に配向率80%以
上の異方性を有する成型体の焼結において、上記成型体
の開放脚部側を焼結用台板に載置し、該成型体外周面中
央付近に、該成型体重量の10%〜200%の荷重を(
=J加しながら焼結することにより、中心角度lツー+
G5°〜182°を右す゛る略゛1′円状C1かつ中心
点から径方向に放射状に配向率80%以上の異方性を有
する成型焼結体からなり、1iJU留臘束密度Br40
00(G)以上を有する半円状巽方性フエライ1〜磁で
、iを得ることを要旨とする。
That is, this invention has the following molecular formula: Mo.n Fe2O2 (M: Ba, Sr
, at least one type of Pb, n; 5.5 to 6.2), has an arcuate shape with a center angle θ = 155° to 115°, and has an orientation rate radial in the radial direction from the center point. In sintering a molded body having an anisotropy of 80% or more, the open leg side of the molded body is placed on a sintering base plate, and 10 of the molded weight is placed near the center of the outer peripheral surface of the molded body. %~200% load (
By sintering while adding =J, the center angle l2 +
It is made of a molded sintered body having an approximately 1' circular shape C1 extending from G5° to 182° to the right and having anisotropy with an orientation rate of 80% or more radially from the center point, with a 1iJU retention bundle density Br40
The gist is to obtain i in semicircular traverse magnets 1 to 1 with magnets having 00 (G) or more.

この発明により、発電機用、DCモーター用、VCM川
等の11気回路において、加工、組立工数低δ・kど共
に、総表面磁束数Φ丁の向上及び表面磁束方度分布のば
らつd減少の効果が桿られ、モーター回路の問題点の磁
気音解浦と共にトルク特性の向上に有効である。
With this invention, in 11 circuits for generators, DC motors, VCM rivers, etc., the processing and assembly man-hours are reduced δ and k, the total surface magnetic flux number Φ is improved, and the variation in the surface magnetic flux direction distribution is reduced. The reduction effect is achieved, and it is effective in improving the torque characteristics as well as the problem of the motor circuit.

さらに、従来磁石と比較して、この発明による:11円
状異方性フTライト磁石は、大巾に磁気特性(ΦT、B
r)が向上し、機器の小形化、軽量化に作動であり、ま
た、同一形状、寸法金型より、各種の弓形、半円状の焼
結体をIqることができ、金型数量の低減に有効である
Furthermore, compared to conventional magnets, the present invention's:
r), which helps to make the equipment smaller and lighter. Also, it is possible to produce various arcuate and semicircular sintered bodies from molds of the same shape and size, and the number of molds can be reduced. Effective in reducing

発明の開示 この発明は、分子式がMo ・n FFe203(;B
a、Sr、Pbの少なくとも1種、n:  5.5〜6
.2)からなるフェライト磁石に適用できる。
DISCLOSURE OF THE INVENTION This invention has a molecular formula of Mo ・n FFe203(;B
at least one of a, Sr, and Pb, n: 5.5 to 6
.. It can be applied to ferrite magnets consisting of 2).

この発明による半円状異方性フJライトF41石におい
て、中心角度θを165°〜182°としたのは、16
5°未満では、組立磁気回路における磁石間の空隙が大
きくなり、磁気回路のヨークとの間に漏洩磁束が発生し
て、磁束密度分イtiが不均 にムるなどの特性劣化が
あり、マイクロモーター、DCモーター等に組込んだ際
の磁気音が人8くなり、好ましくなく、また、182°
を越えると、焼結時、成型体外周面に発生する引張応力
と内周面に発生する圧縮応力により、焼結体に割れや亀
裂を生じ、外観良好な製品を得られないためである。ま
た、中心角度は、成型性および磁気特性を考慮すると、
115°〜182″″が好ましい。
In the semicircular anisotropic ferrite F41 stone according to this invention, the center angle θ is set to 165° to 182°.
If it is less than 5 degrees, the air gap between the magnets in the assembled magnetic circuit becomes large, leakage magnetic flux occurs between the magnetic circuit and the yoke, and the characteristics deteriorate such that the magnetic flux density becomes uneven. When incorporated into a micro motor, DC motor, etc., the magnetic noise will be louder, which is not desirable, and the 182°
This is because if it exceeds this value, the tensile stress generated on the outer circumferential surface of the molded body and the compressive stress generated on the inner circumferential surface of the molded body during sintering will cause cracks and cracks in the sintered body, making it impossible to obtain a product with a good appearance. In addition, the center angle is determined by considering moldability and magnetic properties.
115° to 182″″ is preferred.

該磁石の配向率は、80%未満では、得られる焼結磁石
の残留磁束密度3rが4000(G)未満となり、好ま
しくないため、配向率を80%以上どする。
If the orientation ratio of the magnet is less than 80%, the residual magnetic flux density 3r of the obtained sintered magnet will be less than 4000 (G), which is not preferable, so the orientation ratio is set to 80% or more.

この発明における成型体は、公知のスラリー状磁石原料
粉末あるいは乾式磁石原料粉末を、ダイス内に(非磁性
材の上下バンヂにより、磁場方向と直角方向に圧縮成型
覆る、所謂、直角磁界ブレ  ・ス装置による成型体で
ある。また、成型体の密度は、3.1〜3.5が好まし
い1゜ また、成型体の中心角度を155°未届にすると、焼結
体を所要の165°以上にすることができず、175°
を越えると、焼結体の中心角度が182°を越え、焼結
体に亀裂や割れを生じるため、成型体の中心角度は、1
55°〜175°とする。
The molded body of the present invention is a so-called right-angle magnetic field brace in which known slurry-like magnet raw material powder or dry magnet raw material powder is compressed and covered in a direction perpendicular to the magnetic field direction by upper and lower bandages of non-magnetic material. It is a molded body by a device.The density of the molded body is preferably 1° from 3.1 to 3.5.Also, if the center angle of the molded body is less than 155°, the sintered body will be sintered to the required 165° or more. 175°
If it exceeds 182°, the center angle of the sintered body will exceed 182°, which will cause cracks and cracks in the sintered body.
55° to 175°.

この発明の製造方法において、円弧面中心点から径方向
に放射状の磁場配向率を80%以上に限定したのは、配
向率が80%未満となると、I4!場成型中の粒子の方
向が不揃いとなり、磁気特性及び成型密度が不均一とな
り、十分な磁気特性、特に、Br4000(G)以上を
得ることができないためである。
In the manufacturing method of the present invention, the orientation ratio of the magnetic field radially radially from the center point of the circular arc surface is limited to 80% or more, because if the orientation ratio is less than 80%, I4! This is because the direction of the particles during field molding becomes irregular, resulting in non-uniform magnetic properties and molding density, making it impossible to obtain sufficient magnetic properties, especially Br4000 (G) or higher.

また、成型体外周面の中央部に載置する荷重を、1  
      該成型体重1(7)10%〜200%。え
□由□、1oえ未満では荷重効果が少なく、焼結時の成
型体の外周面および内周面に発生する引張応力、圧縮応
力を制御することが困難となり、中心角度か182 ”
以上となり、焼結体に割れ0亀裂を発ルして車力′な製
品が(イられず、;Lだ、200%を越えると、成型体
が荷重に耐えられf、焼結体に割れを生じるためである
。特に、中心角度が180’ 館後のほぼ半円状の焼結
体を得るには、上記荷重は、成型体重量の10%〜60
%が望ましい。
In addition, the load placed on the center of the outer peripheral surface of the molded body is 1
The molded weight 1 (7) 10% to 200%. If it is less than 1 o, the load effect will be small and it will be difficult to control the tensile stress and compressive stress generated on the outer and inner circumferential surfaces of the molded body during sintering, and the center angle will be 182".
If the load exceeds 200%, the molded body will not be able to withstand the load, and the sintered body will crack. In particular, in order to obtain an approximately semicircular sintered body with a center angle of 180', the above load should be 10% to 60% of the molded weight.
% is desirable.

上記荷重物の成型体外周面における載置位置は、第1図
に示す如く、ル2結用合板(3)に開放脚部側を載置し
た成型体(1)の外周面中央部付近に、Fim物[2]
を密着させた場合、荷重物(2Iの成型体(1)幅(L
)に対する荷重物(2)幅く吏)を、免−0,1L〜0
.9Lとするのが好ましく、また、荷重物が成型体外周
面中央部で成型体より離間し、荷重物の両端部で成型体
と接触する場合は、1=o、i1〜0.5Lとづるのが
好ましい。
As shown in Fig. 1, the above-mentioned load is placed near the center of the outer circumferential surface of the molded body (1) with its open leg side placed on the plywood for connecting the two legs (3). , Fim thing [2]
When the 2I molded body (1) width (L
) to the load (2)
.. It is preferable to set it to 9L, and when the load is separated from the molded body at the center of the outer peripheral surface of the molded body and contacts the molded body at both ends of the loaded body, it is written as 1=o, i1 to 0.5L. is preferable.

また、荷重物は、成型体の焼結温度に耐える材質であれ
ば、金属、セラミックスなどいずれの材質でもよく、ま
た、焼結体と同種のフェライト磁石片でもよい。また、
形状は、円弧状、板状などいずれの形状でもよいが、安
定性の点では成型体外周面形状と相似形がりfましい。
Further, the load may be made of any material such as metal or ceramic as long as it can withstand the sintering temperature of the molded body, or may be a piece of ferrite magnet of the same type as the sintered body. Also,
The shape may be any shape such as an arc shape or a plate shape, but in terms of stability, a shape similar to the shape of the outer peripheral surface of the molded body is preferable.

また、この発明による異方性フェライト磁石の焼結温度
は1200℃〜1250℃が望ましい。
Further, the sintering temperature of the anisotropic ferrite magnet according to the present invention is preferably 1200°C to 1250°C.

実施例 実施例1 SrO10wt%、Fe 20390wt%からなるス
ラリー状磁石原料粉末を、直角磁界ブレ装Uを用いて、
10koeのEd界中で0.5 tJの圧力により、外
周面半径44mmX141場方向厚み15mmX中心角
度170°×高さ20°寸法、小川100gの成型体を
、201[i;l成型した。
Examples Example 1 Slurry magnet raw powder consisting of 10 wt% SrO and 20390 wt% Fe was processed using a right-angle magnetic field bracing device U.
A molded body of 201[i;l] having dimensions of outer peripheral surface radius 44 mm x 141 field direction thickness 15 mm x center angle 170° x height 20° and weight 100 g was molded under a pressure of 0.5 tJ in an Ed field of 10 koe.

寄られた密度3.2の半円状成型体の全数を、第1図の
如く、成型体の開放脚部が焼結用台板に乗るようにIL
Ji、謬し、成型体外周面中央に、交=?3胴(ffi
/L−43%)なる位置に、20(]のSrフfライ1
−片を荷重として戟ビ、1250°C,2時間の焼結を
施し、焼結体を得た。この焼結体の中心角度及び外観状
況を第1表に示す。
All of the assembled semicircular molded bodies with a density of 3.2 are placed at IL so that the open legs of the molded bodies rest on the sintering base plate, as shown in Figure 1.
Ji, there is an intersection at the center of the outer circumferential surface of the molded body. 3 body (ffi
/L-43%), the Sr fly f1 of 20(]
- Sintering was performed at 1250° C. for 2 hours using the piece as a load to obtain a sintered body. Table 1 shows the center angle and appearance of this sintered body.

また、比較のため、成型体の焼結時にWI重を載せない
以外は、成型体の材質、形状1寸法、焼結条件を同一条
件として作製した比較焼結体全数の中心角度と外観状況
を調べ、TX1表に併記する。
In addition, for comparison, the center angle and external appearance of all comparative sintered bodies were prepared using the same material, shape, and sintering conditions, except that WI weight was not placed during sintering of the molded bodies. Research and record it in the TX1 table.

第1表から明らかなように、この発明による貸方性フェ
ライト磁石は、所要の中心角度180°が得られ、かつ
割れ発生が皆無である。
As is clear from Table 1, the ferrite magnet according to the present invention has the required center angle of 180° and has no cracking.

第1表 また、この発明により得られた半円状異方性フェライト
磁石の2個を、組立接着し、外径70mmX内径48柵
×高さ16mm寸法に加工し、径方向に内径に6極を着
磁し、各磁極における配向率をローターフレックスで測
定した結果、配向率は94%〜96%と、ばらつきが少
なく、さらに、Jtsr人にて残留磁束密度(B「)を
測定した結果、3r =4300Gと従来法では得られ
ない呂磁束密度特性が得られた。
Table 1 also shows that two semicircular anisotropic ferrite magnets obtained according to the present invention were assembled and glued together and processed into dimensions of 70 mm in outer diameter x 48 bars in inner diameter x 16 mm in height, with 6 poles on the inner diameter in the radial direction. As a result of magnetizing the magnet and measuring the orientation rate at each magnetic pole with a rotor flex, the orientation rate was 94% to 96%, with little variation.Furthermore, as a result of measuring the residual magnetic flux density (B'') with a JTSR person, 3r = 4300G, a magnetic flux density characteristic that cannot be obtained with conventional methods was obtained.

丈I兎例2 SrO+Owj%、Fe2O390wt%からなるスラ
リー状磁石り7ζ石粉末を、直角磁界成型装置を用いて
、10koeの磁界中CO,5を讐の圧力により、外周
面半径44mmX1i1場方向厚み15mmX中心角度
170°×高さ20°寸法、fflffiioOgの成
型体を成型した。
Example 2 Slurry magnet 7ζ stone powder consisting of SrO+Owj% and Fe2O3 90wt% was molded using a right-angle magnetic field molding device with CO,5 in a magnetic field of 10 koe under a pressure of 10 koe, outer circumferential surface radius 44 mm x 1 field direction thickness 15 mm x A molded body of ffffioOg with dimensions of 170° center angle x 20° height was molded.

11られた密a3.2の半円状成型体の全数を、第1図
の如く、成型体の開放脚部が焼結用台板に乗るJ、うに
載置し、成型体外周面中央に、λ、2/1−1S、フT
ライト片荷重を第2表に示ずように種々変化させで戟ぜ
、各条件′c50個ずつ、1250°C12時間の焼結
を施し、焼結体を得た。この焼結体の中心角度、外径、
υ1れ発生率の外観状況並びに残留磁束密度(B「)を
測定し、その結果を第2人に示す。
As shown in Fig. 1, all of the semicircular molded bodies with a density of 3.2 are placed on the sintering base plate, and placed in the center of the molded body's outer peripheral surface. , λ, 2/1-1S, FuT
The light single load was varied as shown in Table 2, and sintering was performed for 12 hours at 1250°C under each condition, 50 pieces under each condition, to obtain a sintered body. The center angle, outer diameter of this sintered body,
υ1 Measure the appearance and residual magnetic flux density (B'') of the occurrence rate, and show the results to a second person.

第2表の結果から明らかなように、成形体の外周中央面
付近に載置する荷重を調整することにより、半円状異方
性フェライト磁石の中心角度(θ)を任意に設定でき、
また、外観性状のすぐれた製品か肖られることが分る。
As is clear from the results in Table 2, the center angle (θ) of the semicircular anisotropic ferrite magnet can be arbitrarily set by adjusting the load placed near the center surface of the outer periphery of the molded body.
It can also be seen that the product has excellent appearance and properties.

【図面の簡単な説明】[Brief explanation of the drawing]

0′N1図はこの発明による製造方法を示ず半円状成形
体の説明図である、。 1・・・成形体、2・・・荷重物、3・・・焼結用台板
Figure 0'N1 is an explanatory diagram of a semicircular molded body without showing the manufacturing method according to the present invention. 1... Molded body, 2... Load object, 3... Sintering base plate.

Claims (1)

【特許請求の範囲】 1 分子式Mo・nFe_2O_3(M;Ba、Sr、
Pbの少なくとも1種、n:5.5〜6.2)からなり
、中心角度θ=165°〜182°を有する略半円状で
、かつ中心点から径方向に放射状に配向率80%以上の
異方性を有する成型焼結体からなり、残留磁束密度Br
4000(G)以上を有することを特徴とする半円状異
方性フェライト磁石。 2 分子式Mo・nFe_2O_3(M;Ba、Sr、
Pbの少なくとも1種、n;5.5〜6.2)からなり
、中心角度θ=155°〜175°を有する弓形状で、
かつ中心点から径方向に放射状に配向率80%以上の異
方性を有する成型体の焼結において、上記成型体の開放
脚部側を焼結用台板に載置し、該成型体外周面中央付近
に、該成型体重量の10%〜200%の荷重を付加しな
がら焼結することを特徴とする半円状異方性フェライト
磁石の製造方法。
[Claims] 1. Molecular formula: Mo.nFe_2O_3 (M; Ba, Sr,
At least one type of Pb (n: 5.5 to 6.2), approximately semicircular with a center angle θ = 165° to 182°, and with an orientation rate of 80% or more radially from the center point in the radial direction It is made of a molded sintered body with anisotropy of Br and residual magnetic flux density Br
A semicircular anisotropic ferrite magnet characterized by having a power of 4000 (G) or more. 2 Molecular formula Mo・nFe_2O_3(M; Ba, Sr,
consisting of at least one type of Pb, n; 5.5 to 6.2), and having an arcuate shape with a center angle θ = 155° to 175°,
In sintering a molded body having anisotropy with an orientation rate of 80% or more radially from the center point, the open leg side of the molded body is placed on a sintering base plate, and the outer periphery of the molded body is A method for manufacturing a semicircular anisotropic ferrite magnet, characterized in that sintering is carried out while applying a load of 10% to 200% of the molded weight near the center of the surface.
JP19105184A 1984-09-12 1984-09-12 Semicircular anisotropic ferrite magnet and manufacture thereof Granted JPS6169104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19105184A JPS6169104A (en) 1984-09-12 1984-09-12 Semicircular anisotropic ferrite magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19105184A JPS6169104A (en) 1984-09-12 1984-09-12 Semicircular anisotropic ferrite magnet and manufacture thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20571890A Division JPH0372604A (en) 1990-08-01 1990-08-01 Semi-circular anisotropic ferrite magnet

Publications (2)

Publication Number Publication Date
JPS6169104A true JPS6169104A (en) 1986-04-09
JPH0332893B2 JPH0332893B2 (en) 1991-05-15

Family

ID=16268072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19105184A Granted JPS6169104A (en) 1984-09-12 1984-09-12 Semicircular anisotropic ferrite magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6169104A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152979A1 (en) * 2015-03-24 2016-09-29 日東電工株式会社 Sintered body for forming rare-earth magnet, and rare-earth sintered magnet
WO2016152978A1 (en) * 2015-03-24 2016-09-29 日東電工株式会社 Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US10867732B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Sintered body for forming rare-earth permanent magnet and rotary electric machine having rare-earth permanent magnet
US11101707B2 (en) 2015-03-24 2021-08-24 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
US11239014B2 (en) 2015-03-24 2022-02-01 Nitto Denko Corporation Rare-earth magnet and linear motor using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022295A (en) * 1973-06-30 1975-03-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022295A (en) * 1973-06-30 1975-03-10

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152979A1 (en) * 2015-03-24 2016-09-29 日東電工株式会社 Sintered body for forming rare-earth magnet, and rare-earth sintered magnet
WO2016152978A1 (en) * 2015-03-24 2016-09-29 日東電工株式会社 Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
JPWO2016152979A1 (en) * 2015-03-24 2017-08-03 日東電工株式会社 Sintered body for rare earth magnet formation and rare earth sintered magnet
JPWO2016152978A1 (en) * 2015-03-24 2018-01-25 日東電工株式会社 Method for producing sintered body for forming rare earth permanent magnet having non-parallel easy axis orientation
JP2018186274A (en) * 2015-03-24 2018-11-22 日東電工株式会社 Sintered body for forming rare-earth magnet, and rare-earth sintered magnet
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US10867732B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Sintered body for forming rare-earth permanent magnet and rotary electric machine having rare-earth permanent magnet
US11101707B2 (en) 2015-03-24 2021-08-24 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
US11239014B2 (en) 2015-03-24 2022-02-01 Nitto Denko Corporation Rare-earth magnet and linear motor using same

Also Published As

Publication number Publication date
JPH0332893B2 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
US20080008897A1 (en) Magnetic powder, soft magnetic composite, and method of forming same
US2964793A (en) Method of making permanent magnets
CN105665715B (en) Fe-silicon soft magnetic alloy and method prepared by powder metallurgy process
JPS6169104A (en) Semicircular anisotropic ferrite magnet and manufacture thereof
US4010434A (en) Radially anisotropic magnet body
JPH023288B2 (en)
JPH0372604A (en) Semi-circular anisotropic ferrite magnet
JP3719782B2 (en) Manufacturing method of surface multipolar anisotropic ring magnet
US4026975A (en) Radially anisotropic magnet body
KR102530028B1 (en) Method for manufacturing electrical steel sheet from powder
JPH03265102A (en) Diametrical anisotropic cylindrical permanent magnet and manufacture thereof
JP2003272909A (en) Dust core
JPH0494502A (en) High magnetic permeability material, its manufacturing method, and method for manufacturing high magnetic permeability alloy powder
JPS601820A (en) Manufacture of cylindrical permanent magnet
KR101829256B1 (en) MANUFACTURING METHOD OF Mn-Zn FERRITE CORE FOR CURRENT TRANSFORMER
KR100511165B1 (en) Manufacturing process for multi-polarization ferrite magnet
JP2724740B2 (en) Manufacturing method of radial anisotropic bonded magnet
JPH03160707A (en) Manufacture of ferrite magnetic powder for anisotropic bonded magnet
JPS6039136A (en) Manufacture of cylindrical permanent magnet with anisotropy in diametral direction
JPS5849671A (en) Manufacture of ferrite core
JPS589566A (en) Magnetic path component for stepping motor
JPS63188918A (en) Manufacture of soft magnetic sintered ring material
JPH0215621Y2 (en)
JPH0353445Y2 (en)
JPS6374919A (en) Magnetic powder for plastic or rubber magnet and production thereof